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Foreword 
 

This course on Advanced Modelling and Simulation Techniques is part of 

the master programme Advanced Automation (Faculty of Mechanical 

and Electrical Engineering at the Petroleum-Gas University of Ploiesti, 

Romania). Its aim is to provide the student with a clear understanding of 

the basic requirements for the model-based simulations successful 

implementation and use. 

Although some examples are taken from the technical area, the course 

may generously cover almost all fields of activity where modelling and 

simulation are used as research and development tools. It does not focus 

on particular mathematical models, numerical methods or some specific 

software environments. Instead, the course emphasizes the importance 

of efficiently managing a project with two partners: the 

modelling/simulation specialist and the client organization. 

The course closely follows the author‟s expertise in this field, as well as 

other ideas, opinions and approaches in the open scientific literature. 

Especially, it makes use of a valuable book, The Practice of Model 

Development and Use, written in 2004 by Stewart Robinson (University of 

Warwick, UK) – a renowned specialist in modelling, simulation and 

research management. The large citations indicated in this text were 

preserved in their form in order not to distort the original meaning, but 

they are blended with new/original opinions and examples, aiming to 

offer the reader an accessible and comfortable lecture. 

 

The author 
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1.  
Modelling & Simulation – an Overview 

1.1. A Short Introduction 

When the executive staff of a power plant estimates the facilities that 

are required in a future new power station, important decisions need to 

be made. Among other things, they have to take into account the future 

clients pattern (industrial or home individuals for instance), the number of 

power generators, the appropriate fuel type, the amount of safety 

devices and the number of leaving high-power lines. Also, the number of 

operating staff to employ and the required shifts they should work need 

to be determined. As the total investment is important, it is critical that 

these decisions are made correctly, while the management has to find 

an answer on how to determine the number of resources that are 

required in each area of the power plant. 

One approach would be to finalize the investment, hoping that it works – 

but this seems to be a very risky option. Slightly better would be to rely 

upon some past experience with designing and managing power plants. 

A few calculations may help, but these are not able to cover the full 

complexity of the situation. 

A more effective approach seems to be a simulation of the proposed 

plant. This could imitate the different clients‟ power needs and 

consuming behavior (depending on their pattern, as described above), 

the external flow of materials (fuel for generators, spare parts for 

maintenance and so on), other influencing (or disturbing) factors for the 

power generators and would act as a basis for planning plant facilities. 
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Indeed, simulation models are used by many organizations to plan future 

facilities and also to improve current ones. For instance, manufacturing 

companies simulate their production facilities; financial organizations 

simulate their assistance centers, while transport companies simulate 

their delivery networks. Of course, many other examples of simulation 

being used in practice can be identified. 

This introductory chapter tries to answer three questions concerning 

modelling and simulation: 

 What is a simulation? 

 Why would an organization choose to develop and use a 

simulation model? 

 When is simulation appropriate? 

1.2. Defining Modelling and Simulation 

Simulation models are in everyday use and so simulation is a concept 

that is ordinary to us. For example, when weather forecast TV presenters 

show us computer simulations of the weather system, we watch to the 

movement of a rainy clouds front for the next hours, days and weeks. The 

game consoles may also be mentioned here, as they simulate real 

activities like testing our speed drivers, adventurers or detective skills. But 

simulations not really need to be computer based: model railways and 

boats are typical examples of physical simulations. So, in its most general 

sense, the simulation term can be defined as an imitation of a system 

(Robinson, 2004). 

Imitation implies copying something else. For instance, we may imitate 

different entities, from the work of a great artist (by forgeries) to the 

famous buildings (with smaller replicas). Also, computer aided design 

(CAD) systems providing imitations of production facility designs are an 
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imitation of a business organization. All of these can be referred as a 

simulation in its most general sense. 

But there is a key difference between these imitations and those 

examples described earlier in this section, which involve the passage of 

time (clouds migration on the sky, race car movement on its track and so 

on). The second set of examples does not imply the time as 

characterizing parameter. At this point, the difference between the 

static simulation (reproducing a system at a particular moment in time), 

and the dynamic simulation (imitating a system as it progresses through 

time) have to be emphasized (Law and Kelton, 2000). 

As the term simulation is simply used instead of dynamic simulation, it is to 

be mentioned that this course is concerned only with dynamic 

approach(es) when imitating a (technical) system, while the focus will be 

on computer based simulations rather than physical simulations. Taking 

into account these considerations, the previous definition can be 

updated as follows: simulation means an imitation (on a computer) of a 

system as it progresses through time. 

It may be useful to explain the concept of a system. In general terms, a 

system represents a collection of inter-connected parts organized for 

some purpose (Coyle, 1996). The weather system, for instance, is a 

collection of parts, including the sun, water and land, “designed” for the 

purpose of maintaining life. The above power plant is a collection of 

generators, additional equipments and operating personnel, with the 

purpose of supplying the energy needed by its clients. Many other 

examples may be identified, and the systemic approach is proven to be 

a very robust way of investigating the real environment. 

Checkland (1981) identifies four main classes of system: 

 Natural systems, whose origins lie in the origins of the universe (the 

atom, the climatic system, the natural hydro-systems). 
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 Designed physical systems that are a result of human design (a 

block of flats, an automobile, a factory). 

 Designed abstract systems, that are also a result of human design, 

but do not have a physical consistency (mathematics, philosophy, 

literature). 

 Human activity systems, consciously or unconsciously ordered (a 

family, a political system, an economic system). 

All systems above can be simulated. This course, however, mostly focuses 

on designed physical and human activity systems, which best and 

completely describe the technical field of interest. For instance, a 

simulation developed for an automated refinery plant (a designed 

physical system) has to be completed with a simulation of its operating 

personnel behavior (a human activity system). In this situation the 

complex system cannot be regarded simply as either a designed 

physical system or a human activity system, but rather an interface 

between the two. As consequence, many of the situations in which 

simulation is used also lie at the interface between designed physical 

systems and human activity systems (Robinson, 2004). In the open 

literature, such cases are referred to as operations systems or operating 

systems (Wild 2002). 

A second aspect of the last definition is the purpose of simulation 

models. Pidd (2003) identifies the purpose of models as understanding, 

changing and controlling the reality. In this respect, simulation leads to a 

better understanding of and/or identifying improvements to a system, 

becoming a primary support for the decision-making process. 

The same author puts emphasis on simplification, as one of the most 

important features of the simulation models. Obviously, a hypothetic full-

scale simulator for a given system, representing all system‟s details, is 

barely usable due to its complexity. On the other hand, even if it were 
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possible, such a “complete” modelling approach is not feasible, since 

the time required to collect data on and model every aspect of a 

system would be excessive (Robinson, 2004). 

Another aspect to be considered is the nature of simulation model use. A 

simulation simply describes the behavior of a particular system in the 

context of specific inputs. For instance, in the context of a simulated 

power plant, it might predict the minimum number of active generators 

during high-consuming periods. Of course, by varying the model inputs 

(specific clients‟ behavior and their particular power needs) and 

repeatedly running the model, one can observe their influence in the 

simulated system response. In this case, simulation is an experimental 

approach to modelling – so becoming a powerful analysis tool – since 

the user select an operational scenario and the model predicts the 

outcome. By continuous exploration, scenario by scenario, a better 

understanding of the real system can be obtained. Since new 

knowledge may lead to important improvements of the system, 

simulation should be regarded as a form of decision support system. 

By adding these new aspects to previous definitions, simulation can 

finally be seen as experimentation with a simplified computer-imitation of 

an operational system as it evolutes through time, for the purpose of 

better understanding and/or improving that system (Robinson, 2004). 

1.3. Simulation vs. other Investigation Techniques 

This paragraph adopts three perspectives, in order to reveal the 

simulation necessity, its advantages and disadvantages when taking into 

account other tools and approaches for systems analysis and control. 

1.3.1. Simulation in the context of operational systems nature 

Usually, operational systems are subject to variability. This might be 

equally predictable (for example, changing the number of active power 
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generators in order to meet the plant required output power) or 

unpredictable (such as the plant equipment breakdown). Both forms of 

variability are present in most operations systems. 

Usually, operational systems are in fact individual elements of a global 

system, and so they are also interconnected, affecting one another. A 

change in one part leads to a change in another part of the system. For 

instance, if an active power generator is set up, additional operating 

personnel is also required. But it is difficult to predict the effects of the 

interconnections in a system, especially when variability is present 

(Robinson, 2004). Let us take the related example of a power plant. If 

considered totally free of any defective equipment during its normal 

operating life, the plant‟s needs with respect to personnel are strictly 

related to the number of active generators. But, as the reality is different, 

any unexpected and unpleasant technical event has to be solved by re-

allocating technicians and ordinary workers. In this context it is possible 

that, at a particular moment, one generator will not be served by all the 

standard personnel and if something goes wrong additional problems 

appear on that power plant.  

Although we describe both the system and its behavior as being 

complex, it is difficult to provide an exact definition of the word 

complexity. For our purposes it is important to distinguish between 

combinatorial complexity and dynamic complexity. Robinson (2004) 

identifies the combinatorial complexity as being related to the number 

of components in a system or the number of combinations of system 

components that are possible.  

On the other hand, dynamic complexity is not obviously dependent on 

system‟s size, but a consequence of components interaction over time 

(Sterman, 2000). This can happen in all systems, both small and large, 
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and when they are highly interconnected the dynamic complexity will 

exhibit. 

It can be illustrated by a simple example, concerning a gas fuel supply 

chain consisting of a retailer, wholesaler and refinery. The retailer orders 

gas tanks from the wholesaler, who in turn orders gas from the producing 

refinery. Since there is a delay between placing an order and receiving 

the tanks, a small perturbation in the number of gas tanks sold by the 

retailer can cause large shifts in the quantity of tanks stored and 

produced by the wholesaler and refinery respectively. It is obvious that 

such a system is subject to dynamic complexity. 

Senge (1990) emphasizes three effects of dynamic complexity: 

 An action may have different effects in the short and long run. 

 An action may have very different consequences in one part of 

the system to another. 

 An action may lead to non-obvious consequences. 

These effects, usually involved by the feedback connections within a 

system, make it very difficult to estimate its response when actions are 

taken or changes are made. The interconnections in operations systems 

are often not unidirectional, and so loop structures and feedback are 

quite common. In particular, physical items and information often flow in 

opposite directions. In a supply chain, for instance, physical items often 

move towards the customers while information about orders for more 

stock moves towards the producers. In some cases the loop structures 

are very complex, involving many system components, as shown by 

Robinson (2004). 

He mentions also that many operational systems are interconnected and 

subject to both variability and complexity (combinatorial and dynamic). 

Because it is difficult to estimate the systems outputs when they are 

subject to any one of variability, interconnectedness and complexity, it is 
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rather impossible to predict the output when systems are potentially 

subject to all three. Simulation models, however, are able explicitly to 

represent the variability, interconnectedness and complexity of a system. 

As a result, by simulation it is possible to predict system behavioral 

performances, to compare alternative system designs and to determine 

the influence of alternative operating strategies on outputs 

characteristics. 

1.3.2. Modelling and simulation – some advantages 

Robinson (2004) reveals that simulation is not the only method of studying 

operational systems. Rather than develop and use a model for simulation 

purposes, experiments could be carried out in the real system. There are 

some obvious, and less obvious, reasons why simulation is preferable to 

such direct experimentation. 

 Cost. Real experiments are estimated to be costly, as they interfere 

with the normal operating regime of the studied system. New parts 

to be added, other materials, energy, skilled operating personnel, 

all of these have a particular cost, usually not negligible at all. 

Moreover, if the experiments cause the system‟s performance to 

worsen, this brings not only additional costs but also the customer 

dissatisfaction. With a simulation, however, experimentation implies 

only the cost of time it takes to adapt the model, as it does not 

interrupt the real system at all. 

 Time. Experimenting with a real-world system is time consuming, as 

improving its performances is not an easy task (at least when the 

approach uses a try-then-evaluate algorithm). On the other hand, 

it is expected that a simulation can run faster than real time. 

Consequently, a re-evaluation of new system‟s performance can 

take minutes, maybe hours, but not days. Such a fast experiment 

enables many ideas to be explored in a short time horizon. This also 



 
 

12 

has the advantage of covering a very long time frame (i.e. months 

or even years of system operation) if required. 

 Control of the experimental conditions. When experimenting with 

the real system it is indeed difficult to fully control the conditions 

under which the experiments are performed (otherwise direct 

comparisons cannot be made). For instance, supposing new 

emergency procedures have to be tested, a large-scale system 

crash in a power plant could not be experimented at all. But with 

a simulation the experimental conditions can be repeated many 

times, allowing the so-called pattern-based experimentation. 

 The real system does not exist. This is the major difficulty with real 

world experimentation, when the studied system may not yet exist. 

In this extreme case direct experimentation is impossible, the only 

alternative being to develop a model. 

Obviously, model-based simulations are not the only methods to be used 

for understanding and improving the real world systems. Other 

approaches range from simple paper calculations, through spreadsheet 

models, to more complex mathematical programming and heuristic 

methods (e.g. linear programming, dynamic programming, genetic 

algorithms – Robinson, 2004). But there are two reasons why simulation 

would be used in preference to these alternatives, shortly mentioned 

here. 

 Modelling variability. Unlike simulation, the methods mentioned 

above are not even able to deal with any kind of variability or, if 

they do, their complexity becomes prohibitive. In this context, 

simulation is often the only way for pertinently estimating the 

studied system‟s behavior when it subject to significant variability. 

 Restrictive assumptions. While other modelling approaches require 

certain assumptions (in order to meet their basic principles), 
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model-based simulation is much less restrictive. Of course, the 

desires to simplify models as well as data amount shortage need 

that some appropriate assumptions are normally made, but this 

does not restrict at all the simulation‟s principles. 

Of course, there are occasions when another studying approach is 

appropriate and simulation is not required. More, Pidd (1998) reveals 

that, being a time consuming method, sometimes simulation should be 

used as a means of last resort, rather than the preferred option. 

1.3.3. The disadvantages of simulation 

There are a number of problems with using simulation and these must not 

be ignored when deciding whether or not it is appropriate. The most 

important disadvantageous characteristics (below presented) were also 

emphasized by Robinson (2004). 

 Expensive. Simulation software is usually not cheap, as well as the 

cost of model development, implementation and use. 

 Time consuming. Because simulation is a time consuming 

technique, the benefits are not immediate, while the time spent 

during experiments increases the total cost of the project. 

 Data hungry. Most simulation models become useful only when a 

significant amount of data is available. Even more, supposing the 

required data set is collected, supplementary procedures may be 

involved in order to put it in a form suitable for the simulation. 

 Requires expertise. Model-based simulation involves human skills in, 

among other things, conceptual modelling, validation and 

statistics, as well as working abilities when dealing with people, 

which are not always readily available. 

 Overconfidence. Computer simulations results have not to be 

considered right “by default”, only because they were produced 

by a good algorithm running on powerful computing platforms. 
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Significant effort has to be paid when interpreting the results from 

a simulation, as much consideration must be given to the validity 

of the underlying model as well as to the assumptions and 

simplifications that have been made. 

1.4. When to Simulate 

It is impossible to give a full list of applications for which simulation might 

be used. It is, however, interesting to give some indication of the range 

of systems that can be modelled. Banks et al. (1996) suggest the 

following items on their list, mentioning also that other applications may 

be added: 

 Physical and chemical systems in industry; 

 Business process (re)engineering/management; 

 Infrastructure computer-based systems; 

 Manufacturing systems (especially flexible production lines); 

 Transportation systems; 

 Public systems: natural resources, health care, military; 

 Domestic industries (constructions, food processing). 

1.5. Chapter’s Conclusions 

This first chapter deals with the nature of simulation, as it is involved in this 

course. Some specific definitions of simulation for modelling operations 

systems are provided, trying to cover the many meanings associated 

with term “simulation”. By presenting the main advantages and 

disadvantages of model-based simulation approaches, some reasons for 

using simulation are also discussed. Finally, a short list of common 

simulation applications is presented, in order to have a complete 

overview on its implications and importance in real life. 
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2.  
Software Tools for Simulation 

2.1. An Overview 

The simulation software evolution closely follows the history of electronic 

computing. The first rudimentary computer simulations were performed in 

early years of informatics era, around 1950 (although it is to mention that, 

at the end of World War Two, in 1940s, a sort of military computers served 

for ballistic simulations). 

In the next decade, programming languages such as FORTRAN greatly 

were involved in simulation projects. In 1960s the first specialist simulation 

languages such as GPSS (Schriber, 1974) and SIMULA (Dahl and 

Nygaard, 1966) were announced. Since these early simulations were 

based on computer source-code only, they appear like a black box into 

which data were input and results were output following a simulation run 

(Robinson, 2004). 

As 1970s are well known for the microprocessors and microcomputers 

spreading, the potential of visual and interactive simulations (VIS) started 

to be revealed. The first language for VIS, SEE-WHY, was announced in 

1979 (Fiddy et al., 1981). Consequently, in 1980s and 1990s (the PC‟s 

years) and in the last decade, a wide range of simulation languages and 

simulators became available (Law and Kelton, 2000). Improvements in 

functionality and graphical interface facilities, the compatibility with 

other software packages, online use (across the Internet) are only a few 

characteristics of the modern simulation environments. 
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On the other hand, this very generous range of software offers leads to 

another problem: how to select the appropriate tool for model 

development, when a simulation-based project has to be started. This 

chapter attempts to find appropriate answers for the next questions: 

 What types of software can be used for model development? 

 In this context, what specific packages are available? 

 What selection criteria are appropriate? 

2.2. Visual Interactive Simulation 

At present, simulation models could be described as being visual 

interactive simulations (Robinson, 2004), meaning the model provides a 

visual display while simulation runs. The displayed graphical information 

can range from a simple schematic (as shown in figure 2.1) to a very 

complex animation, for instance. 

 

Figure 2.1. A Typical VIS Working Session. 
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Another VIS characteristic is the ability of interacting with the running 

model. The simulation can be stopped at any point in order to obtain 

additional information about the status of the model and the 

performance of the system being modelled. Even more, in some 

implementations the model can be altered before running it further, 

although the paradigm of model invariance is also well-respected in the 

scientific community. The simulation can also stop at a point when it 

requires dialogue with the user. Taking into account these 

considerations, Robinson summarizes the main benefits of VIS as follows: 

 Greater understanding of the model. The visual display allows the 

model user to track all events occurring in the simulation, which 

may be similar with the corresponding real system. 

 Easier model verification and validation. The modelling errors can 

be identified by the non-usual events arising during simulation and, 

with the help of non-simulation experts (but having good 

knowledge about the modelled system), they can be corrected. 

 Enables interactive experimentation. Providing a faster response 

than real time, simulations allow new ideas testing as they are 

issued. This way, the understanding of the model and the 

operational system is seriously improved. 

 Improved understanding of the results. By VIS, it becomes easy to 

identify logical connections between results and specific events 

observed during simulation. Re-running the model also makes 

possible to understand why specific results have been obtained. 

 Improved dissemination of the model. By VIS techniques, non-

simulation experts are able to understand the model, enabling a 

wider group to access a simulation-based project. 

 Provides the potential for group problem solving. Validation and 

experimentation can be carried out in a group setting with input 
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from a range of interested parties. This can facilitate greater 

creativity and consensus in problem solving (Robinson, 2001). 

2.3. Simulation Software 

At present, there are three options for developing computer modelling 

and simulation software tools: spreadsheets, general programming 

languages and dedicated environments. 

2.3.1. Spreadsheets 

Spreadsheet packages (i.e. Excel) have some basic capabilities for 

modelling and simulation. For instance, it is relatively straightforward to 

develop a simple mathematical model describing the input-output 

dependency for a simple system (in stationary regime). But, beyond this 

rudimentary level, it is necessary to use some programming capabilities 

within the spreadsheet, like macros or Visual Basic code when using 

Excel. As this context requires adequate programming skills, it may be 

useless and time consuming to develop a spreadsheet-based simulation 

tool instead of natively using the programming languages, as shown in 

the next paragraph. 

2.3.2. General programming languages 

A great flexibility can be reached when simulation models and 

environments are developed by using general purpose programming 

languages such as Visual Basic, C++, Java and so on. But, on the other 

hand, all simulation capabilities have to be built from scratch, revealing 

a big drawback of this approach (as it proves to be time consuming). 

Fortunately, modern languages use the object oriented programming 

technique which allows the code encapsulation and re-use; this manner 

of work can reduce the developing effort when standard “objects” 

(simple models, numerical methods, graphic routines) are collected in 

portable libraries. 
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2.3.3. Dedicated software environments 

These specialist simulation software packages are widely available 

today. Law and Kelton (2000) identify two types of dedicated simulation 

environments: 

 General purpose simulation packages, serving a wide range of 

applications (MATLAB, for instance). They are generously covering 

almost everything which may be simulated, but require high skills 

when implementing a particular application. 

 Application orientated simulation packages, dealing with specific 

cases (i.e. chemical processing – PRO/II, analog/digital electronics 

– Pspice, ORCAD). These focused packages are easier to use, but 

they serve a narrower range of application. 

Almost all of these software packages, but especially the dedicated 

environments, could be described as visual interactive modelling systems 

(VIMS) (Pidd 1998). They enable a visual and interactive manner of 

building a simulation application. VIMS software provides a predefined 

set of simulation objects which can be used to define the model logic, 

the simulation engine and the user interface through a set of menus. As 

result, much more reduced programming skills are usually required. A 

different situation appears when VIMS use an embedded programming 

language, in order to deal with very complex modelling applications. 

Obviously, adequate programming skills are required in this case. 

As remark, Robinson (2004) reveals that VIS and VIMS terms should not be 

confused. VIS deals with the intrinsic model nature while VIMS refers to 

how it is built. Indeed, a VIS can be developed without using a VIMS (a 

general-purpose programming language can be used instead, for 

example). On the other hand, a simulation model built using a VIMS may 

not have a visual display, so it is not a VIS. 
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2.3.4. Comparing spreadsheets, programming languages and specialist 

simulation software 

Table 2.1, adapted from Robinson (2004) presents a schematic 

comparison between the simulation modelling approaches described 

above, giving just an idea on their advantages and disadvantages. 

Table 2.1. A comparison between spreadsheets, general programming 

languages and dedicated simulation environments 
 

Feature Spreadsheets 
Programming 

languages 

Dedicated 

software 

Range of application Low High Low/medium 

Modelling flexibility Low High Medium 

Implementation time Medium Long Short 

Ease of use Medium Low High 

Ease of model validation Medium Low High 

Performance (speed) Low High Medium 

Time to obtain software skills Short/medium Long Medium 

Price Relatively low Low High 

 

It shows that general programming languages serve the widest range of 

applications, also having the most flexible behavior when implementing 

the model. Meanwhile, developing in programming languages leads to 

a shorter execution time than equivalent implementations (by 

spreadsheets or dedicated environments). On the other hand, the 

model build within specialist simulation software is relatively easy and 

takes a shorter time. Spreadsheets are sometimes better than 

programming languages in respect of model build speed and ease of 

use (at least for smaller applications), but they are not as quick or 

straightforward to use as the specialist software (Robinson, 2004). 
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However, the time required for getting appropriate skills increases if the 

macro language is used for model development. Regarding the costs, 

spreadsheets and programming languages are similarly priced (at low or 

moderate values), while dedicated simulation software tends to have 

the biggest cost – which may be correct as time as it is very productive 

as developing tool. 

The software selection critically depends upon the simulation study 

characteristics (especially its complexity). While for very simple 

applications a spreadsheet may be the best option, usual applications, 

with pertinent complexity, ask for more powerful software. Dedicated 

(general purpose) simulation packages are able to model a wide range 

of applications and can be used as time as the model is not highly 

complex. In this last case it is expected that only a programming 

language is appropriate. 

As remark, this course assumes that a specialist simulation package is 

used by the developing team, since there are big chances it is suitable 

for modelling most operational systems. 

2.4. Selecting the Simulation Software 

Once the nature of simulation software was briefly presented, this section 

deals with the problems which may be taken into account when 

selecting an appropriate solution for the (dedicated) modeling and 

simulation environment. 

The importance of software package selection for a successful 

simulation project implementation has been emphasized by some 

authors (Law and McComas, 1989, for instance), while others minimize 

this dependency (Robinson and Pidd, 1998).  The truth is that many 

researchers repeatedly use the same simulation environment on different 

problems, always trying to adapt the software to meet the project 
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requirements. For them, the advantage of using an already available 

and familiar tool seems to be above all selection criteria. But how can be 

explained this apparent difference in view? A possible answer was 

synthesized by Robinson in 2004 as follows. Within a certain domain of 

application, most of the “more powerful” simulation packages are quite 

capable of modelling what is required. Indeed, with their growing 

capabilities over the past years, this domain of application has steadily 

increased. There are always, of course, applications that go beyond the 

capabilities of a software package. It is when we are dealing with these 

applications that careful software selection is needed. Because much of 

the available software has been designed specifically for modelling 

operational systems, there are few occasions on which the software 

simply cannot model these systems. As a result, software selection 

becomes more a matter of the convenience with which the system can 

be modelled than the capability of modelling the system. It has to be 

said that as long as the software suffices, the expertise of the modeller 

(e.g. in problem solving, statistics, project management, people 

management and communication) is probably of far greater 

importance to successful simulation modelling. 

2.4.1. The process of software selection 

Some authors describe, in the open literature, a series of steps for 

selecting simulation software – Holder (1990), Hlupic and Paul (1996), 

Nikoukaran and Paul (1999), Bard (1997). Although there are some 

differences between them, the selection process could be summarized 

as follows (Robinson, 2004): 

 Step 1: establish the modelling requirements 

 Step 2: survey and shortlist the software 

 Step 3: establish evaluation criteria 

 Step 4: evaluate the software in relation to the criteria 
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 Step 5: software selection 

Usually this seems to be a linear process (from step 1 through to 5), with 

possible iterations between steps 3 to 5, as it will be shown below. 

2.4.2. Step 1: Establish the modelling requirements 

When establishing these requirements, some aspects have to be also 

taken into account. First, the nature of the systems to be modelled 

should be identified. Then, the software future utility (singular or general 

use) and application (focused on a narrow or wide domain of 

application) have to be decided. The modelling type is also important, 

as time as a simple approach requires ease-of-use, while 

complex/detailed modelling needs a high level of functionality (Hlupic 

and Paul, 1996). Of course, any other constraints have to be taken into 

account (i.e. finance availability, existing personnel skills, and 

hardware/software policy of the client organization). 

2.4.3. Step 2: Survey and shortlist the software 

After finishing step 1, the next task is to create a short list of appropriate 

software. Starting from a “complete” list, the short one can be written by 

obtaining outline information on the software to determine whether they 

meet the modelling requirements (usually from vendor web sites). Further 

to this, the critical surveys as well as experts advices carried out in the 

open literature can provide some useful information (Robinson, 2004). All 

these can quickly eliminate the packages not following the established 

requirements. 

2.4.4. Step 3: Establish evaluation criteria 

Criteria for comparing the chosen simulation packages need also to be 

established. Table 2.2, adapted from Robinson (2004) provides a list of 

criteria, grouped under a series of main objectives. Obviously, not every 
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criterion from these lists should be included in the evaluation, but only 

the selected ones, which fit the modelling requirements from step 1. 

 

Table 2.2. Some Criteria for Simulation Software Selection 

Main objectives Criteria to be taken into account 

Hardware/software 

requirements 

Hardware platform required 

Operating system required 

Software protection (hardware keys) 

Availability of network licenses 

Features for use on the World Wide Web 

Model coding and 

testing 

Ease of model development 

Possibility to build and run models in small steps 

Availability of debugging tools 

Maximum model size 

Maximum dimensions of objects (e.g. arrays) 

Features for documenting a model 

Availability of help facility 

Availability of software wizard 

Visual features 

Online/offline results analysis on the display 

Speed with which display can be developed 

Customizable user icons 

Availability of icon libraries 

Ability to pan and zoom 

Ability to locate objects on the display 

Smoothness of animation 

Availability of 3D animation 

Input data and 

analysis features 

Distribution fitting 

Ability to sample from empirical distributions 

Availability of statistical distributions 

Ability to import data from other software 

Reporting and output 

analysis features 

Availability of standard reports for model objects 

Availability of graphical reporting 

Ability to develop customized reports 

Ability to export results to other software 

Statistical analysis of results 

Experimentation 

Probable run-speed 

Run control (step, animated, batch) 

Interactive capability 

Number of random number streams available 

Control of random number streams 

Ability to perform multiple replications 

Facilities for organizing batches of runs 

Provision of advice on warm-up, run-length and multiple 

replications 

Availability of an optimizer 

Ability to distribute runs across networked computers 
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Main objectives Criteria to be taken into account 

Support 

Availability of a help desk 

Availability of consultancy support 

Type of training given 

Frequency of software upgrades 

Foreign language versions and support 

Quality of documentation 

Pedigree 

Size of vendor‟s organization 

The package age/maturity 

References on similar applications using the package 

Number of users (in industry sector) 

Geographic usage of the package 

Availability of literature on the package and its use 

Cost 

Purchase price 

Maintenance fee 

Cost of support 

Cost of training 

Time to learn the software 

Availability of lower cost run-only license 

 

 

2.4.5. Step 4: Evaluate the software in relation to the criteria 

Each of the chosen packages needs to be evaluated through the 

selected criteria, by employing means like (Robinson, 2004): 

 Discussion with the software vendor and other users of the software 

 Software and model demonstrations 

 Obtaining a free evaluation copy of the software 

 Studying the software documentation and other literature 

 Asking for expert opinion 

Of course, one should take into account the time available for the 

evaluation, as time as – for instance – any approach that requires the 

development of models is going to require significantly more time. 

The evaluation should lead to an assessment of the extent to which each 

package meets the criteria previously set out. Sometimes, a simple “yes” 

or “no” by each criterion to indicate whether or not a package has that 

capability may be enough. However, when some degrees of capability 
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are involved, it is better to use a scoring scale (for 1 to 10, for instance) 

indicating the compliance level. Some criteria can be assessed 

objectively (e.g. purchase price), while for others subjective judgments 

must be made (e.g. quality of documentation). As far as possible, it is 

best to identify significant measures to evaluate the criteria (Robinson, 

2004). 

2.4.6. Step 5: Software selection 

A specific package can be selected based upon the extent to which it 

meets the chosen criteria. This may be based on a subjective judgment 

(a simple comparison of the package evaluations – step 4) or can be 

more objective when using an overall score. Because each criterion 

does not have the same level of importance, Robinson (2004) suggests it 

is useful to weight the criteria according to their objective/subjective 

importance (in fact, the weighting factors need to be obtained from key 

members of the client organization). 

Then, an overall score could then be calculated for each package as 

follows: 

   ∑     
 

 

where Si is the overall score for software package i, Wj – importance 

weight for criterion j, Eji – evaluated score for criterion j for package i. 

A special case is when, having a large number of criteria, it is impossible 

to assign the Wi weights in a consistent way. This issue may be addressed 

through the Analytic Hierarchy Process (AHP) technique, described by 

Saaty (1980). Although its scope exceeds the purpose of this course, the 

interested reader may follow a typical example of using AHP for 

selecting simulation software, presented by Davis and Williams (1994). 
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2.5. Chapter’s Conclusions 

This second chapter focuses on simulation software characteristics, 

giving also some basic indications on how to select such a package. All 

following the same model building/running principle (VIS – Visual 

Interactive Simulations), three types of software are available for 

developing simulations: spreadsheets, general programming languages 

and dedicated simulation software. The software choice depends upon 

the complexity of the simulation being performed. 

When using specialist simulation software, the user can benefit from a 

visual interactive modelling system (VIMS) that integrates predefined sets 

of objects and programming interfaces oriented on model building and 

running. The process of selecting such a package involves the 

establishment of modelling requirements, packages primary selection 

and the final decision (taken by evaluating the criteria reflecting the 

needs of the client organization). 
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3.  
The Conceptual Modelling Principles 

3.1. Introduction 

A simulation of a power plant could take many forms. At the simplest 

level the model might include only the generators (seen as “black 

boxes”) and their supervisory system. The model, however, could be 

expanded to include the fuel supply system, operating personnel 

behavior and site management structure. There is also a need to 

consider the level of detail at which each sub-system has to be 

modelled (the generators, for instance, could be assumed as having 

fixed characteristics or following a statistical distribution). At a greater 

level of detail, a single generator could be modelled through an input-

state-output approach (with equations describing its inner phenomena). 

Also, the process failures and interruptions could be modelled. The 

modeller, along with its clients, must determine the appropriate scope 

and level of detail to model, a process known as conceptual modelling 

or designing the model. In this context, this and the next chapter 

describe the requirements for conceptual modelling, also presenting 

how a simulation specialist might go about designing the conceptual 

model. In this chapter the importance of conceptual modelling is 

emphasized before defining the term conceptual model more precisely. 

The requirements of a conceptual model are then described. Finally, the 

practical issue of how to communicate the conceptual model to all 

members of the simulation project team is discussed. In the next chapter, 

the question of how to design the conceptual model is covered. 
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3.2. The Importance of Conceptual Modelling 

Conceptual modelling is almost certainly the most important aspect of 

the simulation modelling process (Law, 1991). The model design impacts 

all aspects of the study, in particular the data requirements, the speed 

with which the model can be developed, the validity of the model, the 

speed of experimentation and the confidence that is placed in the 

model results. A well designed model significantly enhances the 

possibility that a simulation study will meet its objectives within the 

required time-scale. What sets truly successful modellers apart is their 

effectiveness in conceptual modelling (Ward, 1989). 

Robinson (2004) has its own point of view: It is often said of simulation 

studies that 50% of the benefit is obtained just from the development of 

the conceptual model. The modeller needs to develop a thorough 

understanding of the operations system in order to design an 

appropriate model. In doing so, he/she asks questions and seeks for 

information that often has not previously been considered. In this case, 

the requirement to design a simulation model becomes a framework for 

system investigation that is extremely useful in its own right. Indeed, 

Shannon (1975) goes so far as to say that effective conceptual 

modelling may lead to the identification of a suitable solution without the 

need for any further simulation work. 

But some might argue that the emergence of modern simulation 

software has reduced, or even removed, the need for conceptual 

modelling. After all, the specialist can now move straight from 

developing an understanding of the real world problem to creating a 

computer model. What this point of view ignores is that the modeller still 

has to make decisions about the content and assumptions of the model. 

Of course, modern simulation software provides an environment for more 

rapid model development, making prototyping more feasible and 
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enabling a greater level of iteration between conceptual modelling and 

computer modelling. But the software does not, however, reduce the 

level of decision-making about the model design. 

On the contrary, it could be said that the power and memory of modern 

hardware and the potential for distributed software have increased the 

need for conceptual modelling. Salt (1993) and Chwif et al. (2000) cite in 

this context the “possibility” factor: People build more complex models 

because the hardware and software enables them to. Although this 

extends the utility of simulation to problems that previously could not 

have been tackled, it is also likely that models are being developed that 

are far more complex than they need be. In this sense there are certain 

advantages in having only limited computing capacity; it forces the 

modeller to design the model carefully! As a result of the extended 

possibilities, careful model design is probably increasing in importance. 

Although conceptual modelling is of utmost importance, it must also be 

recognized that it is probably the least understood aspect of simulation 

modelling (Robinson, 2004). There is surprisingly little written on the subject 

in the open literature. The main reason for this lack of attention is no 

doubt that conceptual modelling is more of an “art” than a “science” 

and therefore it is difficult to define methods and procedures. 

So, the “art of conceptual modelling” is largely learnt by experience. This 

is not a satisfactory situation for such an important aspect of the 

simulation modelling process. In order to address this issue, this and the 

next chapter attempt to provide specific advice on how to develop a 

conceptual model. This is done by looking at the subject from various 

angles. This chapter introduces the basic concepts of conceptual 

modelling. First, the meaning of conceptual modelling is more precisely 

defined. Then the requirements of a conceptual model are discussed. 

The chapter concludes by discussing the reporting and communication 
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of the conceptual model. Chapter 4 goes on to discuss the actual 

process of conceptual modelling and how the conceptual model is 

designed. 

3.3.  The Definition of a Conceptual Model  

Zeigler (1976) tries to clarify the definition of a conceptual model by 

distinguishing between four terms: the real system is that which the 

simulation model is to represent. The experimental frame is the limited set 

of circumstances under which the real system has been observed, in 

other words, there is not a complete understanding of the real system. 

The full-scale model is capable of accounting for the complete behavior 

of the real system, but, since this model is very complex, it cannot be 

completely known. Meanwhile, in the reduced-scale model the system 

components and their interconnections are simplified. The structure of 

this model is fully known to the specialist. In our terms, the reduced-scale 

model (known as lumped model in the literature) and conceptual model 

may be considered equivalent (Robinson, 2004). 

This definition, however, provides little more than a sense that the 

conceptual model is a simplified representation of the real system. A 

more descriptive definition of a conceptual model is as follows: 

The conceptual model is a non-software specific description of the 

simulation model that is to be developed, describing the objectives, 

inputs, outputs, content, assumptions and simplifications of the model 

(Robinson, 2004). 

There are two key features of this definition. First, it specifically identifies 

the independence of the conceptual model from the software in which 

the simulation is to be developed. Indeed, in an ideal world the software 

should be selected on the basis of the conceptual model understanding. 
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Since the world is less than ideal, it is often the case that the conceptual 

model is designed around the software that is available to the modeller.  

The second feature is that the definition outlines the key components of 

the conceptual model, which are as follows: 

 Objectives: the purpose of the model and modelling project. 

 Inputs (experimental factors): those elements of the model that 

can be altered to effect an improvement in (or better 

understanding of) the real world. 

 Outputs: report the results from simulation. 

 Content: the components that are represented in the model and 

their interconnections. 

 Assumptions: statements made when there are uncertainties 

about the real world being modelled. 

 Simplifications: statements on which the model is based, in order to 

enable more rapid model development and use. 

Assumptions and simplifications are different. Assumptions are ways of 

incorporating uncertainties and beliefs about the real world into the 

model. Simplifications are ways of reducing the complexity of the model. 

As such, assumptions come from limited knowledge or presumptions, 

while simplifications focus on the desire to create simple models 

(Robinson, 2004). 

The content of the model should be described in terms of two 

dimensions (Robinson, 1994): 

 The scope of the model: the model boundary or the real system 

dimensionality that is to be included in the model. 

 The level of detail: the detail to be included for each component 

in the model‟s scope. 

The purpose of the conceptual model is to set out the basis on which the 

computer based simulation (computer model) is to be developed. It is in 
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effect a functional specification of the computer software. For many 

modelling specialists there is a temptation to start coding the computer 

model as soon as possible. Without due attention to the development of 

the conceptual model, however, this can lead to a model that does not 

achieve what is required and, at the extreme, the model may have to 

be completely rewritten, wasting significant amounts of time (Robinson, 

2004). 

3.4. Requirements of the Conceptual Model 

In designing a conceptual model it is useful to establish a set of 

requirements. In this way the model can be designed so as to meet 

these requirements. 

3.4.1. The four requirements 

Willemain (1994) emphasizes five qualities of an effective model: validity, 

usability, value to client, feasibility and aptness for clients’ problem. 

Meanwhile, Brooks and Tobias (1996) identify 11 performance criteria for 

a good model. Based on these lists, here it is proposed that there are four 

main requirements of a conceptual model: 

 Validity 

 Credibility 

 Utility 

 Feasibility. 

A valid model is one that is sufficiently accurate for the purpose at hand. 

However, since the notion of accuracy is of little meaning for a model 

that has no numeric output, conceptual model validity might be defined 

more precisely as a perception, on behalf of the modeller, that the 

conceptual model will lead to a computer model that is sufficiently 

accurate for the purpose at hand (Robinson, 2004). 
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Underlying this notion is the question of whether the model is right. This 

definition places conceptual model validity as a perception of the 

modelling specialist. It also maintains the notion that a model is built for a 

specific purpose, which is common to most definitions of validity. 

Credibility is similar to validity, but is taken from the perspective of the 

clients rather than the modelling specialist. The credibility of the 

conceptual model is therefore defined as a perception, on behalf of the 

clients, that the conceptual model will lead to a computer model that is 

sufficiently accurate for the purpose at hand (Robinson, 2004). 

The third concept, utility, is defined as a perception, on behalf of the 

modeller and the clients, that the conceptual model will lead to a 

computer model that is useful as an aid to decision-making within the 

specified context (Robinson, 2004). 

Whereas the definitions of validity and credibility are specific to the 

modelling specialist and the clients respectively, utility is seen as a joint 

agreement about the usefulness of the model. The concept of utility, as 

defined here, moves away from simply asking if the model is sufficiently 

accurate, to whether it is useful. Within any context a range of models 

could be designed, all of which might be sufficiently accurate for the 

purpose at hand. As such, all these models would be valid and credible. 

However, if a proposed model is sufficiently accurate, but too large and 

stiff, it may have limited utility. Indeed, a less (but still sufficiently) 

accurate and more flexible model that runs faster may have greater 

utility by enabling a wider range of experimentation within a given time-

frame. The final requirement, feasibility, is defined as a perception, on 

behalf of the modelling specialist and the clients, that the conceptual 

model can be developed into a computer model (Robinson, 2004). 

Various factors may make a model infeasible. For instance, it might not 

be possible to build the proposed model within the required time-scale, 
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the data requirements of the model may be too high, or there is 

insufficient knowledge of the real system to develop the proposed 

model. 

A final point to note is that these four concepts are not mutually 

exclusive. A specialist‟s perception of a model‟s accuracy is likely to be 

highly correlated with the clients‟ perceptions of the same. On the other 

hand, an infeasible model is not a useful model. It is good idea, however, 

to separate these concepts, so a specialist can independently use them 

when designing the conceptual model (Robinson, 2004). 

3.4.2. Simplicity – a key feature 

In the context of avoiding an over-complex model development, the 

aim should be to keep the model as simple as possible to meet the 

objectives of the simulation study (Robinson, 2004). Simple models have 

a number of advantages. They can be developed faster, are more 

flexible, require less data, run faster, and it is easier to interpret the results 

since the structure of the model is better understood (Innis and Rexstad, 

1983; Ward, 1989; Salt, 1993; Chwif et al., 2000). As the complexity 

increases these advantages are lost. 

Keeping models simple is a basic principle of good modelling practice. 

This does not mean that complex models should never be developed, 

because they are sometimes necessary to achieve the objectives of the 

study. There is, however, a tendency to try and model every aspect of a 

system when a simpler, more focused model would achieve the 

modelling objectives with far less effort. 

On the other hand, it is impossible to create a model that is 100% 

accurate, since it is not possible to capture every aspect of the real 

world in a model. Indeed, increasing the complexity too far may lead to 

a less accurate model, since the data and information are not available 

to support the details being modelled. 
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Ward (1989) makes a useful distinction between constructive simplicity 

and transparency. Transparency is an attribute of the client (how well 

he/she understands the model) while constructive simplicity is an 

attribute of the model itself (the simplicity of the model). The modelling 

specialist must not only consider simplicity, but also transparency in 

designing a model. Since transparency is an attribute of the client, it is 

dependent on the client‟s knowledge and skill. In other words, a model 

that is transparent to one client may not be to another. The specialist 

must, therefore, design the model with the needs of the particular client 

in mind. This is necessary to develop the credibility of the model as 

previously discussed, since a model that is not transparent to the client is 

unlikely to have credibility. 

3.5. The Conceptual Model Dissemination 

In order to determine whether the conceptual model meets the four 

requirements already set out, it is important that there is a shared 

understanding of the modelling context (real world) and model design 

between the modelling specialist and clients (as well as the other roles in 

the simulation study). In this context, a mechanism for communicating 

the conceptual model is strongly required, as part of the project 

specification. 

3.5.1. Project specification 

The output from conceptual modelling should be described in a project 

specification along with details of how the simulation study is to be 

managed. In this way a shared understanding of the conceptual model 

and the simulation study can be developed between all project team 

members. Indeed, the project specification acts as the primary means 

for validating the conceptual model. It also provides a reference point 

for developing and verifying the computer model, performing 
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appropriate experiments and reviewing the success of the simulation 

study. 

Depending on the nature of the project and the relationship between 

the clients and modelling specialist, the specification should describe the 

majority, if not all, of the following items (Robinson, 2004): 

 Background to the problem situation 

 Objectives of the simulation study 

 Expected benefits 

 The conceptual model: inputs, outputs, content (scope and level 

of detail), assumptions and simplifications 

 Experimentation: scenarios to be considered 

 Data   requirements:   data   required,   when   required and   

responsibility   for   collection 

 Project time-scale 

 Estimated cost. 

In general the specification takes the form of a written document that 

can be circulated to all involved in the simulation study. If possible, it is 

best to keep the document fairly short, to ensure that it is read and 

valuable feedback is obtained. But, in fact, all depends on the size and 

complexity of the model and the formality of the process required. 

It is vital that the specialist obtains feedback, so being able to judge the 

validity, credibility, utility and feasibility of the proposed model. There 

should also be some discussion about the management of the project, 

for instance, the collection of data, time-scales and costs. To aid this 

process, it may be useful formally to present the project specification to 

the simulation project team and to obtain immediate feedback 

(Robinson, 2004). This is particularly necessary when assumptions and 

simplifications are questioned. The modelling specialist must decide to 

change the model or justify the assumption or simplification. The 
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judgment as to which depends on the extent to which a change versus 

a justification affects the validity, credibility, utility and feasibility of the 

model. 

Because any simulation study is an iterative process, it should not be 

expected that once model coding is started the specification remains 

unchanged. There are four main reasons why it should be expected that 

the specification will change during a simulation study (Robinson, 2004): 

 Omissions in the original specification 

 Changes in the real world 

 An increased understanding of simulation on behalf of the clients 

 The identification of new problems through the development and 

use of the simulation model. 

Effective conceptual modelling, communication and feedback should 

limit the first cause of change. Changes to the real world inevitably 

happen, for instance, a change to the design of a power plant that may 

be on a small scale (e.g. an additional generator) or on a larger scale 

(e.g. a complete redesign). The last two reasons for change are both 

positive aspects of simulation modelling and should be encouraged. 

Because things change, it is important that a mechanism is put in place 

for handling these changes. If the model is simply updated without any 

proper reporting, then the specification soon becomes outdated and 

there is no way to trace the model alterations. To maintain a record of 

changes, it is useful to have a “specification change form” that is used 

every time an alteration is made (Robinson, 2004). This can be circulated 

to ensure all are informed and agree to the change. 

Of course, if the conceptual model is continuously changing, it may 

become impossible to complete the model development and 

experimentation. It is useful, therefore, to reach a point where it is agreed 

that the specification is fixed. From this point on, all change issues are 
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logged, but unless the change is particularly significant, the conceptual 

model is not altered. Once the simulation is complete and the results 

have been reported, a further run of the simulation process may be 

carried out with the logged changes included in the model. The need for 

this depends on whether the changes are judged to be of sufficient 

significance to warrant further modelling. 

3.5.2. Methods of representation 

As part of the project specification it is important to have a means for 

representing the content of the conceptual model. There are four main 

methods of representation in common use (Robinson, 2004): 

 Component lists 

 Process flow diagrams 

 Logic flow diagrams 

 Activity cycle diagrams. 

It is not the intention of this course to provide detailed descriptions of 

these model representation methods, but the interested reader may 

consult the related literature for additional information. 

Of course, more than one of these methods may be used to give a 

different view of the same conceptual model. There are also some other 

methods of conceptual model representation, for instance, Petri nets 

(Torn, 1981), event graphs (Som and Sargent, 1989) and condition 

specification (Overstreet and Nance, 1985). UML (the Unified Modeling 

Language) is currently used for representing a conceptual model 

(Richter and Marz, 2000). Meanwhile, Pooley (1991) gives an overview of 

diagramming techniques that might support conceptual modelling. 

3.6. Chapter’s Conclusion 

Conceptual modelling is almost certainly the most important aspect of a 

simulation study. It is vital that an appropriate model is designed in order 
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for the rest of the simulation study to succeed. Unfortunately, conceptual 

modelling is also the least understood aspect of simulation modelling. This 

course chapter addresses the issue by providing a definition for a 

conceptual model and describing the requirements of a conceptual 

model (validity, credibility, utility and feasibility). It is important to design a 

model that is as simple as possible, while ensuring that it can meet the 

objectives of the study. The use of a project specification for 

communicating the conceptual model and methods of representing the 

model are also described. As consequence, the attention finally turns to 

the process of designing the conceptual model. 
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4.  
The Conceptual Model Aggregation 

4.1. Introduction 

The previous chapter provided the basic concepts behind conceptual 

modelling, in particular, the definition and requirements for a conceptual 

model. This chapter focuses on how to develop a conceptual model, 

from two perspectives. First, a framework for developing a conceptual 

model is described. Secondly, some methods of model simplification are 

discussed, in order to improve its quality, usability and significance. 

4.2. Modelling in a Conceptual Framework  

The process of designing a conceptual model is seen as “art”, so there is 

very little guidance available. The most useful one may come from those 

who have offered a set of modelling principles (Morris, 1967; Powell, 1995; 

Pidd, 1999). These range from the socio-political, such as regular contact 

with subject matter experts, to the more technical, such as developing 

prototype models along the way. Although these principles are useful for 

giving some guide to conceptual model design, they do not answer the 

question of how to develop the conceptual model. 

Figure 4.1 (Robinson, 2004) provides a general framework for conceptual 

modelling. The purpose of this framework is to provide a modelling 

specialist with an understanding of how to develop a conceptual model. 

The framework consists of four key elements: 

 Develop an understanding of the problem situation 

 Determine the modelling objectives 
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 Design the conceptual model: inputs and outputs 

 Design the conceptual model: the model content. 

 

 

Figure 4.1    A Framework for Conceptual Modelling. 

 

Starting with an understanding of the problem situation, a set of 

modelling objectives are determined. These objectives then drive the 

derivation of the conceptual model, first by defining the inputs and 

outputs, and then by defining the content of the model itself. These 

elements are described in detail below. 

Before going on to detailed descriptions, it is worth remembering that in 

the same way that the process of performing a simulation study is 

iterative, so too is conceptual modelling. There is likely to be a great deal 

of iteration between the elements in the conceptual modelling 

framework, as well as with the other processes in a simulation study 

(Robinson, 2004). Some of the reasons for this iteration are discussed in 

the description that follows. 

In order to illustrate the framework utility, an example of modelling the 

same power plant is used. This context has been chosen since it should 
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be already familiar to the reader. More, this case study is referred to 

throughout the rest of the course and it is suggested that the reader 

follow these as a means of seeing how the modelling principles are 

applied. 

4.2.1. Understanding the problem 

It is obviously necessary for the modelling specialist to develop a good 

understanding of the problem situation when developing a model that 

adequately describes the real world. The approach to this process 

depends in large measure on the extent to which the clients understand 

and are able to explain the problem situation. 

In many circumstances the clients will be able to provide such an 

explanation, for instance, by describing the operation of the (proposed) 

real world system that is at the heart of the problem situation. The 

accuracy of the description, however, may be dubious (Robinson, 2004). 

One issue is that the clients may not have a good understanding of the 

cause-effect relationships within the problem situation. For instance, in a 

modelling study of a power plant site, the belief may be that technical 

assistance department is understaffed (cause) which resulted in poor 

plant service (effect). Although the effect was correctly identified (and 

was in fact the reason why the study is performed), it has been observed 

that increasing staff resources provides almost no benefit in terms of 

improved technical assistance. What is required is a change to the 

human resources supervising process. 

Another problem for the modelling specialist is that the clients almost 

certainly have different world views (Checkland, 1981). In the above 

study, it may seem there are as many different descriptions of how the 

maintenance technicians go about their tasks as people who are 

interviewed. This should be no surprise, especially when dealing with 
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human activity systems in which the human behavior and decision-

making process impact on the performance of the system. 

What becomes apparent is that the modelling specialist has to play a 

much more active role. Providing the right prompts and speaking with 

the right people is vital to developing this understanding. The specialist 

should also suggest alternative versions of the events in order to facilitate 

new ways of perceiving the problem situation (Robinson, 2004). Such 

discussions might be carried out face-to-face in meetings and 

workshops, or remotely by telephone or email, for example. 

When the clients have a reasonable image of the problem situation then 

discussion and careful note-taking should be enough. In addition, it is 

important that the modelling specialist confirms his/her understanding by 

providing descriptions of the problem situation for the clients. This acts as 

a means of validating the conceptual model as it is developed 

(Robinson, 2004). If the clients have a poor image of the problem 

situation, then more formal problem structuring methods may be useful, 

for instance, soft systems methodology (Checkland, 1981), cognitive 

mapping (Eden and Ackermann, 2001) and causal loop diagrams 

(Sterman, 2000). Balci and Nance (1985) describe a methodology for 

problem formulation in simulation modelling that includes developing an 

understanding of the problem situation, as well as objective setting and 

verification of the formulated problem. 

It is during the process of understanding the problem situation that areas 

where there is limited knowledge of the operational system are likely to 

be identified and so assumptions have to be made. These should be 

documented and recorded too in the project specification, as previously 

described. In fact, these areas of limited knowledge will continue to be 

identified as a simulation study progresses. This means that new 
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assumptions need to be made and then added to the project 

specification (Robinson, 2004). 

The problem situation and the understanding of it should not be seen as 

static, because both will change as the simulation study progresses. A 

simulation model and the information required to develop it almost 

always act as a focus for clarifying and developing a deeper 

understanding of the real world system that is being modelled. This acts 

to increase the level of iteration between modelling processes across a 

simulation study, with adjustments to the conceptual model being 

required, even at the point when the model is being used for 

experimentation, as new facets of the problem situation emerge 

(Robinson, 2004). 

As stated earlier, the conceptual modelling framework is illustrated with 

an example of a power plant. Table 6.1 describes the problem situation 

at the plant. 

Table 4.1.    Power Plant Illustration – The Problem Situation 

The Problem 

A power plant is experiencing problems with one of the branches in its energy 

distribution network. Customers regularly complain about the length of time they have 

to wait for service personnel when a power failure occurs. It is apparent that this is not 

the result of shortages in fuel supply (for the generators), but a shortage of technical 

staff. 

 

4.2.2. Identifying the modelling objectives 

The modelling objectives are central to the modelling process. They are 

the means by which the nature of the model is determined, the 

reference point for model validation, the guide for experimentation, and 

one of the metrics by which the success of the study is judged. Later it is 

shown how the objectives can be used to help design the conceptual 

model. 
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Robinson (2004) has a very interesting point of view: A model has little 

intrinsic value unless it is used to aid decision-making, and so the purpose 

of a modelling study is not the development of the model itself. If it were, 

then having developed the model, the objective would have been met 

and the study would be complete. The logical conclusion to this process 

is the existence of models that have never served any useful purpose, or 

models that are looking for a problem to solve. There are exceptions to 

this rule of course. For instance, a generic model of a hospital 

emergency unit may be developed with a view to selling the model to 

numerous hospitals. On the surface, the purpose of the original modelling 

project is the development of a model. Underlying this, however, the 

model developers must have in mind some purpose for the model, for 

instance, to determine resource requirements. Indeed, many military 

models are apparently developed in this fashion. A model is developed 

and then an application for the model is sought. In this paradigm, the 

model needs to be assessed whenever a new purpose is found (Gass 

1977). 

In forming the objectives, a useful question to ask is “by the end of this 

study what is going to be achieved?” Beyond this, three aspects should 

be considered. First, what is it that the clients wish to achieve? Typically 

this involves increasing throughput, reducing cost or improving customer 

service. Improving the clients‟ understanding of the real world system, or 

reducing the risk of an investment may be also considered as valid 

objectives. 

Secondly, what level of performance is required? To state that the 

objective is to increase throughput is insufficient. By how much should 

the throughput be increased? Whenever it is possible, targets of 

performance for each objective should be identified. These might be 

expressed as straightforward targets (e.g. increase/reduce by a 

percentage or absolute amount) or the need to optimize (i.e. maximize 
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or minimize) some measure. Of course, this can only be done when the 

objective can be quantified (Robinson, 2004). 

Finally, what constraints must the clients (or modelling specialist) work 

within? Often there is a limited budget or a limited number of 

approaches available for achieving the objectives. For instance, the 

clients may only be willing to consider changes in production scheduling 

to gain throughput improvements, while ruling out the purchase of 

additional equipment. 

It must be recognized that the clients may not be able to give a 

complete set of objectives, for the same reasons as their understanding 

of the problem situation may be incomplete (Robinson, 2004). Further to 

this, the clients may have a limited understanding of what a simulation 

model can do for them, particularly if they have not been involved in 

simulation studies previously. Therefore, it is important that the modelling 

specialist is able to suggest additional objectives as well as to redefine 

and eliminate the objectives suggested by the clients. The specialist 

should also educate the clients, explaining how simulation might act as 

an aid. One means for achieving this is to demonstrate one or more 

models of similar problem situations, and to provide descriptions of the 

modelling work that underlay them. In this way the clients will obtain a 

better understanding of how simulation can or cannot help (Robinson, 

2004). Objective setting should involve the clients in learning about 

simulation and its potential, as much as the modeller in learning about 

the problem situation. In this way the modelling specialist is able to 

manage the expectations of the clients, aiming to set them at a realistic 

level (Robinson, 2004). 

Since the problem situation and the understanding of it can change, so 

too can the objectives. Added to this, as the clients‟ understanding of 

the potential of simulation improves, as it inevitably does during the 
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course of the study, their requirements and expectations will also 

change. Consequently the iteration between the modelling processes is 

further increased, with changes in objectives affecting the design of the 

model, the experimentation and the outcomes of the project. It is for this 

reason that there is a two-way arrow between the problem situation and 

the modelling objectives in Figure 4.1. 

The modelling objective for the power plant example is given in Table 

4.2. 

General project objectives 

In designing a simulation model the modelling objectives are not the only 

concern. The modeller should also be aware of some more general 

project objectives. Time-scale is particularly important. If there is only a 

limited time available for the project, then the modeller may be forced 

into a more conservative model design. This helps reduce model 

development time and quicken its run-speed, reducing the time required 

for experimentation. 

Table 4.2.    Power Plant Illustration – Modelling Objectives 

Modelling Objectives 

The number of service staff required during each period of the day to ensure that 95% 

of customers wait less than one hour for service. Due to space constraints, a maximum 

of ten service staff can be employed at any one time. 

 

The modeller should also clarify the nature of the model required by the 

clients, specifically in terms of the visual display and the type of model 

use. What level of visual display is needed? Is a simple schematic 

sufficient, or is a 3D view required? Do the clients wish to use the model 

themselves? If so, what data input and results viewing facilities do they 

require? What level of interactive capability is necessary to enable 
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appropriate experimentation? All these issues have an impact on the 

design of the simulation model. 

4.2.3. The conceptual model design: inputs and outputs 

The first stage of conceptual model design does not involve the details of 

the model itself, but the model‟s inputs and outputs, depicted as the 

experimental factors and responses in Figure 4.1. It is much easier to start 

by giving consideration to these, than to the content of the model 

(Robinson, 2004). Indeed, it should be a fairly straightforward task to 

move from the modelling objectives to the experimental factors. In 

effect, these are the means by which it is proposed that the objectives 

are to be achieved.  

Although the clients would often have control over the experimental 

factors in the real world, it is sometimes useful to experiment with factors 

over which they have little or no control (e.g. the arrival rate of 

complaining customers). By experimenting with such factors a greater 

understanding of the real system can be obtained. This, after all, is a key 

benefit of simulation (Robinson, 2004). 

Where possible, it is useful to determine the range over which the 

experimental factors are to be varied. This can be achieved through 

discussion between the modelling specialist and the clients. In the 

considered case study, if the number of technical staff on a shift is being 

investigated, what is the minimum and maximum number possible? The 

simulation model can then be designed to enable this range of data 

input. On some occasions this helps to avoid an over-complex model 

design that provides for a much wider range of data input than is 

necessary. 

There should also be some discussion on the method of data entry for 

the experimental factors. This might be direct into the model code, 

through a set of menus, through a data file or via third party software 
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such as a spreadsheet. In large measure this depends upon the intended 

users of the model and their familiarity with computer software. This 

decision relates to the general project objectives discussed above. 

Similarly, the identification of the responses required from the model 

should not provide a major challenge. The responses have two purposes. 

The first is to identify whether the objectives have been achieved. For 

example, if the objective is to increase throughput of a production site 

by a certain amount, then it is obvious that the model needs to report 

the throughput. The second purpose of the responses is to point to the 

reasons why the objectives are not being achieved. Taking the 

throughput example, this might require reports on machine and resource 

utilization and buffer/work-in-progress levels at various points in the 

model. By inspecting these reports, the user should be able to identify 

potential bottlenecks, and look for solutions (Robinson, 2004). 

Another issue to be considered is how the information is reported, for 

instance, as numerical data (mean, maximum, minimum, standard 

deviation) or graphical data (time-series, histograms, Gantt charts, pie 

charts). The identification of suitable responses and methods of reporting 

should be determined by close consultation between the simulation 

specialists and the clients. The nature of the reports depends upon the 

requirements for visual and interactive features in the model, as outlined 

in the discussion on general project objectives above. 

Table 4.3 shows the relevant experimental factors and responses for the 

power plant example. 

As with all aspects of the modelling process, both the experimental 

factors and responses will change as the project progresses. It may be 

realized, for instance, that changing the number of technicians is not 

effective in improving customer service, but that changing the human 

resources supervising and management is. As experimentation 
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progresses, the need to inspect reports on the level of rework to 

understand the restrictions in throughput may become apparent. The 

experimental factors and responses may also change as a result of 

changes to the problem situation, the understanding of the problem 

situation or the modelling objectives (Robinson, 2004). 

 

Table 4.3.    Power Plant Illustration – Experimental Factors and Responses 

Experimental Factors and Responses 

Experimental Factors 

- Total number of technical staff at each hour of the day 

 

Responses (to determine achievement of objectives) 

- Percentage of complaining customers waiting for less than 1 hour 

 

Responses (to identify reasons for failure to meet objectives) 

- Histogram of waiting time for each customer, mean, standard deviation, minimum 

and maximum 

- Staff utilization (cumulative percentage) 

 

It should be apparent from the description above that the modelling 

objectives are central to the conceptual modelling framework described 

here. It is for this reason that determining the modelling objectives is 

described as part of the conceptual modelling process. Since the 

understanding of the problem situation is central to the formation of the 

modelling objectives, it is also considered to be part of the conceptual 

modelling process. 

4.2.4. The conceptual model design: model content 

Having identified the model‟s inputs and outputs, the modelling specialist 

can identify the content of the model itself. Although this course is about 

managing the model-based simulation, the need to consider the 

appropriate modelling approach should not be forgotten at this point. In 

designing the content of the model, and indeed before this point is 

reached, the specialist should consider whether simulation is the most 
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suitable approach (also taking into account some alternatives to be 

used whenever possible). 

Assuming that simulation is the answer, the starting point in designing the 

model content is to recognize that the model must be able to accept 

the experimental factors and to provide the required responses. The 

experimental factors and responses provide the basis of what the model 

needs to include. Taking the example of technical staff shifts, it is 

immediately obvious that the model must represent these (as numbered 

lists, for example). The model must then provide the relevant reports, for 

instance, complaining customers waiting time. It is likely that such a 

model must include some queues as basic data structures. 

Having identified the immediate entry point of the experimental factors, 

and exit point of the responses, the modelling specialist must then 

identify the key interconnections between these and the other 

components of the real world. It is only those interconnections that are 

judged to be important, with respect to correctly interpreting the 

experimental factors and providing accurate values for the responses 

that need to be included in the model. It is probably useful first to think in 

terms of the scope and then the level of detail (Robinson, 2004). 

The scope of the model must be sufficient to provide a link between the 

experimental factors and the responses. For instance, a model that looks 

at the throughput (response) resulting from a particular production 

schedule (experimental factor) needs to include at least all the critical 

processes within the manufacturing flow from entry of the schedule to 

creation of the finished items. The scope must also include any processes 

that interconnect with this flow such that they have a significant impact 

on the responses, the meaning of significant being defined by the level 

of model accuracy required. For instance, the manufacturing model 

must include any processes that interconnect with the production flow 
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and have a significant impact on the throughput. If the supply of raw 

materials has only a small impact on the throughput, because material 

shortages are rare, then it is probably unnecessary to model them. If a 

high level of model accuracy is needed, however, then it is more likely 

that the supply of raw materials (or at least the shortage of raw 

materials) needs to be modelled (Robinson, 2004). 

The level of detail must be such that it represents the components 

defined within the scope and their interconnection with the other 

components of the model with sufficient accuracy. This again can be 

considered with respect to the impact on the model‟s responses. For 

example, considering a single machine on a manufacturing line, the 

cycle time and breakdowns are very likely to have a significant impact 

on throughput. Beyond this, the small variations in the machine cycle, 

the type of machine failure etc., are probably of little importance to 

accurately predicting throughput, and so can be excluded from the 

model. 

Prototyping is a powerful method in helping to form a decision about the 

scope and level of detail to include in a model (Powell, 1995; Pidd, 1999). 

The modelling specialist develops simple computer models, gradually 

increasing the scope and level of detail. The intention is to throw these 

models away and not to use them for formal analysis, although they can 

often provide useful insights for the clients. Their primary purpose is to 

provide an insight into the key variables and interconnections in order to 

help with the design of the conceptual model. 

In designing the simulation, the modeller must always keep in mind the 

general project objectives. If the requirement is for a complex visual 

display, then additional detail may need to be added to the model. If 

the time-scale is limited, then the scope and level of detail in the model 

may need to be reduced, possibly compromising on accuracy. 
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It is also important to keep a record of any assumptions that are made 

during the design of the model content. They need to be presented to 

all involved in the simulation study to ensure that everyone understands 

and agrees the assumptions that are being made. Any simplifications 

should be noted and explained as well. 

Table 4.4 shows the proposed scope of the power plant model, with a 

justification for what is to be included and excluded. Table 4.5 provides 

similar information for the level of detail. These tables represent the 

conceptual model as a component list. 

 

Table 4.4.    Power Plant Illustration – Model Scope 

Model Scope 

Component Include/Exclude Justification 

Customers Include Flow through the service process 

Staff – service Include 
Experimental factor, required for staff 

utilization response 

Staff – supply chain 

management 
Exclude 

Supply materials shortage is not 

significant 

Staff – site buildings 

maintenance 
Exclude Does not interfere with the service 

Queues at customer 

care desk or phone line 
Include 

Required for waiting time and queue 

size response 

 

Throughout the development of the conceptual model, the modelling 

specialist should look for opportunities to simplify the model. This is the 

subject of the next section. 
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Table 4.5.    Power Plant Illustration: Model Level of Detail 

Model Level of Detail 

Component Detail Include/Exclude Comment 

Customers 

Customer 

inter-arrival 

times 

Include Modelled as a distribution 

Type of 

customer 

complaint 

Exclude Represented in service time 

Service staff 

Service time Include 

Modelled as a distribution, 

taking account of variability in 

performance and type of 

customer complaint/system 

fault 

Number of 

technicians 

per shift 

Include Experimental factor 

Absenteeism Exclude 

Not explicitly modelled, but 

could be represented by 

perturbations to number of 

technicians per shift 

Queues at 

customer care 

desk or phone line 

Queuing Include 
Required for waiting time and 

queue size response 

Capacity Exclude Assume no effective limit 

Queue 

behavior 

Exclude 

(except joining 

the shortest 

queue) 

Behavior not well understood 
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4.2.5. The data significance 

Preliminary or contextual data are required for developing an 

understanding of the problem situation and so are central to the 

development of conceptual modelling. Meanwhile, data for model 

realization (developing the computer model) are not required for 

conceptual modelling, but are identified by the conceptual model 

(Robinson, 2004). 

When accurate data for any part of a process can be obtained, the 

conceptual model may be designed without consideration for whether 

the data can be gathered. But this happens only theoretically. In reality, 

not all data are readily available or indeed collectable and sometimes it 

is impossible to obtain adequate data, making the proposed 

conceptual model problematic (Robinson, 2004). This leaves the 

modelling specialist with two options: 

 To redesign the conceptual model in such a way as to engineer 

out the need for troublesome data. 

 To resist changing the conceptual model and to handle the data 

in other ways. 

In practice, the specialists probably use a mixture of the two 

approaches. As such, the conceptual model defines the data that are 

required, while the data that are available, or collectable, affect the 

design of the conceptual model. This serves to increase the level of 

iteration required in the modelling process, as the modeller must move 

between consideration for the design of the model and the availability 

of data (Robinson, 2004). 

4.2.6. The conceptual modelling framework – a summary 

The framework described above consists of four key stages: 

 Developing an understanding of the problem situation. 
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 Determining the modelling objectives. 

 Determining the model inputs and outputs. 

 Designing the model content. 

It is also necessary to consider whether simulation is the most appropriate 

modelling approach as part of the conceptual modelling process. The 

aim of the framework is to provide the modelling specialist with some 

guidance over how to design the conceptual model. Throughout the 

design process, the specialist must take into account the four 

requirements of a conceptual model described in the previous chapter: 

validity, credibility, utility and feasibility, as well as to develop a model 

that is as simple as possible. 

Many iterations of conceptual model design and client interaction are 

required. It is not a case of providing a design and then going ahead 

and developing the computer model. Frequent iterations between 

model coding, experimentation and model design are also necessary. 

Practically, the conceptual model will change as the simulation study 

progresses. 

4.3. Model Simplification 

Apart from having a framework for conceptual modelling, it is also useful 

for the modeller to have some methods of model simplification. As 

previously shown, simplifications are not assumptions about the real 

world, but they are ways of reducing the complexity of a model. Model 

simplification involves reducing the scope and level of detail in a 

conceptual model by two means: 

 Removing components and interconnections that have little or no 

effect on model accuracy. 

 Representing more simply components and interconnections while 

maintaining a satisfactory level of model accuracy. 
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This can either be achieved by identifying opportunities for simplification 

during conceptual modelling or once the conceptual model is complete 

and beyond, for instance, during model coding (Robinson, 2004). The 

main purpose of simplification is to increase the utility of a model while 

not significantly affecting its validity or credibility. In general, 

simplification enables more rapid model development and use. 

Simplification may be necessary if the original model design is infeasible, 

for instance, because required data are not available. 

Before shortly describing some methods of model simplification, it is worth 

noting that one of the most effective approaches for simplifying a model 

is, in fact, to start with the simplest model possible and gradually to add 

to its scope and level of detail (Pidd, 1999). Once a point is reached at 

which the study‟s objectives can be addressed by the model, then no 

further detail should be added (Robinson, 2004). Finding an appropriate 

point at which to stop, however, requires careful attention on the part of 

the modelling specialist, but the framework described earlier in this 

chapter should aid this process. 

4.3.1. Model components aggregation  

Aggregation of model components provides a means for reducing the 

level of detail. Two specific approaches are described here: black-box 

modelling and grouping entities. 

Black-box modelling 

In black-box modelling a section of an operation is represented as a time 

delay. Model entities that represent parts, people, information and such 

like enter the black-box and leave at some later time. This approach can 

be used for modelling anything from a group of machines/devices to a 

complete factory or plant. 
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Figure 4.2 illustrates the approach. As an entity Xi enters the black-box, 

the time at which it is due to leave, ti, is calculated. When the simulation 

reaches time ti, the entity leaves the box. The time an entity spends in the 

box can of course be sampled from a distribution. The approach can 

also be extended to account for re-sequencing of entities (e.g. re-work), 

stoppages and shifts by manipulating the values of ti for each entity in 

the box. 

 

Figure 4.2. Black-Box Modelling. 

Grouping entities 

Instead of modelling individual items as they move through a system, a 

simulation entity can represent a group of items. This is particularly useful 

when there is a high volume of items moving through a system, for 

example, a confectionery wrapping process in which hundreds of 

products are wrapped each minute. To model each product individually 

would lead to hundreds of events per simulated minute, which would 

have a negative effect on simulation run-speed. It is beneficial in this 

case for an entity to represent, say, 100 products. 

The approach can easily be adapted to model situations where the 

number of items represented by an entity changes as the entity moves 

through the model. For example, a certain number of products are 

rejected at an inspection area. This can be modelled by holding as an 

attribute of the entity the number of products it represents. The attribute 

value can then be adjusted as the entity moves through the model. 
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4.3.2. Excluding components and details 

On occasions it is not necessary to include some components in a 

simulation because their omission has little effect on the accuracy of the 

model. This is a form of scope reduction. 

Resources required for a process to take place need not be modelled if 

it can be assumed that the resource is always, or almost always, 

available to perform that task. In this case it is only necessary to model 

the process. For instance, an operator who is dedicated to a task on a 

manufacturing line need not be modelled explicitly (Robinson, 2004). 

The same author gives an interesting image over this approach: The 

modelling of machine repairs provides a very specific example of model 

simplification, in this case driven by the availability of appropriate data. If 

the resources required for repair (normally maintenance operators and 

possibly some equipment) are to be modelled explicitly, then it is 

necessary to have data on actual repair times. However, many 

organizations only collect data on machine down times, that is, the total 

time the machine is down including the time for the resources to be 

made available. If down time data are being modelled, then the 

resources should not be explicitly included in the simulation, otherwise a 

form of double counting is taking place. 

Some details may be excluded from a model because they also have 

little impact on model accuracy. An example would be the modelling of 

shift patterns. These only need to be modelled if: 

 Different areas work to different shifts. 

 The availability of labor, process speed or process rules vary 

between shifts. 

 Operations continue outside of shifts (i.e. machine repair). 

 Shifts need to be modelled to give the simulation credibility. 

Otherwise, it is unnecessary to model the dead time between shifts. 
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4.3.3. Using random variables 

Rather than modelling a component or group of components in detail it 

may be possible to represent them as a set of random variables, 

sampled from some distributions. For instance, modelling transportation 

systems such as fork-lift trucks, automatic guided vehicles, heavy goods 

vehicles or trains can be complex. Depending on the context, 

allowance needs to be made for breakdowns, traffic congestion, 

weather conditions, turnaround times and driver shifts. 

4.3.4. Rare events exclusion 

Some events only affect an operational system on an infrequent basis. A 

power line (for energy distribution) may be completely burned by 

lightning once every 5 years. It is probably best to exclude the possibility 

of such events occurring during a simulation run so as to investigate the 

operational system under normal working conditions. The effect of such 

events can always be investigated by performing specific runs in which 

the event is forced on the model. 

4.3.5. Reducing the rule set 

Rules are used in simulation models to determine routes, processing 

times, schedules, allocation of resources and so on. A model can be 

simplified by reducing the rule set, while maintaining a sufficient level of 

accuracy. In many cases, 80% of circumstances are covered by 20% of 

the rule set, for instance, routing decisions for automatic guided vehicles. 

Judgment is required as to whether it is worth modelling the other 80% of 

the rule set for a small improvement in model accuracy (Robinson, 2004). 

One specific difficulty in simulation modelling is to represent the human 

interaction with an operational system (i.e. it is very difficult to know how 

people behave when queuing in a service system). In this case it is 

practically impossible to assume a valid rule set for all people in all 
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situations. Therefore, normal practice is to use a simplified set of rules, for 

instance, “customers choose the shortest queue” or “they will not join a 

queue if there are more than five people in it”. 

An extreme but useful approach is to neglect all rules (Robinson, 2004). In 

the service system example above the simulation could make no 

assumptions about queuing behavior except assuming people join the 

shortest queue. This would mean that if there is an imbalance between 

service rate and arrival rate the queues would become very large. This 

gives useful information, that is, the system is not balanced and custom is 

likely to be lost unless the service rate can be increased. 

4.3.6. Splitting models 

Instead of building one large model, it can be useful to split the model 

into parts. A simple way of achieving this is to split the models such that 

the output of one sub-model (model A) is the input to another (model B), 

as seen in Figure 4.3. As model A runs, data concerning the output from 

the model, such as output time and any entity attributes, can be written 

to a data file. Model B is then run and the data read such that the 

entities are recreated in model B at the appropriate time. 

 

Figure 4.3. Split Models. 

The advantage of splitting models is that the individual models run faster. 

It is also quite probable that a single run of all the sub-models is quicker 

than one run of a combined model. Another advantage of splitting 

models is that it is possible to speed development time by having 

separate modelling specialists for each model in parallel. 
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But splitting models may not be successful when there is feedback 

between the models. For instance, if model B cannot receive entities, 

because the first buffer is full, then it is not possible to stop model A 

outputting that entity, although in practice this is what would happen. It 

is best, therefore, to split models at a point where there is minimal 

feedback (i.e. where there is a large buffer – Robinson, 2004). 

There is much interest in running simulations in parallel on separate 

computers, with the aim of gaining run-speed advantages. If split models 

run in parallel, then it should be possible to model feedback effects and 

so overcome the difficulty described above. At present, however, there 

are a number of obstacles to the use of parallel computing for 

simulation, the most important being that an efficient mechanism for 

synchronizing the models as they run still has to be found. 

4.3.7. Estimating the simplification quality 

Although model simplifications are beneficial, a poor choice of 

simplification, or oversimplifying a model, may seriously affect the 

accuracy of the simulation. A good simplification is one that brings the 

benefits of faster model development and run-speed (utility), while 

maintaining a sufficient level of accuracy (validity). Two approaches are 

used in order to determine whether a simplification is good or not. 

The first is to use judgment in deciding whether a simplification would 

have a significant effect on model accuracy. This should be determined 

by discussion between the modelling specialist, client and other 

members of the simulation project team. The project specification is a 

useful mechanism for explaining and discussing the efficacy of proposed 

simplifications. Of course, this approach provides no certainty over 

whether a simplification is appropriate or not. 

The second approach is to test the simplification in the computer model. 

The modelling specialist develops two computer models, one with and 
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one without the simplification. It is then possible to compare the results 

from the two models to see the effect on accuracy. This, of course, 

provides much greater certainty over the simplification quality, but the 

advantage of faster model development is lost. 

Apart from maintaining a sufficient level of accuracy (validity), a good 

simplification should not compromise credibility. Over-simplification can 

make a model less transparent, reducing its credibility. For example, 

although a black-box may provide a sufficiently accurate representation 

of part of an operational system, the representation details are not 

transparent. For some clients this may be satisfactory, but for others it 

may be necessary to provide a more detailed representation to give the 

model credibility. It is sometimes necessary to include a greater scope 

and level of detail than is required to assure the accuracy of the model, 

in order to assure the model‟s credibility. A poor simplification is one that 

causes a client to lose confidence in a model (Robinson, 2004). Indeed, 

there are occasions when it is necessary to reverse the concept of 

simplification and actually increase the complexity (scope and level of 

detail) of the model, simply to satisfy the requirement for credibility. 

4.4. Chapter’s Conclusions 

The issue of how to develop a conceptual model is discussed from two 

perspectives: 

 by presenting a framework for conceptual modelling, enabling a 

modelling specialist to design a conceptual model from ground; 

 by describing a number of methods for simplifying an existing 

conceptual model. 

The framework is illustrated with reference to an example of a power 

plant. A final issue that has not been discussed is the validation of the 

conceptual model, but – except some guiding remarks – this is beyond 

the coverage area of this course. 
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Cursul de Modelare $i simulare se ocupa cu studiul principiilor, metodelor ~i tehnicilor prin
care obiecte din lumea reala, fenomene, operatii si instalatii tehnologiee, (numite generic
procese), sunt reprezentate matematic ~iapoi analizate indirect utilizand tehnica de calcul.
Modelarea si simularea sunt, intr-un mod specific, etape esentiale, necesare, in majoritatea
activitatilor umane.
Astfel, in general, se parcurg urmatoarele etape:

~ analiza de sistem - implica formularea problemei, precizarea scopurilor, delimitarea
dintre "sistemul" studiat ~i "mediu" (tot ceea ce este "exterior" sistemului). Se pun in
evidenta marimile caracteristice, factorii specifici ~.a.m.d.

~ modelare - se determina relatiile dintre marimile caracteristice, se construie~te 0
"imagine" a obiectului real, un model "simplificat" al procesului considerat.

~ simulare - presupune efectuarea unor "experimente" cu modelul, testarea si validarea
modelului, prevedereaevolutiilor viitoare;

~ decizie, actiune - in care pe baza rezultatelor experimentelor de simulare se determina
actiuni, se iau deeizii ( inclusiv decizii de conducere) etc.

Analiza de
sistem

Indiferent care este scopul unei activitati umane rationale, dupa precizarea si delimitarea
problemei, analistul ia in considerare 0 serie de factori pe care-i considera importanti si
construieste 0 imagine proprie, un "model" al procesului respectiv.
Modelul constituie deci, 0 reprezentare simplificata, aproximativa a realitatii, in care se
ignora in mod voit ( sau poate involuntar) 0 serie de detalii, dar care este considerat
satisfacator in raport eu obiectivul propus. Folosind acest model, analistul incearca sa
prevada, sa deduca cum se vor desfasura fenomenele, realizand astfel un "experiment de
simulare" .
In functie de rezultate se pot lua decizii (inclusiv decizii de conducere), se stabilesc
actiuni etc.



Sistem.
In general in domeniul tehnic, un sistem este definit ca un obiect sau ansamblu de

entitati, de elemente interconectate, ce interactioneaza intr-un anumit mod pentru a realiza
un obiectiv, un scop, cu anumite performante.

In particular, in automatica, obiectul din lumea realii, fenomenul, procesul tehnologic,
instalatia, se nume~te sistem (fizic).

Tot ceea ce nu apartine sistemului face parte din lumea exterioara (mediu).
Linia de separatie dintre sistem ~i mediu pune in evidenta marimile de intrare I -

marimi "cauza" (u) ~i marimile de ie~ire E - marimi "efect" (y), determinate prin
cauzalitatea intrare-ie§ire.

Obs. Sistemul depinde esential de de obiectivele studiului, analizei; ceea ce intr-un caz
este considerat un "sistem", in alt context poate fi doar un "subsistem" component al
unuia mai complex.

Stare.
Starea x(t) a unui sistem, se defineste ca fiind iriformafia minima necesara la un

moment dat de timp t, care impreuna cu intrarile ulterioare u(t) , determina univoc
evolutia ie~irilor y(t).

Multimea tuturor variabilelor de stare (liniar independente) , formeaza vectorul de
stare x(t).

Model.
in domeniul ~tiintelor tehnice, experimentul ~i observatia ( masurarea) constituie

aspecte esentiale pentru un model ce se elaboreaza iterativ.
In ultima instanta, elaborarea unei teorii reprezinta construirea unui model (verbal sau

matematic) al realitatii.
Def: Modelul este reprezentarea intr-o forma utilizabila, a cuno~tintelor, a aspectelor

esentiale ale unui sistem.

Observatia 1. Modelul este 0 reprezentare simplijicata, deci aproximativa a
sistemului real. Nu e de regula nici posibil, nici necesar sa se realizeze 0 descriere
atnanuntita a tuturor mecanismelor interne: E suficient ca modelulsa reproduca, .sa' .
mimeze, suficient de exact comportarea sistemului real.



Observatia 2. Exista multe tipuri de modele ~ianume:
> modele jizice ("empiriee" sau "laseara redusa"- de' exemplu in clomeniul

ehimiei, elaborarea unei noi tehnologii se incepe eu faza de "mieropilot" a
instalatiei, cand se testeaza procesul tehnologic pe acest model fizic urmand ca
apoi sa se realizeze instalatia industriala).

~ modele fenomenologice ("conceptuale" - sistemele reale respective sunt
descrise prin anumite legi fizice )

~ modele funclionale ("formale" - sistemul e reprezentat prin relatii funetionale,
scheme functionale)

> modele matematice ("analitice").
Observatia 3. Modelul trebuie sa fie intr-o "forma utilizabila", deoarece modelul nu

este un seop in sine. El constituie doar 0 baza pentru analiza, pentru luarea deciziilor; in acest
sens modelul trebuie sa fie de 0 complexitate cat mai redusa in eoncordanta cu obiectivele
studiului.

Definitie. Simularea este 0 metodaexperimental-aplicativa prin care se realizeaza, se··
implementeaza, de obicei pe un calculator, un model al unui sistem real in vederea analizei
indirecte a acestuia.

Modelarea ~i simularea sunt instrumente de analiza a sistemului. Simularea este utila
in special in eazurile in care analiza directa este imposibila:

• sistemul nu are inca 0 existenta reala ( este in faza de proiectare)
• sistemul nu poate fi pus la dispozitia analistului pentru experimentari directe (ex. in

aviatie)
• exista pericolul producerii unor pagube prin experimentare directa (ex. baraj

hidroenergetic)
• sistemul este caracterizat prin evolutii foarte lente in timp - ( ex. de ordinul lunilor,

anilor - cazul sistemelor economice, sociale)
• nu pot fi generate direct conditiile de (experimentare ( ex. comportarea dinamica a

unei cladiri in cazul cutremurelor).

Experimente cu
sistemul real

Model
fizic



• Nu se pot obtine solutii, rezultate, foarte exacte, pentru ca principial modele Ie
sunt imperfecte ( modelele fiind aproximari ale lumii reale, materiale).

• Exista erori (in preeizarea datelor, a parametrilor, a conditiilor de simulare)
care nu pot fi in totalitate compensate.

• In cazul proceselor foarte complexe, modelul de simulare poate deveni mai
complex decat procesuIInsu~i.

• eel mai important dezavantaj este aeela ea nu se genereaza solu{ii analitice.

Exista 0 mare diversitate de tipuri, de clase de modele, alegerea modului de
reprezentare depinzand de obiectivele studiuh~i Deasemeneamajoritatea erite~jilor de .
clasificare au dezavantajul de a nu reu~i sa caracterizeze complet, In totalitate fiecare model In
parte.

Criterii
1. Dupa natura modelului, exista modele:

• fizice (empiriee),
• fenomenologice (conceptuale),
• matematice (simbolice -formale sau analitice).

2. Dupa caracterul dinamic al modelului, exista modele
• dinamice·
• statice.

In modelele dinamice variabilele caraeteristic~, starile, ie~irile depind ~i de "istorie", de
evolutia anterioara a aeestora.
Ex. model dinamie in reprezentare de stare:

{
X = !(x,u,t)

tER
y=g(x,Y,t)

Model dinamic in reprezentare de stare in timp discret:

{
X(k + 1) = !(x(k),u(k),k) d k Z, un e E .
y(k) = g(x(k),y(k),k)

3.Dupa gradul de liniaritate sunt modele:
• liniare ~i

.• neliniare.

{
X=Ax+BU

, eu L:(A,B,C,D) pentru sisteme liniare.
y=Cx+Du

{X = !(x,u,e,t) , _ pentru sisteme neliniare (unde .B-este veetorul parametrilor).
y = g(x,u,e,t) '.' ..' .



Obs. 0 clasa speciala de modele este clasa modelelor liniare in parametri.
Ex: y(k)=rpT(k)·B

unde B- este vectorul parametrilor iar (;l este vectorul "observatiilor" intrare-iesire

.4.Exista modele:
• variante In timp sau
• invariante In timp.

. ., {X(t) = A(t)x(t) +B(t)u(t)
Ex. model varzant m tlmp

yet) = c(t)x(t)
E suficient ca doar una din matricele A, B, C sa fie dependenta de timp.
In cazul modelelor invariante in timp aplidind acelea~i intrari decalate cu 't, se obtin
raspunsuri identice, dar decalate cu acela~i interval 'to

5. Dupa caracterul structural, sunt
• modele funcfionale -( intrare-iesire lIE) ~i
• modele structurale ( intrare-stare-iesire VSIE).

Ex: Modele funcfionale (sau VB) sunt de tip funcfie de transfer (SISO) - in domeniul
complex sau din modele in domeniul timp ( ec. diferentiale).

Cafuncfie de transfer: Y(s)=H(s)·U(s)

I~ d . I' ~ diy ~b diu d I ~~, d d' I .n omemu timp: LJai-i = LJ i-i ~ mo e cu "mtarzlere e or mu n ~l
i=O dt i=O dt

cu anticipare de ordinul m",
Aplicand transformata Laplace se obtine,echivalenta dintre cele doua reprezentari :

yes) R(s) bo + brs + + bm sm
H(s) = -- = -- = -------- , cu conditia de "cauzalitate" stricta n>m

U(s) A(s) ao + arS + + ansn

( neanticiparea iesirii in raport cu intrarea).
Modelele structurale sau liSlE (intrare/stare/ie~ire): De ex, 0 forma echivalenta pentru
modelele anterioare (pentru an = 1) iar x(t) este stare a, poate fi L:(A,B,C,D)

[
0 1 0 0] [OJ

[.] ° ° 1... 0 [] °
x = . x + 'u(t)

........ 1 ...

-Qo -Qt ..·.. -Qn-t 1

y = [0 O bm bm-1 •••••. ho]· [;]

6. Dupa caracterul continuu sau discret al variabilei independente timp:
• modele continue ~i
• modele discrete.

- La sistemele discrete reprezentarea se face prin relafii de recurenfa in timp discret
(ex. modele de tip ARMAX - AutoRegressive Moving Average with eXogenous)

sau reprezentari polinomiale VE in operatorul de intarziere q-l unde q-l f(k)= f(k-l) , sau
echivalent de tip funcfie de-transfer in z.



Ex. Model ARMAX
A(q-l)y(k) = B(q-l)u(k) + C(q-l)e(k)

A(q-l) = 1+a1q-l +...+anaq-na

B(q-l) =b1q-l +b2q-2 + ... +bnbq-fzb

C(q-l) = 1+ c1q-l +...+ cncq-nc

Ee(k)e(l) =)'}8o(k-l)

Vk,l EZ
La sistemele continue variabilele de intrare u(t) ~i de ie~ire yet) sunt funetii continue in
timp.

7. Dupa dependenta modelului de eoordonatele geometrice, modelele se pot imparti in:
• modele cu parametri concentrati ~i
• modele cu parametri distribuiti.

La modele Ie cu parametri eoneentrati marimile variabile au aeeea~i valoare indiferent de
coordonatele geometrice ale punctului respectiv in care sunt precizate. In modelele cu
parametri distribuiti, variabilele depind si de coordonatele geometrice , dinamica fiind
exprimata prin ecuatii eu derivate partiale. De ex. in cazul unui sehimMtor de ealdura de
tip tub in tub, temperatura produsului Tp (x,t) depinde atat de timp cat si de coordonata x in
lungul schimbatorului:

Fig.4. Schimbator de caldura elementar cu parametri concentrati
Obs. Modelele eu parametri distribuiti sunt aproximate deseori in automatic a prin modele
cu timp mort.
8. Deasemenea modelele pot fi

• parametricesau
• neparametrice.

Modelele parametrice sunt caracterizate printr-un numar finit de parametri (ex.
coefieientii ai , bj din functia de transfer, pe ca.nd la modelele neparametrice
comportarea dinamiea se caraeterizeaza prin reprezentari grafice in domeniul timp sau
frecventa.
Ca exemple de modele neparametrice sunt: riispunsul pondere (la impuls Dirac),
raspunsul indicial, caracteristica de frecventa (Nyquist), caracteristica Bode,
caracteristica Nichols.

9. Dupa numarul de intrari/iesiri (1/0)
• Modele SISO ( Single- Input-Single-Output)
• Modele MIMO (Multiple- Input-Multiple-Output)
• Modele SIMO si modele MISO



Incazurile simple, 0 data determinat modelul matematic, sistemul poate fianalizat- pe baza· .
solutiilor analitice. In cazul modele lor mai complexe solutia analitica nu mai este posibila,
fiind necesara utilizarea unui calculator. Simularea este 0 metoda experimental - aplicativa
prin care se implementeaza pe un calculator, un model al unui sistem real in vederea analizei
indirecte a acestuia. Modelul matematic trebuie insa sa aiba 0 reprezentare adecvata numita
model de simulare.
Modelul de simulare depinde de programul de simulare sau de simulatorul utilizat. Exista 0

mare diversitate de programe ~i medii de simulare. Actualmente, mediile de simulare
specializate, practic, nu mai necesita elaborarea de programe pentru obtinerea modelului de
simulare, ci prin interfete grafice utilizator ( GUI - Graphical User Interface) asigura
posibilitatea selectarii prin meniuri a componentelor necesare, realizarea structurii, definirea
parametrilor ~i executia simularii. Astfel de limbaje ~i medii de simulare sunt: MATLAB,
MATLAB cu SIMULINK, SIMNON, LABVIEW, MATHCAD, MATHEMATICA,
MAPLE, SIMAN, VISSIM (Visual Simulation).
Un experiment de simulare consta in executia pe simulator a modelului de simulare pentru
seturi de date ~i/sau parametri specificati. Forma de reprezentare a rezultatelor este foarte
diversa, de la cea mai simpla (tabel de valori), pana la reprezentari 2D sau 3D ~i utilizarea
animatiei pentru reprezehtarea evolufieiin tinip. '. .
In particular, simularea este procesul de solutionare, de executie pe calculator a modele lor de
tip schema bloc.
Schemele bloc sunt 0 componenta a unui "mediu de programare grafica "(vizuala) sau "medii
de programare orientata pe obiecte"(MPOO).

Cele mai utilizate medii de simulare sunt :
· Matlab - Simulink (firma Mathworks) ;
· Lab View (National Instruments) ;
· VisSim (Visual Solutions) ;
· Easy 5 (Boeing) ;
· Matrixx (Integrated Systems) ;
· MathCad, Simnon, Siman.

Toate medii Ie de simulare ofera 2 funetii de baza :
1. Editare grafica - pentru crearea, editarea ~i procesarea modelelor ; editorul

poate fi utilizat ~i pentru crearea modelului intrarilor, simuHirii (stabilirea
conditiilor), prezentarea rezultatelor ;

2. Simulare propriu-zisa - executia. modelului prin itera.tiisliccesive ::-.caleul.
numeric + integrare etc.

Mediile de simulare grafica sunt orientate pe schema bloc, deci nu este efectiv necesara 0

"programare" propriu-zisa. Cele mai utilizate sunt :
· Matlab - Simulink ;
· VisSim.

Ex. Menu-rile Simulink, blocurile Simulink, crearea unui program.
Etape:

CD > > Simulink
Funetiile disponibile in Simulink pot fi accesate prin intermediul unor

blocuri aflate in biblioteci de functii Simulink. Fereastra activa permite selectia
(double-click) unei subbiblioteci (ex. Simulink v 1.3 c).



Ex.
Linear Library Sum

Integrator
Gain
State-Space
Transfer Fcn
Zero-Pole

Sumator
Integrare semnal
Multiplicare cu 0 constanta a semnalului de intrare
Reprezentarea de stare a unui sistem liniar
Reprezentarea sub forma de functie de transfer
Reprezentarea sub forma de poli-zerouri

CV Se deschide 0 noua fereastra pentru crearea modelului.
New din meniul File -7 (se deschide 0 fereastra "untitled").

Q) Pentru crearea unui model blocurile necesare vor fi "mutate" din
subbiblioteci in fereastra activa prin "tragere".

® Se realizeaza conexiunile intre..blocuri- (prin desenare ell mouse-ulapasat) ..
~ Se configureaza blocurile (se stabilesc parametrii specifici fiecarui bloc)
® Simularea propriu-zisa prin Start din meniul Simulation (anterior fiind

stabiliti "pararnetrii" de simulare - ex: stop time).
Ex. de model grafic Simulink

(9-.j timp
Clock timp

Simularea este un proces iterativ cu urmatoarele etape:
1. Stabilirea cadrului simularii - definirea sistemului de analizat, a obiectivelor, a

variantelor care se vor avea ill vedere, a criteriilor de apreciere;
2. Construirea modelului matematic (modelarea analitica);
3. Realizarea modelului de simulare ;
4. Definirea experimentelor de simulare (inc1usiva datelor pentru validarea modelelor);
5. Experimentul de simulare propriu-zis (verificarea ~i validarea modelului, bazata pe

experienta a celui care realizeaza simularea);
6. Analiza ~i interpretarea rezultatelor.



Cap2. Modelarea analitica a proceselor tehnologice

Modelul este 0 reprezentare sub forma utilizabiIa, a cunostintelor, a aspectelor esentiale ale
unui sistem.
Modelul matematic este un model exprimat analWe prin relatii cantitative specifice ( ecuatii
diferentiale, ecuatii cu derivate partiale s.a.).
In general un sistem fizic (un obiect din lumea reala ) este caracterizat printr-o serie de
variabile specifice v=[ VI,V2... Vq ] si 0 serie de relatii Ri=R[VI, V2... vq]=O consecinte a
~.:latHor fizice.
In automatic a e esentiala introducerea unei orientiiri lIE (cauza /efect) in sensul ca unele
dintre marimile specifice V sunt intrari (marimi cauza-u), altele sunt iesiri (marimi efect-y)
altele sunt variabile interne (x stari).

v=uUyUx
astfel incat relatiile Ri vor fi functii de intrari , iesirie, de vectorul de stare x si eventual de
vectorii parametrilor ()si timp t, in mod explicit:

Rlu,y,x, B,t)=O

Se spune ca modelul M reprezinta sistemul fizic S, daca distanta D(M,S) dintre model si.
sistem e mai mica decat un € ales corespunzator:

D(M,S)s €
Exemplu de definire a "distantei" D , pentru un set de N date intrare/iesire:

N
D= L[y(i) - YM(i)] 2-

i=l
D[M,S} ?f) (semipozitiv definim)
D[M,S}=O => M=S (in realitate este imposibil ca modelul sa reflecte "exact" sistemul fizic)

Intrari

Sistem
fizic



Obsl: Modelul matematic reprezinta 0 aproximare, 0 simplijicare a realitatii.
Modelul nu poate (si in general nici nu trebuie) sa reprezinte exact sistemul real in toata
complexitatea sa.

Obs2: In acelasi timp modelul matematic are 0 existenta de sine statatoare si extema
realitatii fizic masurabile.

Modelul are un caracter generalizator pentru 0 clasa de sisteme echivalente indiferent
de natura fizica a fenomenelor pe care Ie caracterizeaza.
Construirea modelui matematic se poate aborda in doua moduri:
1) modelare analitica- ca 0 consecinta a legilor fizice ce descriu destasurarea

fenomenelor.
2) modelare experimentalii ( sau identijicare) in care determinarea modelelor se face prin

prelucrarea datelor obtinute din masuratori experimentale.
Daca modelul este cunoscut ca structura, doar parametrii 8 fiind necunoscuti, atunci
problema determinarii modelului se reduce la 0 problema de "estimare de parametri".

In g~ner~l pr~cesele ~ehnologi~e s~t C~~l~!~~a~de ~ux~ri m~sice sau volumice ~<p/Q)-
numlte SI deblte maslce/volumlce- sl/sa~ergIe- numlte SI puter~ (w / p), care se mtroduc
in proces pentru a fi prelucrate in instalatia tehnologica si a se obtine fluxuri masice si/sau de
energie la iesire.

<Di
<DeWi m

Qi > W > We
Pi (V) Qe

Pe

Dad notam, m / W, masa / energia, (volumul V) acumulate in process, atunci, consideram
ca procesul e in regim stationar daca exista un echilibru :

Procesul este in regim dinamic daca cele doua fluxuri nu sunt egale, diferenta lor fiind de
fapt egala cu viteza de variatie ( de acumulare/evacuare) a masei/energiei (mIW) sau cu
vari.atia acestora in unitatea de timp:

dW<D'-<D=-
1 e dt

Fluxurile au ca unitate de masura :

-pentru fluxuri masice (debit masic) < kg >
s



m3

-pentru fluxuri volumetrice (debit volumic) <->
s

-pentru fluxuri energetice ( puteri) < J >
s

Indiferent care ar fi in particular procesul al dirui model dorim sa-l obtinem , in modelarea
analitica se parcurg urmatoarele etape:

1) evidentierea variabilelor si manmilor caracteristice: VI, V2, ... ,vq

2) determinarea pe baza legilor fizice ( conservarea energiei, a masei etc) a relatiilor
Ri[VI, V2, ... , vq]=o intre variabilele caracteristice.
Tot in aceasta etapa se evidentiaza relatiile de regim stationar si regim dinamic

3) "Orientarea intrare-iesire" a modelului prin punerea in evidenta a variabilelor de tip
cauzii (intrari - u) si respectiv elect( iesiri - y)

U\i if
v

4) "Liniarizarea" modelulm presupune :
-"centrarea 11 variabilelor (trecerea Ia mici variatii in jurul "punctului static de

functionare" PSF, sau trecerea la variabile centrate);
AV=v-vo

- "normarea 11 variabilelor raportand variabilele centrate Ia anumite valori de
regim stationar ( de ex. Valorile corespunzatoare PSF -ului):

D.v *
-=V
va

5) etapa de "validare" a modelului.

Procesele se incadreaza in c1asa de sisteme numite monocapacitive ( procesele au 0 singura
capacitate care poate acumula masa si/sau energie) fiind reprezentabile prin modele
matematice de tip ecuatii diferentiale de ordin I.

:: ~IProces I
[
masa/ ]

[
debit masic / VO!Umic]_ [debit masic / VO!Umic]= [ viteza ] = d energie = C dy

de int rare de iesire de acumu!are dt dt



Unde s-a notat in general:
y-variabila dependenta (presiune, nivel, temperatura ...)
C-capacitatea elementului de a acumula masa, energie (de ex. energie termica -caldura)

a) Modelarea unni proees de umplere /golire en gaz

Rezervor
pentru
gaze

• Evidentierea variabilelor specifice ( masa, densitatea, presiunea in rezervor si cea
externa, debitele volumetrice, volumul rezervorului pentru gaze, temperatura absoluta
Tk, masa molara a gazului Jl .... )
v=[m, p, p, pc, Ql, Q2, V, ... ]

• Legea conservarii masei revine la:
dm

pQl-pQ2 = dt

-Dar legea gazelor perfecte exprima dependenta intre m- masa de gaz sip -presiunea
m f-lV

pV=-RTk =>m=--p
f-l RTk

f-lV dp
---=Ql -Q2 =>
pRTk dt

Obs. Se noteaza C = ~ - "capacitatea" pt. gaze a rezervorului
pRTk

Q2 (p) == a~ pep - Pc) =>evidentierea cauzalitatii ( separarea variabilelor lIE)

C dp + a~ pcP - Pc) = Ql (t) => model matematic neliniar
dt



(8Q2 J (p ) (82Q2)Q2(p) = Q20 + - . - Po + -2-
8PO 8p 0

=>introducem "variabilele centrate" punand in evidenili regimul stationar (PSF)
• !:i.p= P-Po

• Q2=Q20+ !:i. Q2
• Ql=QlO+ !:i. Ql

Regimul stationar este regimul in care QlO= Q20= Qo=constant caruia ii corespunde p=po.
Inlocuind si oprind din dezvoltarea Taylor °doartermenulliniar rezulta:

C d (POd; 6p) ~ QIO + Ll.Ql - [Q20 + (a~2 )6p]

Dadi se tine cont de regimul stationar (QlO= Q20= Qo) si se noteaza: (8Q2 J = _l_
Op 0 Rp

inversul unei rezistente pneumatice, se obtine modelul matematic liniarizat in care variabilele
lIE sunt "separate"( modelul in variabile "centrate" este "orientat" lIE):

C d!:i.p + _1_!:i.p = !:i.Ql
dt Rp

Modelul se poate exprima in forma cu "constante de timp" =>
RpC!:i.p +!:i.p = Rp!:i.Q2

dt
unde:
T=RpC -constanta de timp [1]= s - secunde
K=Rp -factor de proportionalitate (in regim stationar) [K]= bar/m3 Is

T d!:i.p +!:i.p = K!:i.Ql
dt

Echivalent modelul poate fi reprezentat sub forma "neparametrica" daca se caracterizeaza
prin "raspunsul" obtinut pentru semnal "treapili" de debit de intrare, numit "raspuns indicial":

!:i.Q
1

=!:i.Qo

=> rezulili rasunsul !:i.p(t) = K!:i.Qo[1 - e -1/ T]



Obs. 0 aWi forma eehivalenta de reprezentare a modelului este ea model functional de tip

fi d ,.r, S b· H(s) __ b.p(s) -- ~unctie e transJer. eo tme: ---
b.Q,(s) Ts + 1

Modelul in variabile "normate" poate fi dedus in mod similar introducand:

_b.p_ = P * = y; b.QI = Q* = u
Po Qo

dy 1
Cpo - + -YPo = Qou

dt Rp

In forma echivalenta "cu constante de timp" (inmultim totul cu Po ) =>
Rp

~ Rp dy *RpC·-+y=-Qou , sau T-+y=K u
dt Po dt

iar constanta de timp este nemodificata T=RpC
* 7 *- Daca se ealculeaza y(T)=K l[l-e- =O,63K = 63% Ystationar =>rezulta 0 metoda

simpla de determinare a constantei de timp T
- pentru Rp == R statica => K* == 1 .
- u=l(treapta "unitara") este de fapt 0 variatie a debitului de intrare=> b.Q, = b.Qo

b) Modelul proceselor de umplere/golire a rezervoarelor hidraulice
Procesul este un rezervor hidraulie eu A=aria rezervorului constanta si evacuare prin pompa
cu debit constant Q2=const. (ventilul V2 - inchis si Vi -desehis ) sau prin "eadere libera"
Q2 == a.Jh.



Se doreste determinarea unui model matematic care sa evidentieze comportarea din punct de
vedere al variatiei nivelului de lichid in rezervor ( marime de iesire - "efect" -) atunci cand se
modifica debitul de la intrare ( marime de intrare - "cauza")

Se parcurg aceleasi etape:
• Evidentierea variabilelor specifice, v=[Ql,Q2,h, V,... J
• Legea conservarii volumului de fluid ( Q - debite volumetrice)

dV
Ql(t)-Q2(t)="di

V=f(h)=Ah=> daca A= constant, atunci rezulta modelul matematic neliniar:
dh

A dt = Ql(t)-Q2(P,t)

• Liniarizarea modelului
In fU1}ctiede cele doua regimuri de functionare ale rezervorului , exista doua situatii:

b.1) Evacuare prin pompa cu debit constant Q2=Q20 -ventilul de trecere V2- inchis-
Se introduc variabilele centrate iJh=h-ho unde ho corespunde unui PSF (punct static de

functionare) in care: QlO=Q20=QO=ct si Ql(t)=QO+L1Ql
Rezulta astfel:

A d(ho +tlh) = Q +~Q_Q
dt 0 0

Eliminand regimul stationar => A dtlh = ~Q
dt 1

tlh
Se trece la variabile normate notand : y =h;

o
~y

Aho - = Qou unde Aho= Vo astfel
dt

dy = Qo u. => yet) = Qo fudt =~ fudt
dt Vo Vo 1';

Acesta este modelul unui sistem "integrator" avand urmatorul "raspuns indicial":

v:
Ii= _0 -" constanta de timp de integrare"

Qo



Acest proces e un proces "fara autostabilizare". Echivalentul in reprezentare prin functie de
transfer este:

H(s) = Yes) =_1
U(s) J;s

b.2) Evacuare prin "ciidere liberii" -ventilul de trecere V\- inchis => Q2=Q2(h)

Dependenta neliniarii (Bernoulli), se liniarizeazii prin
dezvoltare in sene Taylor in jurul PSF ( ho, Qo)

Q,(h) = Q,o +(;' )0 (h-ho)+( iJ:h~'JJ (h-z~o)' )+...
Se trece la variabile centrate :
LJ.h=h-ho
LJ.Ql=Ql-Q10
LJ.Q2=Q2-Q20

Modelulliniarizat se obtine prin inlocuire tinand cont cii :

(;'1+z~l =zk
Rezultii:

A d(ho +M) = (QlO+dQI)-[Q20 + ~dh]
dt . 2~ho

Se orienteazii liE modelul prin separarea variabilelor pentru a evidentia cauzalitatea si se
obtine:

dM a
A-+--dh=dQdt 2..jh; I

M * dQI *-=h =y si --=QI =u
ho Qo

Rezultii in final modelulliniarizat:
. dy a
Aho -. + ri::"" hoY = Qou -+

dt 2~ho
Parametrii modelului sunt:

2V
- constanta de timp este T = _0 (dublul timpului de golire) si

Qo .

- factorul de proportionalitate K* = 2 (adimensional)

2V dy
_0 - +Y = 2u unde Qo = a..jh;
Qo dt

o reprezentare echivalenta a modelului este prin functia de transfer (proportional cu
intarziere de ordin 1 P-Tl):

yes) 2. 1
H(s) =--=-- -are un smgurpol real egal cu --UW Th+l T



Sistemul se poate deasemenea reprezenta echivalent printr-un alt model ,,neparametric" si
anume caracteristica defrecventii (caracteristica Bode).

,
" ~

",I tlr

VTi t'",,
fara autostabilizare '"

Reprezentarea echivalenta ca "model discret" se poate obtine simplu prin "discretizare"
aproximand derivata din modelul continuu si trecand la "timpul discret" k=t/Ts:

y(k)

~ y(k+l)

I T, I

T y(k + 1) - y(k) + y(k) = Ku(k)
Ts

( T) KTy(k+l)= 1-; y(k)+ TS u(k)

Rezulta modelul discret functional in domeniul
timp ( relatia de recurenta lIE) sub forma:
y(k + 1) = ay(k) +bu(k)

discret functional in domeniul complex, aplicandEchivalent se poate obtine
transformata Z :
zY(z) =aY(z)+bY(z)
Se obtine:

H(z) = Y(z) = _b_ = bz-
1

U(z) z-a l-az-1



PA *CA *QA * TAl + Ps *cS *Qs *TBJ - Pc *cC *Q*T2 +a*S*(Ta2 -T2)+
+(-tili)*V*k *e-EIRT*COI *C02 =PC*CC*V*dT2

o A2 S2 dt

• Pentru agent:

dT
(5) P * c * Q * T - P * c * Q *T - a *S* (r - T ) = P * c * V *---.£l.o 0 0 oJ 0 0 0 02 02 2 0 0 0 dt

Observatie:
Modelul matematic este foarte puternic neliniar ~i de aceea solu{ia analitidi este imposibila.
Singura posibilitatepentru a cerceta modelul este prin simulare. Din punct de vedere istoric
toate reactoarele industriale complexe au fost dezvoltate initial prin simulare pe modele jizice la
scara redusa in faza de instalatie "pilot" sau "micropilot" apoi prin ridicarea la scara
realizandu-se instalatiile industriale.

Concluzie:
De multe ori acest model In ansamblul sau este instabil. Reactiile chimice nu conduc la regimuri
stationare care sa exprime stabilitatea procesului. Ele sunt in mod natural instabile ~i este
necesara stabilizarea prin sisteme de reglare automata cu structura specifica .

..--

Elementul component principal a1sistemelor de actionare electrica este motorul electric care
ponstitue convertor electromecanic al sistemului deactionare. Se estimeaza ca aproximativ 40-
60% din energia electrica se converte~te In energie mecanica prin siteme de actionare electrica.
Exemplu: modelul unui motor de curent continuu:

+g i Ue
) 1 U

Re
Le CI>

•

• Modelarea analitica
Au loc doua fenomene:
1) aparitia tensiunii electromotoare e prin fenomenul de inductie electromagnetic a
Tensiunea electromotoare indus a este proportionala cu fluxul de excitatie ~i viteza cu
care se rote~te rotorul

e=KC/Jn

2) Generarea cuplului electromagnetic
m=KC/Ji

Din echilibrul dinamic intre cup1ul mecanic la axul rotoric si euplul de sarcina rezulta
mi§carea de rotatie: viteza unghiulara n,pozitia unghiulara e. Presupunem ea sarcina
este caracterizata de momentul de inertie J §i de coeficientul de frecare vascoasa F.

radulescu
Typewritten Text



Teorema a doua a lui Kirchhoff, relatiile specifice motorului , ecuatia de miscare
mecanica pre cum si ecuatia circuitului de excitatie conduc-la:

di
u(t) = RAi(t)+LA-+e(t)

dt
e(t) = KIS>(t)O(t)

met) = KIS>(t)i(t)

dO
]-+FO=m-mrdt

U R· L diE
E = ElE + E-

dt
Pentru a obtine 0 reprezentare ca model functional ( de tip functie de transfer) - pentru relap.ile
liniare se poate aplica. transformata Laplace.
Rezulta schema bloc functionaUi:

M J-
01 »

U(s)
E

Modelul neliniar poate fi folosit doar In simulare numerica .
Liniarizarea modelului:

1. Dad IS>este constant, atunci modelul se liniarizeaza in mod natural
Schema bloc simplificata este urmatoarea:

Putem ca1cula functia de transfer pe calea directa aplicand reguli1e algebrei schemelor .
bloc



1 1 1 1
_ K¢ (TAS + 1)TmS _ K¢ K¢-------'---- --_~--;::;

TATmS2 + TmS + 1 - TATmS2 + TmS + 1 (TmS + 1)(TAS + 1)
(TAS + 1)TmS

Se observa ea modelul este de tip P-T2 proportional eu intarziere de ordinul2 (eu poli reali) .

Pe eanalul tensiune -curent rezulta similar funetia de transfer:
1

_1 SI
. RA m Uo (Mr)

Istolionor = hm S 2 ~ 0 pt. =0
s~O T TS + T S + 1 S .m s. m

di = _ R A i _ ~ Q + _1_ u
dt LA LA LA
dO. 1 . F 1 ,- = - Kz - - 0. - - m
dt J J J r

Eventual se poate adaga ~i:

~~ = n Vectorul de stare fiind x = [ ~ ]

Presupunand euplulrezistent nul, se pot obtine prin ealcul aeeleasi funetii de transfer:
1

H1(s) = o.(s) = ensI - At! b = ~
U(s) TmTAs + Tms + 1

H2(s) =[1 O][sI-Arlb.
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Simulink Product Description
Simulation and Model-Based Design

Simulink is a block diagram environment for multidomain simulation and Model-Based
Design. It supports system-level design, simulation, automatic code generation, and
continuous test and verification of embedded systems. Simulink provides a graphical
editor, customizable block libraries, and solvers for modeling and simulating dynamic
systems. It is integrated with MATLAB®, enabling you to incorporate MATLAB algorithms
into models and export simulation results to MATLAB for further analysis.

Key Features
• Graphical editor for building and managing hierarchical block diagrams
• Libraries of predefined blocks for modeling continuous-time and discrete-time systems
• Simulation engine with fixed-step and variable-step ODE solvers
• Scopes and data displays for viewing simulation results
• Project and data management tools for managing model files and data
• Model analysis tools for refining model architecture and increasing simulation speed
• MATLAB Function block for importing MATLAB algorithms into models
• Legacy Code Tool for importing C and C++ code into models
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Model-Based Design with Simulink
Modeling is a way to create a virtual representation of a real-world system. You can
simulate this virtual representation under a wide range of conditions to see how it
behaves.

Modeling and simulation are especially valuable for testing conditions that are difficult to
reproduce with hardware prototypes alone. This is especially true in the early phase of
the design process when hardware is not yet available. Iterating between modeling and
simulation can improve the quality of the system design early, by reducing the number of
errors found later in the design process.

You can automatically generate code from a model and, when software and hardware
implementation requirements are included, create test benches for system verification.
Code generation saves time and prevents the introduction of manually coded errors.

In Model-Based Design, a system model is at the center of the workflow. Model-Based
Design enables fast and cost-effective development of dynamic systems, including control
systems, signal processing systems, and communications systems.

Model-Based Design allows you to:

• Use a common design environment across project teams
• Link designs directly to requirements
• Identify and correct errors continuously by integrating testing with design
• Refine algorithms through multidomain simulation
• Automatically generate embedded software code and documentation
• Develop and reuse test suites
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Example Model-Based Design Workflow in Simulink
To get started with a Model-Based Design task, consider this workflow:
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The workflow in this tutorial focuses on fundamental Simulink tasks as they relate to
Model-Based Design.
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For an example workflow, see:

• “System Definition and Layout” on page 1-8 — Identify modeling goals, determine
components, model system layout

• “Model and Validate a System” on page 1-16 — Model and test components, integrate
components, test system

• “Design a System in Simulink” on page 1-29 — Design and test new components

The first two tasks in this workflow model an existing system and establish the context for
designing a component. The next step in this workflow would be to implement the new
component. You can use rapid prototyping and embedded code generation products to
generate code and use the design with a real, physical system.
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See Also

Related Examples
• “System Definition and Layout” on page 1-8
• “Model and Validate a System” on page 1-16
• “Design a System in Simulink” on page 1-29
• “Organize Large Modeling Projects”

External Websites
• Simulink Overview
• Model-Based Design with MATLAB and Simulink
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System Definition and Layout

In this section...
“Determine Modeling Objectives” on page 1-9
“Identify System Components and Interfaces” on page 1-9

The top-level system layout of a Simulinkmodel is a common context that many
engineering teams can use, and is the basis for many tasks in the Model-Based Design
paradigm: Analysis, design, test, and implementation. You define a system at the top level
by identifying the structure and individual components. You then organize your model in a
hierarchical manner that corresponds to the components. Then you define interfaces for
each component, and the connections between components.

The featured model is a flat robot that can move or rotate with the help of two wheels,
similar to a home vacuuming robot. This tutorial assumes that the robot moves in one of
two ways:

• Linear — Both wheels turn in the same direction with the same speed, and the robot
moves linearly.

• Rotational — The wheels turn in opposite directions with the same speed, and the
robot rotates in place.
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Each type of motion starts from a resting state, that is, both rotational and linear speeds
are zero. With these assumptions, linear and rotational motion components can be
modeled separately for this introductory tutorial.

Determine Modeling Objectives
Before designing a model, consider your goals and requirements. The goals dictate both
the structure, and the level of detail for the model. For example, if the goal is simply to
figure out how fast the robot can go, modeling just for linear motion is sufficient. If the
goal is to design a set of inputs for the device to follow a given path, then the rotational
component is involved. If obstacle avoidance is a goal, then the system needs a sensor.
This tutorial builds a model for the goal of designing sensor parameters so that the robot
stops in time when it detects an obstacle on its path. To achieve this goal, the model must
enable you to:

• Determine how quickly the robot stops when the motors stop
• Provide a series of commands for linear and rotational motion so that it can move over

a two-dimensional space

The first modeling objective enables you to analyze the motion so you can design the
sensor. The second objective enables you to test your design.

Identify System Components and Interfaces
Once you understand your modeling requirements, you can begin to identify the
components of the system. Identifying individual components and their relationships
within a top-level structure help build a potentially complex model systematically. You
perform these steps outside Simulink before you begin building your model.

This task involves answering these questions:

• What are the structural and functional components of the system? When a layout
reflects the physical and functional structure, it helps to understand, build,
communicate, and test the system. This becomes more important when parts of the
system are to be implemented in the process.

• What are the inputs and outputs for each component? Draw a picture showing the
connections between components. This picture leads to signal flow within the model,
and, in addition to the source and sink of each signal, it helps determine if all
necessary components exist.
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• What level of detail is necessary? Include major parameters in your diagram. Creating
a picture of the system can help you identify and model the parts that are essential to
the behaviors you want to observe. Each component and parameter that contributes to
the goal must have a representation in the model, but there is a tradeoff between
complexity and readability. Modeling can be an iterative process: You can start with a
high-level model with few details, and gradually increase complexity where required.

In addition, it is often beneficial to consider the following:

• What parts of the system need testing?
• What is the test data and success criteria?
• Which outputs are necessary for analysis and design tasks?

Identify Robot Motion Components

The system in this tutorial defines a robot that moves with two electric wheels in two
dimensions. It includes:

• Linear motion characteristics
• Rotational motion characteristics
• Transformations to determine the location of the system in two dimensions
• A sensor to measure the distance of the robot from an obstacle

The model for this system includes two identical wheels, input forces applied to the
wheels, rotational dynamics, coordinate transformation, and a sensor. The model uses a
Subsystem to represent each component.

1 Open a new Simulink model: “Open New Model” on page 3-3.
2 From the Display menu, clear the Hide Automatic Names check box.
3 Open the Library Browser: “Open Simulink Library Browser” on page 3-5
4 Add Subsystem blocks. Drag five Subsystem blocks from the Ports & Subsystems

library to the new model.
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Arrange and rename the Subsystem blocks as shown. Double-click a block name and
type the new name.

Define Interfaces Between Components

Identify input and output connections (for example, signal lines) between subsystems.
Input and output values change dynamically during a simulation. Lines connecting blocks
represent data transfer. The table below shows the inputs and outputs for each
component.

Block Input Output Notes
Inputs None Force to right wheel

Force to left wheel

 

Right wheel Force to right wheel Right wheel velocity Directional, negative
means reverse
direction

Left wheel Force to left wheel Left wheel velocity Directional, negative
means reverse
direction

Rotation Velocity difference
between right and
left wheels

Rotational angle Measured
counterclockwise

Coordinate
transformation

Normal speed

Rotational angle

Velocity in X

Velocity in Y
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Block Input Output Notes
Sensor X coordinate

Y coordinate

None No block necessary
for modeling. Sensor
dynamics is part of
the design task.

From the table, you can see that some block inputs do not exactly match block outputs.
Therefore, in addition to the dynamics of the individual components, the model must
compute the following:

• Input to the rotation computation — Subtract the velocities of the two wheels and
divide by two.

• Input to the coordinate transformation — Average the velocities of the two wheels.
• Input to the sensor — Integrate the outputs of the coordinate transformation.

The wheel velocities are always equal in magnitude and the computations are accurate
within that assumption.

Add the necessary components and finalize connections:

1 Add necessary input and output ports to each subsystem. Double-click a Subsystem
block.

Each new Subsystem block contains one Inport (In1) and one Outport (Out1) block.
These blocks define the signal interface with the next higher level in a model
hierarchy.

Each Inport block creates an input port on the Subsystem block, and each Outport
block creates an output port. The model reflects the names of these blocks as the
input/output port names. Add more blocks for additional input and output signals. On
the Simulink Editor toolbar, click the Up to Parent button  to return to the top
level.

For each block, add and rename Inport and Outport blocks:
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When copying an Inport block to create a new one, you must use the Paste option.
2 Compute required inputs from left wheel and right wheel velocities shown.

a Add an Add block from the Math Operations library and connect the outputs of
the two-wheel components. Click the output port of the source block and then
click the input port of the destination block. Add a Gain block and set the
parameter to 1/2. Compute the Linear speed input to the Coordinate Transform
subsystem, connect the output of the Add block to this Gain block.

b Add a Subtract block from the Math Operations library and connect the outputs
of the two-wheel components. Add a Gain block and set the parameter to 1/2.
Compute the Speed difference input to the Rotation subsystem, connect the
output of the Subtract block to this Gain block.

3 Compute X and Y coordinates from the X and Y velocities. Add two Integrator blocks
from the Continuous library and connect the outputs of the Coordinate Transform
block. Leave initial conditions to the Integrator blocks as 0.
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4 Complete the connections for the system as shown.

Parameters and Data

Determine the parameters that are part of the model and their values. Use modeling goals
to determine whether these values are always fixed or change from simulation to
simulation. Parameters that contribute to the modeling goal require explicit
representation in the model. This table helps determine the level of detail when modeling
each component.

Parameter Block Symbol Value/Unit Notes
Mass Left/right wheel m 2.5 kg Variable
Rolling
resistance

Left/right wheel k_drag 30 Ns2/m Variable

Robot radius Rotation
computation

r 0.15 m Variable

Initial angle Rotation
computation

None. 0 Fixed

Initial velocities Left/right wheel None. (0,0) Fixed
Initial
coordinates

Integrators None (0,0) Fixed

Simulink uses MATLAB workspace to evaluate parameters. Set these parameters in the
MATLAB command window:
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m = 2.5;
k_drag = 30;
r = 0.15;

See Also

Related Examples
• “Model and Validate a System” on page 1-16
• “Design a System in Simulink” on page 1-29
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Model and Validate a System
You model each component within the system structure to represent the physical or
functional behavior of that component. You verify the basic component behavior by
simulating them using test data.

A big-picture view of the whole system layout is useful when modeling individual
components. Start by loading the layout model:

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'system_layout'))

Model the Components
A Simulink model of a component is based on several starting points:

• An explicit mathematical relationship between the output and the input of a physical
component — You can compute the outputs of the component from the inputs, directly
or indirectly, through algebraic computations and integration of differential equations.
For example, computation of the water level in a tank given the inflow rate is an
explicit relationship. Each Simulink block executes based on the definition of the
computations from its inputs to its outputs.

• An implicit mathematical relationship between model variables of a physical
component — Because variables are interdependent, assigning an input and an output
to the component is not straightforward. For example, the voltage at the + end of a
motor connected in a circuit and the voltage at the – end have an implicit relationship.
To model such a relationship in Simulink, you can either use physical modeling tools
such as Simscape™ or model these variables as part of a larger component that allows
input/output definition. Sometimes, closer inspection of modeling goals and
component definitions helps to define input/output relationships.

• Data obtained from an actual system — You have measured input/output data from the
actual component, but a fully defined mathematical relationship does not exist. Many
devices have unmodeled components that fit this description. An example would be the
heat a TV set dissipates. You can use System Identification Toolbox™ to define the
input/output relationship for such a system.

• An explicit functional definition — You define the outputs of a functional component
from the inputs through algebraic and logical computations. The switching logic of a
thermostat is an example. You can model most functional relationships as Simulink
blocks and subsystems.
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This tutorial models physical and functional components with explicit input/output
relationships:

1 Use the system equations to create a Simulink model.
2 Add Simulink blocks in the Simulink Editor. Blocks represent coefficients and

variables from the equations. Connect blocks.
3 Build the model for each component separately. The most effective way to build a

model of a system is to consider components independently.
4 Start by building simple models using approximations of the system. Identify

assumptions that can affect the accuracy of your model. Iteratively add detail until
the level of complexity satisfies the modeling and accuracy requirements.

Model the Physical Components

Describe the relationships between components, for example, data, energy, and force
transfer. Use the system equations to build a graphical model of the system in Simulink.

Some questions to ask before you begin to model a component:

• What are the constants for each component and the values that do not change unless
you change them?

• What are the variables for each component and the values that change over time?
• How many state variables does a component have?

Derive the equations for each component using scientific principles. Many system
equations fall into three categories:

• For continuous systems, differential equations describe the rate of change for
variables with the equations defined for all values of time. For example, a second-
order differential equation provides the velocity of a car:

• For discrete systems, difference equations describe the rate of change for variables,
but the equations are defined only at specific times. For example, the following
difference equation gives the control signal from a discrete propositional-derivative
controller:

• Equations without derivatives are algebraic equations. For example, an algebraic
equation gives the total current in a parallel circuit with two components:

 Model and Validate a System
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Wheels and Linear Motion

There are two forces that act on a wheel:

• Force applied by the motor — This force F acts in the direction of velocity change, and
is an input to the wheel subsystem.

• Drag force — This force Fdrag acts against the direction of velocity change, and is a
function of the velocity itself:

Fdrag = kdragV V

The acceleration is proportional to the sum of these forces:
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Where kdrag is the drag coefficient and m is the mass of the robot. Each wheel carries half
of this mass.

Build the wheel model:

1 In the layout model, double-click the Right Wheel subsystem to display the empty
subsystem. Delete the connection between the Inport and the Outport blocks.

2 Model velocity and acceleration. Add an Integrator block. Leave the initial condition
as 0. The output of this block is the velocity, V, and the input is the acceleration,
Vdot.

3 Model the drag force. Add an Fcn block from the User-Defined Functions library. Set
the expression to k_drag*u*abs(u). You can resize the block to see the expression
on its icon. The Fcn block provides a quick way to type simple mathematical
expressions of one input variable, u.

4 Subtract the drag force from the motor force with Subtract block, and complete the
force-acceleration equation with a Gain block with parameter 1/(2*m).

5 To reverse the direction of the Fcn block, right-click the block and select Rotate &
Flip > Flip Block. Make the connections between blocks as shown.
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6
View the top level of the model: Click the Up to Parent button . Make a copy of
the subsystem you modeled as the dynamics for both wheels are the same.

Rotational Motion

When the two wheels turn in opposite directions, that is, they have directionally opposite
velocities, they move in a circle with radius r, causing rotational motion. When they turn
in the same direction, there is no rotation. Therefore, with the assumption that the wheel
velocities are always the same in magnitude, it is practical to model rotational motion as
dependent on the difference of the two velocities, VR and VL:

θ̇ =
VR− VL

2r

Build the Rotation Dynamics model:

1 In the layout model, double-click the Rotation subsystem to display the empty
subsystem. Delete the connection between the Inport and the Outport.

2 Model angular speed and angle: Add an Integrator block. Leave the initial condition
as 0. The output of this block is the angle, theta, and the input is the angular speed,
theta_dot.

3 Compute angular speed from tangential speed. Add a Gain with parameter 1/(2*r).
4 Make the connections between blocks as follows.
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5
View the top level: Click the Up to Parent button .

Model the Functional Components

Describe the function from the input of a function to its output. This description can
include algebraic equations and logical constructs, which you can use to build a graphical
model of the system in Simulink.

Coordinate Transformation

The velocity of the robot in the X and Y coordinates, Vx and Vy, are related to the linear
speed, Vn, and the angle as follows:

VX = − VNcos(θ)
VY = VNsin(θ)

Build coordinate transformation model:

1 In the layout model, double-click the Coordinate Transform subsystem to display the
empty subsystem.

2 Model trigonometric functions. Add a SinCos block from the Math Operations library.
3 Model multiplications. Add two Product blocks from the Math Operations library.
4 Make connections between the blocks as shown.

5
View the top level: Click the Up to Parent button .

Set Model Parameters

A source for model parameter values can be:

• Written specifications such as standard property tables or manufacturer data sheets
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• Direct measurements on an existing system
• Estimations using system input/output

The model uses these parameters:

Parameter Symbol Value/Unit
Mass m 2.5 kg
Rolling resistance k_drag 30 Ns2/m
Robot radius r 0.15 m

Simulink uses MATLAB workspace to evaluate parameters. Set these parameters in the
MATLAB command window:

m = 2.5;
k_drag = 30;
r = 0.15;

Validate Components Using Simulation
Validate components by supplying an input and observing the output. Even such a simple
validation can point out immediate ways to improve the model. This example validates the
following behavior:

• When a force is applied continuously to a wheel, the velocity increases until it reaches
a steady-state velocity.

• When the wheels are turning in opposite directions, the angle increases steadily.

Validate Wheel Component

Create and run a test model for the wheel component:

1
Create a model. Click  and copy the Right Wheel block into the new model.

2 Create a test input in the new model. Add a Step block from the Sources library.
Connect it to the input of the Right Wheel block.

3 Add a viewer to the output. Right-click the output port of the Right Wheel block and
select Create & Connect Viewer > Simulink > Scope.
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4
Run the simulation. Click .

The simulation result exhibits the general expected behavior. There is no motion until
force is applied at step time. When force is applied, the speed starts increasing and then
settles at a constant when the applied force and the drag force reach an equilibrium.
Besides validation, this simulation also gives information on the maximum speed of the
wheel with the given force.

Validate Rotation Component

Create and run a test model for the rotation model:
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1
Create a model. Click  and copy the Rotation block into the new model.

2 Create a test input in the new model. Add a Step block from the Sources library.
Connect it to the input of the Rotation block. This input represents the difference of
the wheel velocities when the wheels are rotating in opposite directions.

3 Add a viewer to the output. Right-click the output port of the Rotation block and
select Create & Connect Viewer > Simulink > Scope.

4
Run the simulation. Click .

This simulation shows that the angle increases steadily when the wheels are turning with
the same speed in opposite directions. You can make some model improvements to make
it easier to interpret the angle output, for example:
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• You can convert the output in radians to degrees. Add a Gain block with a gain of
180/pi.

• You can display the degrees output in cycles of 360 degrees. Add a Math Function
block with function mod.

MATLAB trigonometric functions take inputs in radians.

Validate the Model
After you validate components, you can perform a similar validation on the complete
model. This example validates the following behavior:

• When the same force is applied to both wheels in the same direction, the vehicle
moves in a line.

• When the same force is applied to both wheels in opposite directions, the vehicle turns
around itself.

1 In the layout model, double-click the Inputs subsystem to display the empty
subsystem.

2 Create a test input by adding a Step block. Connect it to both Outport blocks.

3 At the top level of the model, add both output signals to the same viewer:

4 Run the model.
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In this figure, the yellow line is the X direction and the blue line is the Y direction.
Since the angle is zero and is not changing, the vehicle moves only in the X direction,
as expected.

5 Double-click the Inputs subsystem and add a Gain with parameter -1 between the
source and the second output. This reverses the direction for the left wheel.

6 Add a scope to the angle output.
7 Run the model.
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The first view shows that there is no motion in the X-Y plane. The second view shows
that there is steady rotation.

You can use this final model to answer many questions about the model by changing the
input. Some examples are:

• What happens when the initial angle is not zero?
• How long does it take for the motion to stop when the force drops to zero?
• What happens when the robot is heavier?
• What happens when the robot moves on a smoother surface, that is, the drag
coefficient is lower?
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See Also

Related Examples
• “System Definition and Layout” on page 1-8
• “Design a System in Simulink” on page 1-29
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Design a System in Simulink
In this section...
“Identify Designed Components and Design Goals” on page 1-29
“Analyze System Behavior Using Simulation” on page 1-30
“Design Components and Verify Design” on page 1-34

Model-Based Design paradigm is centered around models of physical components and
systems as a basis for design, testing, and implementation activities. This tutorial adds a
designed component to an existing system model.

The model is a flat robot that can move or rotate with the help of two wheels, similar to a
home vacuuming robot. Open the model by entering the code at the MATLAB command
line.

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'system_model'))

This tutorial analyzes this system and adds functionality to it.

Identify Designed Components and Design Goals
Proper specification of the objective is a critical first step to the design task. Even with a
simple systems, there could be multiple, and even competing design goals. Consider these
for the example model:

• Design a controller that varies the force input so that the wheels turn at a desired
speed.

• Design inputs that make the device move in a predetermined path.
• Design a sensor and a controller so that the device follows a line.
• Design a planning algorithm so that the device reaches a certain point using the

shortest path possible while avoiding obstacles.
• Design a sensor and an algorithm so that the device moves over a certain area while

avoiding obstacles.

This tutorial designs an alert system. You determine the parameters for a sensor that
measures the distance from an obstacle. A perfect sensor measures the distance from an
obstacle accurately, an alert system samples those measurements at fixed intervals so
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that the output is always within 0.05 m of the measurement, and generates an alert in
time for the robot to come to a stop.

Analyze System Behavior Using Simulation
The design of the new component requires analyzing linear motion to determine:

• How far the robot can travel at the top speed if power to the wheels is cut
• The robot's top speed

Run the model with a force input that starts motion, waits until the robot reaches a steady
velocity, and then sets the force to zero:

1 In the model, double-click the Inputs subsystem.
2 Delete the existing input and add a Pulse Generator block with the default

Amplitude parameter.
3 Set parameters for the Pulse Generator block:

• Period: 20
• Pulse Width: 15

These parameters are designed to ensure that the top speed is reached. You can
change parameters to see their effect.

4 Run the model for 20 sec.
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The first scope shows that the speed rapidly starts decreasing when the power is cut at
time 3, and then asymptotically approaches zero but does not quite reach it. This is a
limitation of modeling — the dynamics at low speeds without external force may require a
more complex representation. For the objective here, however, it is possible to make
approximations. Zoom into the position signal
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At time 3, the position of the robot is at about 0.55 m, and when the simulation ends, it is
less than 0.71 m. It is safe to say that the robot travels less than 0.16 m after the power is
cut.

To find the top speed,

1 Zoom on the stable region of the velocity output in time, from 1 s to 3 s.
2 Leave zoom mode by clicking the zoom button again. Click Cursor Measurements

button .
3 Set the second cursor to the region where the line is horizontal.
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The Value column in Cursor Measurements indicate that the top speed of the robot is
0.183 m/s. Divide 0.05 by this speed to obtain the time it takes the robot to travel 0.05 m
— 0.27 s.

Design Components and Verify Design
Sensor design consists of these components:

• Measurement of the distance between the robot and the obstacle — This example
assumes that the measurement is perfect.

• The interval at which the sensor system measures the distance: To keep the
measurement error below 0.05 m, this interval should be less than 0.27 sec. Use 0.25
sec.

• The distance at which the sensor produces an alert — Analysis shows that slow down
must start at 0.16 m, but the actual alert distance must also take the measurement
error, 0.05, into account.
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Add Designed Component

Build the sensor:

1 Create a subsystem with the ports as shown.

2 Construct the distance measurement. In the sensor model block, use Subtract, Math
Function with magnitude^2 function, Sum, and Sqrt blocks as shown. Note the
reordering of the input ports.

3 Model sampling. Add a Zero-Order Hold block from the Discrete library to the
subsystem and set its Sample Time parameter to 0.25.

4 Model the alert logic. Use the Compare to Constant from Math Operations and set its
parameters:

• Operator: <=
• Constant Value: 0.21
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This logical block sets its output to 1 when its input is less than 0.21.

Verify Design

Test the design with an obstacle location of X=0.65, Y=0, using Constant blocks as input.
This test verifies functionality in the X direction, you can create similar tests for different
paths. This model only generates an alert. It does not control the robot.
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1 Set the obstacle location: Add two Constant blocks from the Sources library set the
constant values to 0.65 and 0. Connect the position outputs of the robot to the inputs
of the sensor.

2 Add a scope to the Alert output.

3 Run the model.
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Observe that the alert status becomes 1 once the position is within 0.21 m of the obstacle
location and the design requirement for this component is satisfied.

For real-world systems with complex components and formal requirements, the Simulink
product family includes additional tools refine and automate the design process. Simulink
Requirements™ provide tools to formally define requirements and link them to model
components. Simulink Control Design™ can facilitate the design if you want to build a
controller for this robot. Simulink Verification and Validation™ products establish a formal
framework for testing components and systems.
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See Also

Related Examples
• “Model-Based Design with Simulink” on page 1-3
• “System Definition and Layout” on page 1-8
• “Model and Validate a System” on page 1-16
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Documentation and Resources
In this section...
“Simulink Online Help” on page 1-40
“Simulink Examples” on page 1-40
“Website Resources” on page 1-42

Simulink Online Help
Simulink software provides comprehensive online help describing features, blocks, and
functions with detailed procedures for common tasks.

Access online help from Help menus and context-sensitive block labels.

•
From the Simulink Library Browser toolbar, select the Help button .

• From the Simulink Editor menu, select Help > Simulink > Simulink Help.
• Right-click a Simulink block, and then select Help.
• From the model Configuration Parameters dialog box or a block parameters dialog

box, right-click a parameter label, then select What’s This?

Simulink Examples
Simulink provides example models that illustrate key modeling concepts and Simulink
features. To view a list of examples:

• From the Simulink Editor menu, select Help > Simulink > Examples.
• From the Help browser, open the Simulink product page, and then click Examples at

the top right.
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To open the Simulink model for an example, click the Open Model button.
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Website Resources
You can access additional Simulink resources on the MathWorks website, including a
description of capabilities, technical articles, tutorials, and hardware support.

https://www.mathworks.com/products/simulink
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Simulink Block Diagrams
Simulink is a graphical modeling and simulation environment for dynamic systems. You
can create block diagrams, where blocks represent parts of a system:

A block can represent a physical component, a small system, or a function; an input/
output relationship fully characterizes the block. Consider these examples:

• A faucet fills a bucket: Water goes into the bucket at a certain flow rate, and the
bucket gets heavier. Here, a block represents the bucket, with flow rate as its input
and its weight as the output.

• You use a megaphone to make your voice heard: Sound produced at one end of the
megaphone is amplified at the other end. The megaphone is the block, the input is the
sound wave at its source, and the output is the sound wave as you hear it.

• You push a cart and it moves: Here the cart can be the block, the force you apply is the
input and cart position is the output.

The definition of a block is only complete with its inputs and outputs and this task relates
to the goal of the model. For example, the cart velocity may be a natural choice as an
output if the modeling goal does not involve its location.

Simulink provides block libraries that are collections of blocks grouped by functionality.
For example, to model a megaphone that simply multiplies its input by a constant, you
would use a Gain block from the Math Operations library.
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A sound wave goes into the megaphone, as its input, and a louder version of the same
wave comes out as its output.

The ">" signs denote the inputs and outputs of a block, and can be connected to other
blocks.

You can connect blocks to other blocks to represent more complex functionality and form
systems. An audio player, for example, turns a digital file into sound: A digital
representation is read from storage, gets interpreted mathematically, and is turned into
sound physically. The software that processes the digital file to compute the sound
waveform can be one block; the speaker that takes the waveform and turns it into sound
can be another block. A component that generates the input is also a block in its own
right.

To model the sine wave input to the megaphone in Simulink, you would include a Sine
Wave source:

The primary function of Simulink is to simulate behavior of system components over time.
In its simplest form, this task involves keeping a clock, determining the order in which the
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blocks are to be simulated, and propagating the outputs, computed in the block diagram,
to the next block. Consider the megaphone. At each time step, Simulink must compute the
value of the sine wave, propagate it to the megaphone, and then compute the value of its
output.

At each time step, each block computes its outputs from its inputs. Once all the signals in
a diagram are computed at a given time step, Simulink determines the next time step
(based on the model configuration and numerical solver algorithms) and advances the
simulation clock. Then each block computes their output for this new time step.
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In simulation, time progresses differently from a real clock. Each time step takes as much
time as it takes to finish the computations for that time step, whether that time step
represents a fraction of a second or a few years.

Often, the effect of a component's input on its output is not instantaneous. For example,
turning on a heater does not result in an instant change in temperature. Rather, this
action provides input to a differential equation, and the history of the temperature (a
state) is also a factor. When simulation requires solving a differential or difference
equation, Simulink employs memory and numerical solvers to compute the state values
for the time step.

Simulink handles data in three categories:

• Signals — Block inputs and outputs, computed during simulation
• States — Internal values, representing the dynamics of the block, computed during

simulation
• Parameters — Values that affect the behavior of a block, controlled by the user
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At each time step, Simulink computes new values for signals and states. By contrast, you
specify parameters when you build the model and can occasionally change them while
simulation is running.

2 Modeling in Simulink
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Create a Simple Model
In this section...
“Open New Model” on page 3-3
“Open Simulink Library Browser” on page 3-5
“Add Blocks to a Model” on page 3-7
“Connect Blocks” on page 3-9
“Add Signal Viewer” on page 3-12
“Run Simulation” on page 3-12
“Refine Model” on page 3-14

You can use Simulink to model a system and then simulate the dynamic behavior of that
system. The basic techniques you use to create a simple model in this tutorial are the
same as those you use for more complex models. This example simulates simplified
motion of a car. A car is typically in motion while the gas pedal is pressed. After the pedal
is released, the car idles and comes to a stop.

A Simulink block is a model element that defines a mathematical relationship between its
input and output. To create this simple model, you need four Simulink blocks.

Block Name Block Purpose Model Purpose
Pulse Generator Generate an input signal for

the model
Represent the accelerator
pedal

Gain Multiply the input signal by
a factor

Calculate how pressing the
accelerator affects the car
acceleration

Integrator, Second-Order Integrate input signal twice Obtain position from
acceleration

Outport Designate a signal as an
output from the model

Designate the position as an
output from the model

3 Simple Simulink Model
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Simulating this model integrates a brief pulse twice to get a ramp. The results display in a
Scope window. The input pulse represents a press of the gas pedal — 1 when the pedal is
pressed and 0 when it is not. The output ramp is the increasing distance from the starting
point.

Open New Model
Use the Simulink Editor to build your models.

1
Start MATLAB. From the MATLAB toolstrip, click the Simulink button .
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2 Click the Blank Model template.

The Simulink Editor opens.
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3 From the File menu, select Save as. In the File name text box, enter a name for
your model, For example, simple_model. Click Save. The model is saved with the
file extension .slx.

Open Simulink Library Browser
Simulink provides a set of block libraries, organized by functionality in the Library
Browser. The following libraries are common to most workflows:

• Continuous — Blocks for systems with continuous states
• Discrete — Blocks for systems with discrete states
• Math Operations — Blocks that implement algebraic and logical equations
• Sinks — Blocks that store and show the signals that connect to them
• Sources — Blocks that generate the signal values that drive the model

1
From the Simulink Editor toolbar, click the Library Browser button .
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2 Set the Library Browser to stay on top of the other desktop windows. On the Library

Browser toolbar, select the Stay on top button .

To browse through the block libraries, select a category and then a functional area in the
left pane. To search all of the available block libraries, enter a search term.

For example, find the Pulse Generator block. In the search box on the browser toolbar,
enter pulse, and then press the Enter key. Simulink searches the libraries for blocks with
pulse in their name or description, and then displays the blocks.

3 Simple Simulink Model
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Get detailed information about a block. Right-click a block, and then select Help for the
Pulse Generator block. The Help browser opens with the reference page for the block.

Blocks typically have several parameters. You can access all parameters by double-
clicking the block.

Add Blocks to a Model
To start building the model, browse the library and add the blocks.

1 From the Sources library, drag the Pulse Generator block to the Simulink Editor. A
copy of the Pulse Generator block appears in your model with a text box for the value
of the Amplitude parameter. Enter 1.
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Parameter values are held throughout the simulation.
2 Add the following blocks to your model using the same approach.

Block Library Parameter
Gain Simulink/Math Operations Gain: 2
Integrator,
Second Order

Simulink/Continuous Initial condition: 0

Outport Simulink/Sinks Port number: 1

Add a second Outport block by copying the existing one and pasting it at another
point using keyboard shortcuts.

Your model now has the blocks you need.
3 Arrange the blocks as follows by clicking and dragging each block. To resize a block,

click and drag a corner.
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Connect Blocks
Connect the blocks by creating lines between output ports and input ports.

1 Click the output port on the right side of the Pulse Generator block.

The output port and all input ports suitable for a connection get highlighted.
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2 Click the input port of the Gain block.

Simulink connects the blocks with a line and an arrow indicating the direction of
signal flow.

3 Simple Simulink Model
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3 Connect the output port of the Gain block to the input port on the Integrator, Second
Order block.

4 Connect the two outputs of the Integrator, Second Order block to the two Outport
blocks.

5 Save your model. Select File > Save and provide a name.
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Add Signal Viewer
To view simulation results, connect the first output to a Signal Viewer.

Access the context menu by right-clicking the signal. Select Create & Connect Viewer >
Simulink > Scope. A viewer icon appears on the signal and a scope window opens.

You can open the scope at any time by double-clicking the icon.

Run Simulation
After you define the configuration parameters, you are ready to simulate your model.

3 Simple Simulink Model
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1 On the model window, set the simulation stop time by changing the value at the
toolbar.

The default stop time of 10.0 is appropriate for this model. This time value has no
unit. Time unit in Simulink depends on how the equations are constructed. This
example simulates the simplified motion of a car for 10 seconds — other models could
have time units in milliseconds or years.

2
To run the simulation, click the Run button .

The simulation runs and produces the output in the viewer.
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Refine Model
This example takes an existing model, moving_car.slx, and models a proximity sensor
based on this motion model. In this scenario, a digital sensor measures the distance
between the car an obstacle 10 m (30 ft) away. The model outputs the sensor
measurement, and the position of the car, taking these conditions into consideration:

• The car comes to a hard stop when it reaches the obstacle.
• In the physical world, a sensor measures the distance imprecisely, causing random

numerical errors.
• A digital sensor operates at fixed time intervals.

Change Block Parameters

To start, open the moving_car model. In the MATLAB Command Window, enter

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'moving_car'))

You first need to model the hard stop when the car position reaches 10. The Integrator,
Second Order block has a parameter for that purpose.

1 Double-click the Integrator, Second Order block. The Block Parameters dialog box
appears.

2 Select Limit x and enter 10 for Upper limit x.
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The background color for the parameter changes to indicate a modification that is not
applied to the model.

3 Click OK to apply the changes and close the dialog box.

Add New Blocks and Connections

Add a sensor that measures the distance from the obstacle.

1 Modify the model. Extend the model window to accommodate the new blocks as
necessary.
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• Find the actual distance. To find the distance between the obstacle position and
the vehicle position, add the Subtract block. Also add the Constant block to set the
constant value of 10 for the position of the obstacle.

• Model the imperfect measurement that would be typical to a real sensor. Generate
noise by using the Band-Limited White Noise block from the Sources library. Set
the Noise power parameter to 0.001. Add the noise to the measurement by
using an Add block from the Math Operations library.

• Model the digital sensor that fires every 0.1 seconds. In Simulink, sampling of a
signal at a given interval requires a sample and hold, implemented by a zero-order
hold. Add the Zero-Order Hold block from the Discrete library. After you add the
block to the model, change the Sample Time parameter to 0.1.

• Add another Outport to connect to the sensor output. Leave the Port number
parameter as default.

2 Connect the new blocks. Note that the output of the Integrator, Second-Order block is
already connected to another port. To create a branch in that signal, left-click the
signal to highlight potential ports for connection, and click the appropriate port.

Annotate signals

Add signal names to the model to make it easier to understand.

1 Double-click the signal. An editable textbox appears.
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2 Type the signal name.

3 To finish, click away from the textbox.
4 Repeat these steps to add the names as shown.

Compare Multiple Signals

Compare the actual distance signal with the measured distance signal.

1 Create and connect a Scope to the actual distance. Note that the name of the signal
appears in the viewer title.

2 Add the measured distance signal to the same viewer. Right-click the signal, and
select Connect to Viewer > Scope1. Make sure you are connecting to the viewer
you created in the previous step.
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3 Run the model. The Viewer shows the two signals, actual distance in yellow and
measured distance in blue.
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4 Zoom into the graph to observe the effect of noise and sampling. Click the Zoom

button . Left-click and drag a window around the region you want to see.
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You can repeatedly zoom in to observe the details.
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From the plot, you can see that the measurement can deviate from the actual value by as
much as 0.3 m. This information becomes useful when designing a safety feature, for
example, a collision warning.

See Also
Blocks
Add | Band-Limited White Noise | Constant | Gain | Pulse Generator | Second-Order
Integrator, Second-Order Integrator Limited | Zero-Order Hold

Related Examples
• “Model and Validate a System” on page 1-16

 See Also
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Navigate Model
In this section...
“Navigate Through Model Hierarchy” on page 4-2
“View Signal Attributes” on page 4-4
“Trace a Signal” on page 4-7

Simulink models are hierarchical, so you can build models using both top-down and
bottom-up approaches. You can view the system at a high level, then drill down to see
increasing levels of model detail. This approach provides insight into how a model is
organized and how parts interact.

To start, open the smart_braking model. In the MATLAB Command Window, enter

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'smart_braking'))

This model includes the following components and data flow:

• A vehicle moves as the gas pedal is pressed.
• A proximity sensor measures its distance from an obstacle.
• An alert system generates an alarm based on that proximity.
• The alarm automatically controls the brake to avoid hitting the obstacle.

Navigate Through Model Hierarchy
You connect blocks together to model complex components. In this model, Vehicle,
Proximity sensor, and Alert system are all complex components with multiple blocks, and
they exist in a hierarchy of subsystems. To view its contents, double-click any subsystem:
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To view the complete tree, click the Hide/Show Model Browser button at the
bottom left corner of the model window.

The Model Browser shows that all subsystems you view at the top level also have
subsystems of their own. Click > icons to see the subsystems. You can navigate through
the hierarchy in the Model Browser. For example, click the Sensor model subsystem:

 Navigate Model
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Observe that the subsystem is highlighted in the Model Browser. The address bar also
shows which subsystem you are viewing. To open the subsystem in a separate window
instead, right-click the subsystem name and select Open In New Window.

Every input or output port on a subsystem has a corresponding Inport or Outport block
inside the subsystem. These blocks indicate data transfer between a subsystem and its
parent. In the case of multiple inputs or outputs, the number on the block designates
which port it connects to on the subsystem.

View Signal Attributes
The signal lines in Simulink indicate data transfer from block to block. These signals have
attributes essential to the function of the model:
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• Size: Scalar, vector, or matrix
• Data type: String, double, unsigned integer, etc.
• Sample time: The fixed time interval at which this signal has an updated value, or

continuous sampling

To show the data type of all signals on a model, select Display > Signals & Ports > Port
Data Types:

The model displays data types along the signal types. Observe that most signals are
double, except the output of the Alert subsystem. Double-click this subsystem to
investigate why:

The labels in this subsystem suggests that data type change occurs in the Alert device
subsystem, double-click to investigate:
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This shows that the Alert device component converts the alert index signal from a double
to an integer. You can set the data type at sources, or use a Data Type Conversion block
from the Signal Attributes library. The double data type, the default, provides the best
numerical precision and is supported in all blocks. It also uses the most memory and
computing power. Other numerical data types serve to model typical embedded systems
where memory and computing power are limited.

To show sample times, select Display > Sample Time > Colors. This updates the model
to show different colors for different sample times, and also displays a legend:
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• A block or signal with continuous dynamics is black. They update as often as Simulink
requires to make the computations as close to the physical world as possible.

• A block or signal that is constant is magenta. They remain unchanged through
simulation.

• A discrete block or signal that updates at the lowest fixed interval is red: They update
only at fixed intervals. If the model contains components with different fixed sample
times, each sample time has a different color.

• A subsystem that contains continuous and discrete components are yellow: They are
hybrid systems.

Trace a Signal
This model has a constant source and a discrete output. To determine where the sampling
scheme changes., trace the output signal through blocks:

1
Open the Model Browser: Click the Hide/Show Model Browser button .

2 Highlight the source of the output signal: Right-click the signal and select Highlight
Signal to Source.
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This takes the editor into highlight mode. Click the editor to continue. Make sure
there is a blue frame around the editor.

3 To continue tracing the signal to its source, press the left arrow key.
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4 Keep tracing the signal to its source until you reach the Alert logic subsystem. You
see that the Subtract block has two inputs. Choose the signal path from the Inport by
pressing the down arrow key.

5 To find the source of the discretization, keep pressing the left arrow and note the
colors of port names that reflect the sample time.

 Navigate Model

4-9



You find that the Zero-Order Hold block in the Sensor model subsystem does the
conversion from continuous to discrete.
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Simulation of a Bouncing Ball 
This example shows how to use two different approaches to modeling a bouncing ball using 
Simulink®. 

Overview 

 
Figure 1: A ball is thrown up with a velocity of 15 m/s from a height of 10 m. 

 

A bouncing ball model is a classic example of a hybrid dynamic system. A hybrid dynamic system is 
a system that involves both continuous dynamics, as well as, discrete transitions where the system 
dynamics can change and the state values can jump. The continuous dynamics of a bouncing ball is 
simply given by: 

 

 

where  is the acceleration due to gravity,  is the position of the ball and  is the velocity. 
Therefore, the system has two continuous states: position  and velocity . 

The hybrid system aspect of the model originates from the modeling of a collision of the ball with the 
ground. If one assumes a partially elastic collision with the ground, then the velocity before the 
collision, , and velocity after the collision, , can be related by the coefficient of restitution of the 
ball, , as follows: 

 
The bouncing ball therefore displays a jump in a continuous state (velocity) at the transition 
condition, . 

A bouncing ball is one of the simplest models that shows the Zeno phenomenon. Zeno behavior is 
informally characterized by an infinite number of events occurring in a finite time interval for certain 
hybrid systems. As the ball loses energy in the bouncing ball model, a large number of collisions with 
the ground start occurring in successively smaller intervals of time. Hence the model experiences 
Zeno behavior. Models with Zeno behavior are inherently difficult to simulate on a computer, but are 
encountered in many common and important engineering applications. 

  



Using Two Integrator Blocks to Model a Bouncing Ball 
 

You can use two Integrator blocks to model a bouncing ball. The Integrator on the left is the velocity 
integrator modeling the first equation and the Integrator on the right is the position integrator. Navigate 
to the position integrator block dialog and observe that it has a lower limit of zero. This condition 
represents the constraint that the ball cannot go below the ground. 

The state port of the position integrator and the corresponding comparison result is used to detect 
when the ball hits the ground and to reset both integrators. The state port of the velocity integrator is 
used for the calculation of . 

 

 

 



 
 

To observe the Zeno behavior of the system, navigate to the Solver pane of the Configuration 
Parameters dialog box. In the 'Zero-crossing options' section, confirm that 'Algorithm' is set to 
'Nonadaptive' and that the simulation 'Stop time' is set to 25 seconds. Run the simulation. 

Observe that the simulation errors out as the ball hits the ground more and more frequently and loses 
energy. Consequently, the simulation exceeds the default limit of 1000 for the 'Number of consecutive 
zero crossings' allowed. Now navigate to the Configuration Parameters dialog box. In the 'Zero-
crossing options' section, set the 'Algorithm' to 'Adaptive'. This algorithm introduces a sophisticated 
treatment of such chattering behavior. Therefore, you can now simulate the system beyond 20 
seconds. Note, however, the chatter of the states between 21 seconds and 25 seconds and warning 
from Simulink about the strong chattering in the model around 20 seconds. 

 
 
Using a Second-Order Integrator Block to Model a Bouncing Ball 
 

You can use a single Second-Order Integrator block to model this system. The second 
equation  is internal to the Second-Order Integrator block in this case. Navigate to the 
Second-Order Integrator block dialog and notice that, as earlier,  has a lower limit of zero. Navigate 
to the Attributes tab on the block dialog and note that the option 'Reinitialize dx/dt when x reaches 
saturation' is checked. This parameter allows us to reinitialize  (  in the bouncing ball model) to 
a new value at the instant  reaches its saturation limit. For the bouncing ball model, this option 



therefore implies that when the ball hits the ground, its velocity can be set to a different value, i.e., to 
the velocity after the impact. Notice the loop for calculating the velocity after a collision with the 
ground. To capture the velocity  of the ball just before the collision, the  output port of the 
Second-Order Integrator block and a Memory block are used.  is then used to calculate the rebound 
velocity . 

 

 

 



 
 

Navigate to the Solver pane of the Configuration Parameters dialog box. Confirm that 'Algorithm' is set 
to 'Nonadaptive' in the 'Zero-crossing options' section and the simulation 'Stop Time' is set to 25 
seconds. Simulate the model. Note that the simulation encountered no problems. You were able to 
simulate the model without experiencing excessive chatter after t = 20 seconds and without setting the 
'Algorithm' to 'Adaptive'. 

Second-Order Integrator Model Is the Preferable Approach to Modeling Bouncing 
Ball 
One can analytically calculate the exact time  when the ball settles down to the ground with zero 
velocity by summing the time required for each bounce. This time is the sum of an infinite geometric 
series given by: 

 
Here  and  are initial conditions for position and velocity respectively. The velocity and the position 
of the ball must be identically zero for . In the figure below, results from both simulations are 
plotted near . The vertical red line in the plot is  for the given model parameters. For  and far 
away from , both models produce accurate and identical results. Hence, only a magenta line from 
the second model is visible in the plot. However, the simulation results from the first model are inexact 
after ; it continues to display excessive chattering behavior for . In contrast, the second model 
using the Second-Order Integrator block settles to exactly zero for . 



 
Figure 2: Comparison of simulation results from the two approaches. 

 

Figure 2 conclusively shows that the second model has superior numerical characteristics as 
compared to the first model. The reason for the higher accuracy associated with the Second-Order 
Integrator model is as follows. The second differential equation  is internal to the Second-
Order Integrator block. Therefore, the block algorithms can leverage this known relationship between 
the two states and deploy heuristics to clamp down the undesirable chattering behavior for certain 
conditions. These heuristics become active when the two states are no longer mutually consistent with 
each other due to integration errors and chattering behavior. You can thus use physical knowledge of 
the system to alleviate the problem of simulation getting stuck in a Zeno state for certain classes of 
Zeno models. 

 



Simulating Systems with Variable Transport Delay 
Phenomena 
This example shows two cases where you can use Simulink® to model variable transport delay 
phenomena. 

 

Vertical Wheel Displacement on a One-Dimensional Car 
 

 
Figure 1: Illustration of a car with speed v(t). 

 

A car is running along a road with speed v(t). A sensor is installed at the front wheel to measure the 
vertical displacement Hi(t) of the front wheel caused by the road profile. If the wheels and road never 
lose contact, then the vertical displacement of the rear wheel, Ho(t), can be seen as a variable 
transport delay of Hi(t), which is determined by the length L between the two wheels and the speed 
v(t). 



 

 
Figure 2: Vertical displacement of the wheels. 

  



Incompressible Flow Through a Fixed Length Pipe 
 

 
Figure 3: Illustration of a fixed-length pipe. 

 

An incompressible flow goes through a pipe of length L with speed v(t). At the inlet, the flow 
temperature is Ti. We can model the temperature at the outlet To as a variable transport delay of Ti. At 
time t=0, the pipe is empty and until t=2, there is no flow at the outlet. Thus, the output temperature 
before t=2 is the initial output temperature. 

 

 



 
Figure 4: Incompressible flow through a fixed-length pipe. 

 



Single Hydraulic Cylinder Simulation 
This example shows how to use Simulink® to model a hydraulic cylinder. You can apply these 
concepts to applications where you need to model hydraulic behavior. 

Analysis and Physics of the Model 
Figure 1 shows a schematic diagram of the basic model. The model directs the pump flow, Q, to supply 
pressure, p1, from which laminar flow, q1ex, leaks to exhaust. The control valve for the piston/cylinder 
assembly is modeled as turbulent flow through a variable-area orifice. Its flow, q12, leads to 
intermediate pressure, p2, which undergoes a subsequent pressure drop in the line connecting it to 
the actuator cylinder. The cylinder pressure, p3, moves the piston against a spring load, resulting in 
position x. 

 

Figure 1: Schematic diagram of the basic hydraulic system 

 

At the pump output, the flow is split between leakage and flow to the control valve. We model the 
leakage, q1ex, as laminar flow (see Equation Block 1). 

 
Equation Block 1 

 

 

 

 

 

 

 

 
 

We modeled turbulent flow through the control valve with the orifice equation. The sign and absolute 
value functions accommodate flow in either direction (see Equation Block 2). 

 



Equation Block 2 

 

 

 

 

 
 

The fluid within the cylinder pressurizes due to this flow, q12 = q23, minus the compliance of the 
piston motion. We also modeled fluid compressibility in this case (see Equation Block 3). 

 
Equation Block 3 

 

 

 

 

 

 

 
 

We neglected the piston and spring masses because of the large hydraulic forces. We completed the 
system of equations by differentiating this relationship and incorporating the pressure drop 
between p2 and p3. Equation Block 3 models laminar flow in the line from the valve to the actuator. 
Equation block 4 gives the force balance at the piston. 

 
Equation Block 4 

 

 

 

 

 

 

  



Modeling 
Figure 2 shows the top level diagram of the model. The pump flow and the control valve orifice area 
are simulation inputs. The model is organized as two subsystems: the 'Pump' and the 
'Valve/Cylinder/Piston/Spring Assembly'. 

 

Opening the Model and Running the Simulation 
To try it in MATLAB, type sldemo_hydcyl at MATLAB® terminal (click on the hyperlink if you are 
using MATLAB Help). Press the "Play" button on the model toolbar to run the simulation. 

• Note: The model logs relevant data to MATLAB workspace in a structure 
called sldemo_hydcyl_output. Logged signals have a blue indicator. 
 
 

 



 

Figure 2: Single cylinder model and simulation results 

 
'Pump' Subsystem 
Right click on the 'Pump' masked subsystem and select "Look Under Mask" to see its components. 
The pump model computes the supply pressure as a function of the pump flow and the load (output) 
flow (Figure 3). Qpump is the pump flow data (saved in the model workspace). A matrix with column 
vectors of time points and the corresponding flow rates [T, Q]specifies the flow data. The model 
calculates pressure p1 as indicated in Equation Block 1. Because Qout = q12 is a direct function 
of p1 (via the control valve), an algebraic loop is formed. An estimate of the initial value, p10, enables 
a more efficient solution. 

 

Figure 3: The pump subsystem 

  



We masked the 'Pump' subsystem in Simulink to allow the user to easily access the parameters (see 
Figure 4). The parameters to be specified are T, Q, p10, and C2. We then assigned the masked block 
the icon shown in Figure 2, and saved it in a Simulink library. 

 

Figure 4: Entering pump parameters 

 
'Valve/Cylinder/Piston/Spring Assembly' Subsystem 
Right click on the 'Valve/Cylinder/Piston/Spring Assembly' in the model and select "Look Under Mask" 
to see the Actuator subsystem (see Figure 5). A system of differential-algebraic equations models the 
cylinder pressurization with the pressure p3, which appears as a derivative in Equation Block 3 and is 
used as the state (integrator). If we neglect piston mass, the spring force and piston position are direct 
multiples of p3 and the velocity is a direct multiple of p3's time derivative. This latter relationship forms 
an algebraic loop around the 'Beta' Gain block. The intermediate pressure p2 is the sum of p3 and the 
pressure drop due to the flow from the valve to the cylinder (Equation Block 4). This relationship also 
imposes an algebraic constraint through the control valve and the 1/C1 gain. 

The control valve subsystem computes the orifice (Equation Block2). It uses as inputs the upstream 
and downstream pressures and the variable orifice area. The 'Control Valve Flow' Subsystem 
computes the signed square root: 

 
Three nonlinear functions are used, two of which are discontinuous. In combination, however, y is a 
continuous function of u. 



 

Figure 5: The valve/cylinder/piston/spring subsystem 

 
Results 
 
Simulation Parameters 

We simulated the model using the following data. The information is loaded from a MAT-file -
 sldemo_hydcyl_data.mat, which is also used for the other two hydraulic cylinder models. The users 
can enter data via the Pump and Cylinder Masks shown in Figures 4 and 6. 

 

 

 

 

 

 

 

 
T = [0 0.04 0.04 0.05 0.05 0.1 ] sec 

Q = [0.005 0.005 0 0 0.005 0.005] m^3/sec 



 

Figure 6: Entering valve/cylinder/piston/spring assembly parameters 

  



Plotting Simulation Results 

The system initially steps to a pump flow of 0.005 m^3/sec=300 l/min, abruptly steps to zero 
at t=0.04 sec, then resumes its initial flow rate at t=0.05 sec. 

The control valve starts with zero orifice area and ramps to 1e-4 sq.m. during the 0.1 
sec simulation time. With the valve closed, all of the pump flow goes to leakage so the initial pump 
pressure increases to p10 = Q/C2 = 1667 kPa. 

As the valve opens, pressures p2 and p3 build up while p1 decreases in response to the load increase 
as shown in Figure 7. When the pump flow cuts off, the spring and piston act like an accumulator 
and p3 decreases continuously. Then the flow reverses direction, so p2, though relatively close to p3, 
falls abruptly. At the pump itself, all of the back-flow leaks and p1 drops radically. The behavior 
reverses as the flow is restored. 

The piston position is directly proportional to p3, where the hydraulic and spring forces balance. 
Discontinuities in the velocity at 0.04 sec and 0.05 sec indicate negligible mass. The model reaches a 
steady state when all of the pump flow again goes to leakage, now due to zero pressure drop across 
the control valve (which means p3 = p2 = p1 = p10). 

 

Figure 7: Simulation Results: System Pressures 



 

Figure 8: Simulation Results: Hydraulic Cylinder Piston Position 

 
Closing the Model 
Close the model and clear generated data. 

 



Thermal Model of a House 
This example shows how to use Simulink® to create the thermal model of a house. This system 
models the outdoor environment, the thermal characteristics of the house, and the house heating 
system. 

The sldemo_househeat_data.m file initializes data in the model workspace. To make changes, you 
can edit the model workspace directly or edit the file and re-load the model workspace. To view the 
model workspace, select View > Model Explorer from the Simulink editor. 

 
Opening the Model 
Open the sldemo_househeat model 

 
Figure 1: The House Heating Model 

 
Model Initialization 
This model calculates heating costs for a generic house. When the model is opened, it loads the 
information about the house from the sldemo_househeat_data.m file. The file does the following: 

• Defines the house geometry (size, number of windows) 
• Specifies the thermal properties of house materials 
• Calculates the thermal resistance of the house 
• Provides the heater characteristics (temperature of the hot air, flow-rate) 
• Defines the cost of electricity (0.09$/kWhr) 
• Specifies the initial room temperature (20 deg. Celsius = 68 deg. Fahrenheit) 
• Note: Time is given in units of hours. Certain quantities, like air flow-rate, are expressed per hour (not 

per second). 
  

matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')
matlab:openExample('simulink_general/sldemo_househeatExample');
matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')


Model Components 
 

Set Point 

"Set Point" is a constant block. It specifies the temperature that must be maintained indoors. It is 70 
degrees Fahrenheit by default. Temperatures are given in Fahrenheit, but then are converted to 
Celsius to perform the calculations. 

Thermostat 

"Thermostat" is a subsystem that contains a Relay block. The thermostat allows fluctuations of 5 
degrees Fahrenheit above or below the desired room temperature. If air temperature drops below 65 
degrees Fahrenheit, the thermostat turns on the heater. See the thermostat subsystem below. 

 
Figure 2: The "Thermostat" Subsystem 

Heater 

"Heater" is a subsystem that has a constant air flow rate, "Mdot", which is specified in 
the sldemo_househeat_data.m file. The thermostat signal turns the heater on or off. When the heater 
is on, it blows hot air at temperature THeater (50 degrees Celsius = 122 degrees Fahrenheit by 
default) at a constant flow rate of Mdot (1kg/sec = 3600kg/hr by default). The heat flow into the room is 
expressed by the Equation 1. 

Equation 1 

 

 

 

 

 

 

 
Figure 3: The Heater Subsystem 

matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')


Cost Calculator 

"Cost Calculator" is a Gain block. "Cost Calculator" integrates the heat flow over time and multiplies it 
by the energy cost. The cost of heating is plotted in the "PlotResults" scope. 

House 

"House" is a subsystem that calculates room temperature variations. It takes into consideration the 
heat flow from the heater and heat losses to the environment. Heat losses and the temperature time 
derivative are expressed by Equation 2. 

Equation 2 

 

 

 

 

 
Figure 4: The House Subsystem 

 

Modeling the Environment 

We model the environment as a heat sink with infinite heat capacity and time varying temperature 
Tout. The constant block "Avg Outdoor Temp" specifies the average air temperature outdoors. The 
"Daily Temp Variation" Sine Wave block generates daily temperature fluctuations of outdoor 
temperature. Vary these parameters and see how they affect the heating costs. 

 
Running the Simulation and Visualizing the Results 
Run the simulation and visualize the results. Open the "PlotResults" scope to visualize the results. The 
heat cost and indoor versus outdoor temperatures are plotted on the scope. The temperature outdoor 
varies sinusoidally, whereas the indoors temperature is maintained within 5 degrees Fahrenheit of 
"Set Point". Time axis is labeled in hours. 



 
Figure 5: Simulation results (time axis labeled in hours) 

 

According to this model, it would cost around $30 to heat the house for two days. Try varying the 
parameters and observe the system response. 

Remarks 
This particular model is designed to calculate the heating costs only. If the temperature of the outside 
air is higher than the room temperature, the room temperature will exceed the desired "Set Point". 

You can modify this model to include an air conditioner. You can implement the air conditioner as a 
modified heater. To do this, add parameters like the following to sldemo_househeat_data.m. 

• Cold air output 
• Temperature of the stream from the air conditioner 
• Air conditioner efficiency 

You would also need to modify the thermostat to control both the air conditioner and the heater. 

 

matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')


Modeling an Anti-Lock Braking System 
This example shows how to model a simple model for an Anti-Lock Braking System (ABS). It 
simulates the dynamic behavior of a vehicle under hard braking conditions. The model represents a 
single wheel, which may be replicated a number of times to create a model for a multi-wheel vehicle. 

This model uses the signal logging feature in Simulink®. The model logs signals to the MATLAB® 
workspace where you can analyze and view them. You can view the code in 
sldemo_absbrakeplots.m to see how this is done. 

In this model, the wheel speed is calculated in a separate model named 
sldemo_wheelspeed_absbrake. This component is then referenced using a 'Model' block. Note that 
both the top model and the referenced model use a variable step solver, so Simulink will track zero-
crossings in the referenced model. 

Analysis and Physics 
The wheel rotates with an initial angular speed that corresponds to the vehicle speed before the 
brakes are applied. We used separate integrators to compute wheel angular speed and vehicle speed. 
We use two speeds to calculate slip, which is determined by Equation 1. Note that we introduce 
vehicle speed expressed as an angular velocity (see below). 

 

Equation 1 

 

 

 

 

 

 
From these expressions, we see that slip is zero when wheel speed and vehicle speed are equal, and 
slip equals one when the wheel is locked. A desirable slip value is 0.2, which means that the number 
of wheel revolutions equals 0.8 times the number of revolutions under non-braking conditions with the 
same vehicle velocity. This maximizes the adhesion between the tire and road and minimizes the 
stopping distance with the available friction. 

Modeling 
The friction coefficient between the tire and the road surface, mu, is an empirical function of slip, known 
as the mu-slip curve. We created mu-slip curves by passing MATLAB variables into the block diagram 
using a Simulink lookup table. The model multiplies the friction coefficient, mu, by the weight on the 
wheel, W, to yield the frictional force, Ff, acting on the circumference of the tire. Ff is divided by the 
vehicle mass to produce the vehicle deceleration, which the model integrates to obtain vehicle 
velocity. 

In this model, we used an ideal anti-lock braking controller, that uses 'bang-bang' control based upon 
the error between actual slip and desired slip. We set the desired slip to the value of slip at which the 
mu-slip curve reaches a peak value, this being the optimum value for minimum braking distance (see 
note below.). 

• Note: In an actual vehicle, the slip cannot be measured directly, so this control algorithm is not 
practical. It is used in this example to illustrate the conceptual construction of such a simulation model. 
The real engineering value of a simulation like this is to show the potential of the control concept prior 
to addressing the specific issues of implementation. 



Creating a Temporary Directory for the Example 
During this example, Simulink generates files in the current working directory. If you do not want to 
generate files in this directory, change the working directory to a suitable directory: 

origdir = cd(tempdir); 

Opening the Model 
To open this model type sldemo_absbrake in MATLAB terminal (or click on the hyperlink if you are 
using MATLAB Help). 

 

Figure 1: Anti-Lock Braking (ABS) Model 

Double click on the 'Wheel Speed' subsystem in the model window to open it. Given the wheel slip, the 
desired wheel slip, and the tire torque, this subsystem calculates the wheel angular speed. 

 

Figure 2: Wheel Speed subsystem 



To control the rate of change of brake pressure, the model subtracts actual slip from the desired slip 
and feeds this signal into a bang-bang control (+1 or -1, depending on the sign of the error, see Figure 
2). This on/off rate passes through a first-order lag that represents the delay associated with the 
hydraulic lines of the brake system. The model then integrates the filtered rate to yield the actual brake 
pressure. The resulting signal, multiplied by the piston area and radius with respect to the wheel (Kf), 
is the brake torque applied to the wheel. 

The model multiplies the frictional force on the wheel by the wheel radius (Rr) to give the accelerating 
torque of the road surface on the wheel. The brake torque is subtracted to give the net torque on the 
wheel. Dividing the net torque by the wheel rotational inertia, I, yields the wheel acceleration, which is 
then integrated to provide wheel velocity. In order to keep the wheel speed and vehicle speed positive, 
limited integrators are used in this model. 

Running the Simulation in ABS Mode 
Press the "Play" button on the model toolbar to run the simulation. You can also run the simulation by 
executing the sim('sldemo_absbrake') command in MATLAB. ABS is turned on during this 
simulation. 

 

 

Figure 3: Baseline Simulation Results 

• Note: The model logs relevant data to MATLAB workspace in a structure 
called sldemo_absbrake_output. Logged signals have a blue indicator. In this 
case yout and slp are logged (see the model). Read more about Signal Logging in Simulink Help. 
Figure 3 visualizes the ABS simulation results (for default parameters). The first plot in Figure 3 shows 
the wheel angular velocity and corresponding vehicle angular velocity. This plot shows that the wheel 

matlab:open_system('sldemo_absbrake')


speed stays below vehicle speed without locking up, with vehicle speed going to zero in less than 15 
seconds. 

Running the Simulation Without ABS 
For more meaningful results, consider the vehicle behavior without ABS. At the MATLAB command 
line, set the model variable ctrl = 0. This disconnects the slip feedback from the controller (see 
Figure 1), resulting in maximum braking. The results are shown in Figure 4. 

ctrl = 0; 

Now run the simulation again. This will model braking without ABS. 

 

 

Figure 4: Maximum braking simulation results (braking without ABS) 

Braking With ABS Versus Braking Without ABS 
In the upper plot of Figure 4, observe that the wheel locks up in about seven seconds. The braking, 
from that point on, is applied in a less-than-optimal part of the slip curve. That is, when slip = 1, as 
seen in the lower plot of Figure 4, the tire is skidding so much on the pavement that the friction force 
has dropped off. 

This is, perhaps, more meaningful in terms of the comparison shown in Figure 5. The distance 
traveled by the vehicle is plotted for the two cases. Without ABS, the vehicle skids about an extra 100 
feet, taking about three seconds longer to come to a stop. 



 

Figure 5: Stopping distance for hard braking with and without ABS 

Closing the Model 
Close the model. Close the 'Wheel Speed' subsystem. Clear logged data. Change back to the original 
directory. 

cd(origdir); 

Conclusions 
This model shows how you can use Simulink to simulate a braking system under the action of an ABS 
controller. The controller in this example is idealized, but you can use any proposed control algorithm 
in its place to evaluate the system's performance. You can also use the Simulink® Coder™ with 
Simulink as a valuable tool for rapid prototyping of the proposed algorithm. C code is generated and 
compiled for the controller hardware to test the concept in a vehicle. This significantly reduces the time 
needed to prove new ideas by enabling actual testing early in the development cycle. 

For a hardware-in-the-loop braking system simulation, you can remove the 'bang-bang' controller and 
run the equations of motion on real-time hardware to emulate the wheel and vehicle dynamics. You 
can do this by generating real-time C code for this model using the Simulink Coder. You can then test 
an actual ABS controller by interfacing it to the real-time hardware, which runs the generated code. In 
this scenario, the real-time model would send the wheel speed to the controller, and the controller 
would send brake action to the model. 
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Abstract 

Modelling and simulation, as one of the most used tools in processes investigation, are successfully 

applied for road traffic dynamic studies. As shown in the open literature, such a system with complex 

behavior is characterized by strong interactions between traffic participants, transport infrastructure and 

traffic controls, having a serious environmental impact – even deeper than other fields of human activity 

[1].  This paper addresses a modern modelling approach, originally adapted and included in the already 

announced software framework for controlled traffic investigation [3], as mathematical core-engine for 

independent lanes dynamic behavior description. 

Key words: road traffic, dynamic modelling. 

Introduction 

Recently, the author of this paper has started a research project focused on road traffic 

mathematical modeling techniques, embedded within a modern framework which allows an 

easy traffic simulators implementation – presented in [3]. As the cited paper presents the project 

overview, from general aspects (like general/standard modeling and simulation approaches) to 

specific solved problems when building-up the software framework, this work offers a more 

complex look inside the mathematical model which is the core-engine of the application. 

Modeling the traffic actors – a new approach 

Since each mobile entity acts accordingly with its neighbors’ behavior and (own) established 

rules, this work adopts a microscopic representation technique which may become the 

mathematical core of a traffic cellular automaton. This approach naturally leads to a significant 

flexibility in numerically defining a wide range of behavioral entities, which can be easily used 

for simulation and/or analysis purposes [2]. 

In the current representation, an independent traffic actor is determined by its passive properties 

(seen as model constant parameters: car length l, maximal acceleration a+, maximal deceleration 

a–, driver reaction time treact and sensitivity S) and active properties (its allocated state variables: 

position x, actual speed v and acceleration a – updated with each simulation step ∆t). 

Acceleration is considered as the main state variable, because it strongly depends on the 

environment and, more, v and x can be easily calculated from a. The only macroscopic 

parameter, seen as traffic scene property, is the maximum allowed speed value vmax. 
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Figure 1 shows the simplest case of a one-way road with only two cars, where vehicle 1 (in the 

back) behavior is described via the proposed algorithm, while vehicle 2 (in the front) is 

controlled by directly specifying its acceleration values over the entire simulation time horizon. 

 

Fig. 1. Traffic scene: one-way road with two vehicles. 

So, focusing on car 1 only, the first simplifying assumption is to have a constant acceleration 

value for each ∆t time horizon, the a1 value (positive for acceleration, negative for deceleration) 

being directly influenced by the driver’s actions on gas pedal. Considering also that a1 should 

tend to its extreme values (a1+ or a1–), the following equations in the model gives the vehicle 1 

acceleration: 

𝑎1 𝑡 =  
𝑎+ tanh 𝑆1 × 𝜀1(𝑡) , if 𝜀 ≥ 0,

𝑎− tanh 𝑆1 × 𝜀1(𝑡) , otherwise,
     (1) 

where 

𝜀1 𝑡 =  
∆𝑣1 𝑡 ×  𝑥2 𝑡 − 𝑥1 𝑡 − 𝑙1 − 𝑣1 𝑡 × 𝑡1 𝑟𝑒𝑎𝑐𝑡 +

 𝑣1 𝑡 −𝑣2 𝑡  
2

2𝑎1−
 , if ∆dist12 < 0,

∆𝑣1 𝑡 ×  𝑥2 𝑡 − 𝑥1 𝑡 − 𝑙1 − 𝑣1 𝑡 × 𝑡1 𝑟𝑒𝑎𝑐𝑡 +
 𝑣1 𝑡 −𝑣2 𝑡  

2

2𝑎1+
 , otherwise.

   

(2) 

dist12 represents the tendency of inter-vehicles distance variation, directly observed by driver 1. 

It takes into account the current time step (t) and the previous one (t – t), having negative 

values when v1 > v2 or non-negative values otherwise: 

∆𝑑𝑖𝑠𝑡12 =  𝑥2 𝑡 − 𝑥1 𝑡  −  𝑥2 𝑡 − ∆𝑡 − 𝑥1 𝑡 − ∆𝑡  .  (3) 

v1(t) is the relative deviation between current vehicle 1 speed and its maximum allowed speed, 

vmax, calculated as 

∆𝑣1 𝑡 =  𝑣𝑚𝑎𝑥 − 𝑣1 𝑡  𝑣𝑚𝑎𝑥 .    (4) 

Equation (1) establishes a direct dependency between acceleration a and  which defines the 

deviation between ideal traffic conditions (free road, no maximum speed limit) and real ones. 

The author of this work propose a modified  definition (in comparison with other classical 

approaches in the open literature – [2, 3]), which now simultaneously takes into account both 

restrictions (obstacles presence and speed limitations). 

As shown in [3], for an independent traffic actor, the fixed obstacles (traffic lights, stopped cars) 

or mobile ones (moving vehicles on the same pathway) need a permanent state evaluation. But, 

regardless the obstacles type, the general safety arrival distance rule applies; it correlates the 

driver’s actions (changes in a) with current traffic conditions, in a way allowing obstacles 

approaching, but never touching them. Considering vehicle 2 as the only (mobile) obstacle, the 

term  𝑥2 𝑡 − 𝑥1 𝑡 − 𝑙1 − 𝑣1 𝑡 × 𝑡1 𝑟𝑒𝑎𝑐𝑡 +  𝑣1 𝑡 − 𝑣2 𝑡  
2

2𝑎1−   in equation (2) 

estimates, at each time step, if car 1 can be safely slowed down when dist12 < 0 and a1 

hypothetically becomes a1–. Greater this term is, safer its current situation becomes, while a 
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negative value indicates the crashing danger; zero represents the critical limit when car 1 

touches vehicle 2 exactly when v1 becomes v2 (so there will be no true collision after). 

Of course, the same principle may be considered when evaluating the safety arrival distance rule 

for any fixed obstacle, v2(t) being replaced with zero in the term above, as shown in [3]. On the 

other hand, in equation (2) – after many experimental studies – the author of this work proposes 

a symmetric term in  expression when dist12 ≥ 0, finally leading to a true realistic vehicle 

behavior. 

The speed limits, imposed by local traffic rules, road state and direction changes for instance, 

are taken into account by the term v1(t) in  definition. Considering another simplifying 

assumption (v1(0) ≤ vmax, which is in fact absolutely normal), v1(t) is always positive and only 

slightly adjust the  value when v1 is close to vmax, until a1 becomes zero. As time as the vehicle 

1 speed value for the next step may be calculated with 

𝑣1 𝑡 + ∆𝑡 = 𝑚𝑎𝑥 0, 𝑣1 𝑡 + 𝑎1 𝑡 × ∆𝑡 ,   (5) 

it is easy to demonstrate that, after several number of time steps t, v1 will equal vmax whenever 

there is a safe distance between considered vehicles, proving a good adapting feature for the 

model (when new limitations – shown by changes in vmax – happen to occur). This approach can 

also be successfully applied to all dynamic changes in traffic regime, like traffic lights color 

switches and concurrence with vehicles having higher priority (when an additional decision 

structure completes the so-called gap acceptance algorithm) [2, 3]. 

Regarding the car 1 position, it is given by 

𝑥1 𝑡 + ∆𝑡 = 𝑚𝑎𝑥  𝑥1 𝑡 ,  𝑥1 𝑡 + 𝑣1 𝑡 × ∆𝑡 +
𝑎1 𝑡 ×(∆𝑡)2

2
 .  (6) 

One can observe that equations (5) and (6) do not allow any negative values for v, respectively 

any x1 decreasing tendency (meaning no turning back for the considered vehicle 1). 

As remark, the positive or negative value of a is directly influenced only by , as all other terms 

in equation (1) are strictly greater than zero. Then, it can be observed that (1) brings a realistic 

representation of a depending on  value by using the hyperbolic tangent operator, denoting a 

stronger driver’s reaction on the gas pedal as the deviation (positive or negative) has a bigger 

absolute value [2]. 

Simulation results 

For this paper, four simulation scenarios were selected, in order to prove the modified model 

adequacy in describing a two-vehicle traffic situation, where the car in front (2) is freely 

controlled (by directly specifying its acceleration a2(t) value(s) during simulation horizon, initial 

speed v2(0) and position x2(0)), while the following car (1) behavior is modeled by the cinematic 

laws above presented. In all cases, vehicle 2 is characterized by x2(0) = 100m,  

v2(0) = vmax = 19.46m/s (70 km/h) and the same acceleration profile. Both vehicles have  

a1+ = a2+ = 1.7m/s
2
 and a1– = a2– = –5m/s

2
. 

Scenario 1: v1(0) = 0m/s, sensitivity factor S = 2.5 (normal driving style) 

Figure 2 presents how vehicle 1 reacts when starting with zero speed (at t = 0). The sensitivity 

factor value may be considered as medium/normal for this traffic case. First, the driver pushes 

completely the gas pedal (a1 = a+ = 1.7m/s
2
) during the first 9 seconds. As consequence, v1 

rapidly increases from 0 to 16m/s, close to the maximum allowed speed vmax until (at t  10s), 

the brake is seriously hit (a1  –3.2m/s
2
) for a short time in order to prevent an imminent 
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collision with vehicle 2. For the next 15s a1 moderately increases, reaching again its maximum 

allowed value (1.7m/s
2
) because there is no collision risk anymore. Since at t = 16s v1 = v2 = 

3m/s, during the next time interval (t > 18s) it is expected that driver 1 will try to adapt its 

actions in order to keep v1 as close as possible to v2, maintaining this way an approximately 

constant safety gap (x2 – x1).  One can see in figure 2 that the proposed algorithm successfully 

satisfies the car following principle above mentioned, for the chosen sensitivity value (2.5), the 

collision state being constantly kept at “0” (meaning car 1 never touches car 2, even when at t = 

60s both vehicles are stopped). 

 

 

Fig. 2. Simulation results for scenario 1. 

Scenario 2: v1(0) = 0m/s, sensitivity factor S = 0.1 (“lazy” driving style) 

This new scenario differs from the first one only by intentionally considering a (very) low 

sensitivity factor value. As the good sense tells and figure 3 shows, the effect of a calmer action 

on the gas and brake pedals consists in a much slower speed variation, with lower amplitude (on 

corresponding time values) than in previous case. But, by analyzing the collision state 

evolution, it can be seen that vehicle 1 hits the car in front in two situations, at t  16s and t  

51s (when collision state becomes “1”). In this case, the driver cannot keep a safe distance as it 

reacts too slowly when vehicle 1 suddenly stops (in about 4 seconds), because a2 = a– = –5m/s
2
 

at t = 0s and t = 45s. One can see in figure 3 how the v1 profile is right-shifted from the previous 

case, meaning v1 is adapted to v2 with a serious delay, leading to this unwanted crashing 

situations. 

Scenario 3: v1(0) = 0m/s, sensitivity factor S = 20.0 (“aggressive” driving style) 

The third scenario illustrates the effect of a high sensitivity factor value, characterizing a sporty 

or nervous driver, on the controlled car (2) behavior. Such a driver over-estimates as potential 

dangers what all other drivers call “normal traffic situations” (i.e. a car in front quick speed 

decreasing, but still in the safe limits). On the other hand, the sporty/nervous driver usually hits 

the gas pedal shortly after he sees the distance to followed vehicle increases. 

The proposed model successfully addresses this aggressive driving style simulation. As figure 4 

depicts, by keeping the same behavior for vehicle 2, as well as other parameters for car 1 

controlling algorithm (except the sensitivity factor), two false-critical time intervals can be 

identified (at t = 15s, for one second, and at t = 52s, for about 8 seconds), when vehicle 1 

seriously approaches car 2. During these periods, driver 1 seems to nervously hit the brake, until 
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it appreciates the “critical” situation ended. As remark, figure 4 presents only the acceleration 

evolution (with a zoomed vicinity of t = 16s), because all other diagrams look identical.  

 

 

Fig. 3. Simulation results for scenario 2. 

 

 

Fig. 4. Simulation results for scenario 3. 

Scenario 4: v1(0) = 19.46m/s, sensitivity factor S = 10.0 (increased sensitivity) 

Last chosen scenario represents another traffic situation, when vehicle 1 initial speed (v1(0)) has 

the maximum allowed value, 19.46m/s, being the same as v2(0). 

 

 

Fig. 5. Simulation results for scenario 4. 
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Although the results are not presented here, a sensitivity factor of 2.5 (like in scenario 1) proved 

not to be adequate anymore, as the high initial value of v1 combined with a stiff situation  

(a2(0) = a– = –3.2m/s
2
) imposes a different driver 1 attitude in order to slow down the vehicle 

within a safe time interval (meaning x2 – x1 ≥ l1 when v1 = v2). A test sensitivity value of 10.0 

was used instead, the results depicted by figure 5 showing no collision for the entire simulation 

horizon. 

Conclusions 

This paper offers a more complex image on the mathematical model as the core-engine of a 

modern software framework (previously announced in [3]) allowing an easy traffic simulators 

design and implementation. Two changes in the model (introducing driver’s sensitivity factor 

and fine acceleration tuning when approaching the maximum legal speed) were tested through 

simulation, with extremely promising results. In future research, the sensitivity must not have a 

constant value (as it is now), because traffic conditions are subject to serious variations from 

one scenario to another. The author will try to find an adaptive variation law for the sensitivity 

factor, where the main idea is to increase/decrease it until car in the back approaches the front 

car, and then revert it to a standard value (i.e. something between 2.5 and 10.0). As starting 

example, scenario 4 has to be considered: when t > 16s, sensitivity may be decreased because 

both vehicles start again with v1 = v2 = 0, somewhere at about 140m from the x-axis origin.  
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Un model matematic adaptat 

pentru simularea fidelă a traficului auto 

Rezumat 

Modelarea și simularea, ca instrumente puternice asociate studiului sistemelor complexe, sunt aplicate 

cu succes în investigarea dinamicii traficului auto. Așa cum literatura menționează, un astfel de proces 

este caracterizat de puternice interacțiuni între entitățile participante, infrastructura rutieră și regulile de 

gestiune a circulației, având și un deosebit impact asupra mediului (ce poate depăși depășind chiar pe cel 

al industriilor productive [1]). Această lucrare prezintă o abordare modernă și originală a modelării 

matematice a traficului, ce se constituie în motorul platformei de simulare descrisă în lucrarea [3]. 
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