

Gabriel Rădulescu

Advanced Modelling

and Simulation Techniques

A Stewart Robinson’s opinion from his book,

“The Practice of Model Development and Use”

Ploiești, 2016

CONTENT

FOREWORD ... 3

1. MODELLING & SIMULATION – AN OVERVIEW ... 4

1.1. A SHORT INTRODUCTION ... 4

1.2. DEFINING MODELLING AND SIMULATION .. 5

1.3. SIMULATION VS. OTHER INVESTIGATION TECHNIQUES ... 8

1.4. WHEN TO SIMULATE .. 14

1.5. CHAPTER’S CONCLUSIONS.. 14

2. SOFTWARE TOOLS FOR SIMULATION... 15

2.1. AN OVERVIEW... 15

2.2. VISUAL INTERACTIVE SIMULATION ... 16

2.3. SIMULATION SOFTWARE .. 18

2.4. SELECTING THE SIMULATION SOFTWARE ... 21

2.5. CHAPTER’S CONCLUSIONS.. 27

3. THE CONCEPTUAL MODELLING PRINCIPLES ... 28

3.1. INTRODUCTION .. 28

3.2. THE IMPORTANCE OF CONCEPTUAL MODELLING .. 29

3.3. THE DEFINITION OF A CONCEPTUAL MODEL .. 31

3.4. REQUIREMENTS OF THE CONCEPTUAL MODEL ... 33

3.5. THE CONCEPTUAL MODEL DISSEMINATION ... 36

3.6. CHAPTER’S CONCLUSION ... 39

4. THE CONCEPTUAL MODEL AGGREGATION ... 41

4.1. INTRODUCTION .. 41

4.2. MODELLING IN A CONCEPTUAL FRAMEWORK .. 41

4.3. MODEL SIMPLIFICATION .. 57

4.4. CHAPTER’S CONCLUSIONS.. 64

5. REFERENCES .. 65

3

Foreword

This course on Advanced Modelling and Simulation Techniques is part of

the master programme Advanced Automation (Faculty of Mechanical

and Electrical Engineering at the Petroleum-Gas University of Ploiesti,

Romania). Its aim is to provide the student with a clear understanding of

the basic requirements for the model-based simulations successful

implementation and use.

Although some examples are taken from the technical area, the course

may generously cover almost all fields of activity where modelling and

simulation are used as research and development tools. It does not focus

on particular mathematical models, numerical methods or some specific

software environments. Instead, the course emphasizes the importance

of efficiently managing a project with two partners: the

modelling/simulation specialist and the client organization.

The course closely follows the author‟s expertise in this field, as well as

other ideas, opinions and approaches in the open scientific literature.

Especially, it makes use of a valuable book, The Practice of Model

Development and Use, written in 2004 by Stewart Robinson (University of

Warwick, UK) – a renowned specialist in modelling, simulation and

research management. The large citations indicated in this text were

preserved in their form in order not to distort the original meaning, but

they are blended with new/original opinions and examples, aiming to

offer the reader an accessible and comfortable lecture.

The author

4

1.
Modelling & Simulation – an Overview

1.1. A Short Introduction

When the executive staff of a power plant estimates the facilities that

are required in a future new power station, important decisions need to

be made. Among other things, they have to take into account the future

clients pattern (industrial or home individuals for instance), the number of

power generators, the appropriate fuel type, the amount of safety

devices and the number of leaving high-power lines. Also, the number of

operating staff to employ and the required shifts they should work need

to be determined. As the total investment is important, it is critical that

these decisions are made correctly, while the management has to find

an answer on how to determine the number of resources that are

required in each area of the power plant.

One approach would be to finalize the investment, hoping that it works –

but this seems to be a very risky option. Slightly better would be to rely

upon some past experience with designing and managing power plants.

A few calculations may help, but these are not able to cover the full

complexity of the situation.

A more effective approach seems to be a simulation of the proposed

plant. This could imitate the different clients‟ power needs and

consuming behavior (depending on their pattern, as described above),

the external flow of materials (fuel for generators, spare parts for

maintenance and so on), other influencing (or disturbing) factors for the

power generators and would act as a basis for planning plant facilities.

5

Indeed, simulation models are used by many organizations to plan future

facilities and also to improve current ones. For instance, manufacturing

companies simulate their production facilities; financial organizations

simulate their assistance centers, while transport companies simulate

their delivery networks. Of course, many other examples of simulation

being used in practice can be identified.

This introductory chapter tries to answer three questions concerning

modelling and simulation:

 What is a simulation?

 Why would an organization choose to develop and use a

simulation model?

 When is simulation appropriate?

1.2. Defining Modelling and Simulation

Simulation models are in everyday use and so simulation is a concept

that is ordinary to us. For example, when weather forecast TV presenters

show us computer simulations of the weather system, we watch to the

movement of a rainy clouds front for the next hours, days and weeks. The

game consoles may also be mentioned here, as they simulate real

activities like testing our speed drivers, adventurers or detective skills. But

simulations not really need to be computer based: model railways and

boats are typical examples of physical simulations. So, in its most general

sense, the simulation term can be defined as an imitation of a system

(Robinson, 2004).

Imitation implies copying something else. For instance, we may imitate

different entities, from the work of a great artist (by forgeries) to the

famous buildings (with smaller replicas). Also, computer aided design

(CAD) systems providing imitations of production facility designs are an

6

imitation of a business organization. All of these can be referred as a

simulation in its most general sense.

But there is a key difference between these imitations and those

examples described earlier in this section, which involve the passage of

time (clouds migration on the sky, race car movement on its track and so

on). The second set of examples does not imply the time as

characterizing parameter. At this point, the difference between the

static simulation (reproducing a system at a particular moment in time),

and the dynamic simulation (imitating a system as it progresses through

time) have to be emphasized (Law and Kelton, 2000).

As the term simulation is simply used instead of dynamic simulation, it is to

be mentioned that this course is concerned only with dynamic

approach(es) when imitating a (technical) system, while the focus will be

on computer based simulations rather than physical simulations. Taking

into account these considerations, the previous definition can be

updated as follows: simulation means an imitation (on a computer) of a

system as it progresses through time.

It may be useful to explain the concept of a system. In general terms, a

system represents a collection of inter-connected parts organized for

some purpose (Coyle, 1996). The weather system, for instance, is a

collection of parts, including the sun, water and land, “designed” for the

purpose of maintaining life. The above power plant is a collection of

generators, additional equipments and operating personnel, with the

purpose of supplying the energy needed by its clients. Many other

examples may be identified, and the systemic approach is proven to be

a very robust way of investigating the real environment.

Checkland (1981) identifies four main classes of system:

 Natural systems, whose origins lie in the origins of the universe (the

atom, the climatic system, the natural hydro-systems).

7

 Designed physical systems that are a result of human design (a

block of flats, an automobile, a factory).

 Designed abstract systems, that are also a result of human design,

but do not have a physical consistency (mathematics, philosophy,

literature).

 Human activity systems, consciously or unconsciously ordered (a

family, a political system, an economic system).

All systems above can be simulated. This course, however, mostly focuses

on designed physical and human activity systems, which best and

completely describe the technical field of interest. For instance, a

simulation developed for an automated refinery plant (a designed

physical system) has to be completed with a simulation of its operating

personnel behavior (a human activity system). In this situation the

complex system cannot be regarded simply as either a designed

physical system or a human activity system, but rather an interface

between the two. As consequence, many of the situations in which

simulation is used also lie at the interface between designed physical

systems and human activity systems (Robinson, 2004). In the open

literature, such cases are referred to as operations systems or operating

systems (Wild 2002).

A second aspect of the last definition is the purpose of simulation

models. Pidd (2003) identifies the purpose of models as understanding,

changing and controlling the reality. In this respect, simulation leads to a

better understanding of and/or identifying improvements to a system,

becoming a primary support for the decision-making process.

The same author puts emphasis on simplification, as one of the most

important features of the simulation models. Obviously, a hypothetic full-

scale simulator for a given system, representing all system‟s details, is

barely usable due to its complexity. On the other hand, even if it were

8

possible, such a “complete” modelling approach is not feasible, since

the time required to collect data on and model every aspect of a

system would be excessive (Robinson, 2004).

Another aspect to be considered is the nature of simulation model use. A

simulation simply describes the behavior of a particular system in the

context of specific inputs. For instance, in the context of a simulated

power plant, it might predict the minimum number of active generators

during high-consuming periods. Of course, by varying the model inputs

(specific clients‟ behavior and their particular power needs) and

repeatedly running the model, one can observe their influence in the

simulated system response. In this case, simulation is an experimental

approach to modelling – so becoming a powerful analysis tool – since

the user select an operational scenario and the model predicts the

outcome. By continuous exploration, scenario by scenario, a better

understanding of the real system can be obtained. Since new

knowledge may lead to important improvements of the system,

simulation should be regarded as a form of decision support system.

By adding these new aspects to previous definitions, simulation can

finally be seen as experimentation with a simplified computer-imitation of

an operational system as it evolutes through time, for the purpose of

better understanding and/or improving that system (Robinson, 2004).

1.3. Simulation vs. other Investigation Techniques

This paragraph adopts three perspectives, in order to reveal the

simulation necessity, its advantages and disadvantages when taking into

account other tools and approaches for systems analysis and control.

1.3.1. Simulation in the context of operational systems nature

Usually, operational systems are subject to variability. This might be

equally predictable (for example, changing the number of active power

9

generators in order to meet the plant required output power) or

unpredictable (such as the plant equipment breakdown). Both forms of

variability are present in most operations systems.

Usually, operational systems are in fact individual elements of a global

system, and so they are also interconnected, affecting one another. A

change in one part leads to a change in another part of the system. For

instance, if an active power generator is set up, additional operating

personnel is also required. But it is difficult to predict the effects of the

interconnections in a system, especially when variability is present

(Robinson, 2004). Let us take the related example of a power plant. If

considered totally free of any defective equipment during its normal

operating life, the plant‟s needs with respect to personnel are strictly

related to the number of active generators. But, as the reality is different,

any unexpected and unpleasant technical event has to be solved by re-

allocating technicians and ordinary workers. In this context it is possible

that, at a particular moment, one generator will not be served by all the

standard personnel and if something goes wrong additional problems

appear on that power plant.

Although we describe both the system and its behavior as being

complex, it is difficult to provide an exact definition of the word

complexity. For our purposes it is important to distinguish between

combinatorial complexity and dynamic complexity. Robinson (2004)

identifies the combinatorial complexity as being related to the number

of components in a system or the number of combinations of system

components that are possible.

On the other hand, dynamic complexity is not obviously dependent on

system‟s size, but a consequence of components interaction over time

(Sterman, 2000). This can happen in all systems, both small and large,

10

and when they are highly interconnected the dynamic complexity will

exhibit.

It can be illustrated by a simple example, concerning a gas fuel supply

chain consisting of a retailer, wholesaler and refinery. The retailer orders

gas tanks from the wholesaler, who in turn orders gas from the producing

refinery. Since there is a delay between placing an order and receiving

the tanks, a small perturbation in the number of gas tanks sold by the

retailer can cause large shifts in the quantity of tanks stored and

produced by the wholesaler and refinery respectively. It is obvious that

such a system is subject to dynamic complexity.

Senge (1990) emphasizes three effects of dynamic complexity:

 An action may have different effects in the short and long run.

 An action may have very different consequences in one part of

the system to another.

 An action may lead to non-obvious consequences.

These effects, usually involved by the feedback connections within a

system, make it very difficult to estimate its response when actions are

taken or changes are made. The interconnections in operations systems

are often not unidirectional, and so loop structures and feedback are

quite common. In particular, physical items and information often flow in

opposite directions. In a supply chain, for instance, physical items often

move towards the customers while information about orders for more

stock moves towards the producers. In some cases the loop structures

are very complex, involving many system components, as shown by

Robinson (2004).

He mentions also that many operational systems are interconnected and

subject to both variability and complexity (combinatorial and dynamic).

Because it is difficult to estimate the systems outputs when they are

subject to any one of variability, interconnectedness and complexity, it is

11

rather impossible to predict the output when systems are potentially

subject to all three. Simulation models, however, are able explicitly to

represent the variability, interconnectedness and complexity of a system.

As a result, by simulation it is possible to predict system behavioral

performances, to compare alternative system designs and to determine

the influence of alternative operating strategies on outputs

characteristics.

1.3.2. Modelling and simulation – some advantages

Robinson (2004) reveals that simulation is not the only method of studying

operational systems. Rather than develop and use a model for simulation

purposes, experiments could be carried out in the real system. There are

some obvious, and less obvious, reasons why simulation is preferable to

such direct experimentation.

 Cost. Real experiments are estimated to be costly, as they interfere

with the normal operating regime of the studied system. New parts

to be added, other materials, energy, skilled operating personnel,

all of these have a particular cost, usually not negligible at all.

Moreover, if the experiments cause the system‟s performance to

worsen, this brings not only additional costs but also the customer

dissatisfaction. With a simulation, however, experimentation implies

only the cost of time it takes to adapt the model, as it does not

interrupt the real system at all.

 Time. Experimenting with a real-world system is time consuming, as

improving its performances is not an easy task (at least when the

approach uses a try-then-evaluate algorithm). On the other hand,

it is expected that a simulation can run faster than real time.

Consequently, a re-evaluation of new system‟s performance can

take minutes, maybe hours, but not days. Such a fast experiment

enables many ideas to be explored in a short time horizon. This also

12

has the advantage of covering a very long time frame (i.e. months

or even years of system operation) if required.

 Control of the experimental conditions. When experimenting with

the real system it is indeed difficult to fully control the conditions

under which the experiments are performed (otherwise direct

comparisons cannot be made). For instance, supposing new

emergency procedures have to be tested, a large-scale system

crash in a power plant could not be experimented at all. But with

a simulation the experimental conditions can be repeated many

times, allowing the so-called pattern-based experimentation.

 The real system does not exist. This is the major difficulty with real

world experimentation, when the studied system may not yet exist.

In this extreme case direct experimentation is impossible, the only

alternative being to develop a model.

Obviously, model-based simulations are not the only methods to be used

for understanding and improving the real world systems. Other

approaches range from simple paper calculations, through spreadsheet

models, to more complex mathematical programming and heuristic

methods (e.g. linear programming, dynamic programming, genetic

algorithms – Robinson, 2004). But there are two reasons why simulation

would be used in preference to these alternatives, shortly mentioned

here.

 Modelling variability. Unlike simulation, the methods mentioned

above are not even able to deal with any kind of variability or, if

they do, their complexity becomes prohibitive. In this context,

simulation is often the only way for pertinently estimating the

studied system‟s behavior when it subject to significant variability.

 Restrictive assumptions. While other modelling approaches require

certain assumptions (in order to meet their basic principles),

13

model-based simulation is much less restrictive. Of course, the

desires to simplify models as well as data amount shortage need

that some appropriate assumptions are normally made, but this

does not restrict at all the simulation‟s principles.

Of course, there are occasions when another studying approach is

appropriate and simulation is not required. More, Pidd (1998) reveals

that, being a time consuming method, sometimes simulation should be

used as a means of last resort, rather than the preferred option.

1.3.3. The disadvantages of simulation

There are a number of problems with using simulation and these must not

be ignored when deciding whether or not it is appropriate. The most

important disadvantageous characteristics (below presented) were also

emphasized by Robinson (2004).

 Expensive. Simulation software is usually not cheap, as well as the

cost of model development, implementation and use.

 Time consuming. Because simulation is a time consuming

technique, the benefits are not immediate, while the time spent

during experiments increases the total cost of the project.

 Data hungry. Most simulation models become useful only when a

significant amount of data is available. Even more, supposing the

required data set is collected, supplementary procedures may be

involved in order to put it in a form suitable for the simulation.

 Requires expertise. Model-based simulation involves human skills in,

among other things, conceptual modelling, validation and

statistics, as well as working abilities when dealing with people,

which are not always readily available.

 Overconfidence. Computer simulations results have not to be

considered right “by default”, only because they were produced

by a good algorithm running on powerful computing platforms.

14

Significant effort has to be paid when interpreting the results from

a simulation, as much consideration must be given to the validity

of the underlying model as well as to the assumptions and

simplifications that have been made.

1.4. When to Simulate

It is impossible to give a full list of applications for which simulation might

be used. It is, however, interesting to give some indication of the range

of systems that can be modelled. Banks et al. (1996) suggest the

following items on their list, mentioning also that other applications may

be added:

 Physical and chemical systems in industry;

 Business process (re)engineering/management;

 Infrastructure computer-based systems;

 Manufacturing systems (especially flexible production lines);

 Transportation systems;

 Public systems: natural resources, health care, military;

 Domestic industries (constructions, food processing).

1.5. Chapter’s Conclusions

This first chapter deals with the nature of simulation, as it is involved in this

course. Some specific definitions of simulation for modelling operations

systems are provided, trying to cover the many meanings associated

with term “simulation”. By presenting the main advantages and

disadvantages of model-based simulation approaches, some reasons for

using simulation are also discussed. Finally, a short list of common

simulation applications is presented, in order to have a complete

overview on its implications and importance in real life.

15

2.
Software Tools for Simulation

2.1. An Overview

The simulation software evolution closely follows the history of electronic

computing. The first rudimentary computer simulations were performed in

early years of informatics era, around 1950 (although it is to mention that,

at the end of World War Two, in 1940s, a sort of military computers served

for ballistic simulations).

In the next decade, programming languages such as FORTRAN greatly

were involved in simulation projects. In 1960s the first specialist simulation

languages such as GPSS (Schriber, 1974) and SIMULA (Dahl and

Nygaard, 1966) were announced. Since these early simulations were

based on computer source-code only, they appear like a black box into

which data were input and results were output following a simulation run

(Robinson, 2004).

As 1970s are well known for the microprocessors and microcomputers

spreading, the potential of visual and interactive simulations (VIS) started

to be revealed. The first language for VIS, SEE-WHY, was announced in

1979 (Fiddy et al., 1981). Consequently, in 1980s and 1990s (the PC‟s

years) and in the last decade, a wide range of simulation languages and

simulators became available (Law and Kelton, 2000). Improvements in

functionality and graphical interface facilities, the compatibility with

other software packages, online use (across the Internet) are only a few

characteristics of the modern simulation environments.

16

On the other hand, this very generous range of software offers leads to

another problem: how to select the appropriate tool for model

development, when a simulation-based project has to be started. This

chapter attempts to find appropriate answers for the next questions:

 What types of software can be used for model development?

 In this context, what specific packages are available?

 What selection criteria are appropriate?

2.2. Visual Interactive Simulation

At present, simulation models could be described as being visual

interactive simulations (Robinson, 2004), meaning the model provides a

visual display while simulation runs. The displayed graphical information

can range from a simple schematic (as shown in figure 2.1) to a very

complex animation, for instance.

Figure 2.1. A Typical VIS Working Session.

17

Another VIS characteristic is the ability of interacting with the running

model. The simulation can be stopped at any point in order to obtain

additional information about the status of the model and the

performance of the system being modelled. Even more, in some

implementations the model can be altered before running it further,

although the paradigm of model invariance is also well-respected in the

scientific community. The simulation can also stop at a point when it

requires dialogue with the user. Taking into account these

considerations, Robinson summarizes the main benefits of VIS as follows:

 Greater understanding of the model. The visual display allows the

model user to track all events occurring in the simulation, which

may be similar with the corresponding real system.

 Easier model verification and validation. The modelling errors can

be identified by the non-usual events arising during simulation and,

with the help of non-simulation experts (but having good

knowledge about the modelled system), they can be corrected.

 Enables interactive experimentation. Providing a faster response

than real time, simulations allow new ideas testing as they are

issued. This way, the understanding of the model and the

operational system is seriously improved.

 Improved understanding of the results. By VIS, it becomes easy to

identify logical connections between results and specific events

observed during simulation. Re-running the model also makes

possible to understand why specific results have been obtained.

 Improved dissemination of the model. By VIS techniques, non-

simulation experts are able to understand the model, enabling a

wider group to access a simulation-based project.

 Provides the potential for group problem solving. Validation and

experimentation can be carried out in a group setting with input

18

from a range of interested parties. This can facilitate greater

creativity and consensus in problem solving (Robinson, 2001).

2.3. Simulation Software

At present, there are three options for developing computer modelling

and simulation software tools: spreadsheets, general programming

languages and dedicated environments.

2.3.1. Spreadsheets

Spreadsheet packages (i.e. Excel) have some basic capabilities for

modelling and simulation. For instance, it is relatively straightforward to

develop a simple mathematical model describing the input-output

dependency for a simple system (in stationary regime). But, beyond this

rudimentary level, it is necessary to use some programming capabilities

within the spreadsheet, like macros or Visual Basic code when using

Excel. As this context requires adequate programming skills, it may be

useless and time consuming to develop a spreadsheet-based simulation

tool instead of natively using the programming languages, as shown in

the next paragraph.

2.3.2. General programming languages

A great flexibility can be reached when simulation models and

environments are developed by using general purpose programming

languages such as Visual Basic, C++, Java and so on. But, on the other

hand, all simulation capabilities have to be built from scratch, revealing

a big drawback of this approach (as it proves to be time consuming).

Fortunately, modern languages use the object oriented programming

technique which allows the code encapsulation and re-use; this manner

of work can reduce the developing effort when standard “objects”

(simple models, numerical methods, graphic routines) are collected in

portable libraries.

19

2.3.3. Dedicated software environments

These specialist simulation software packages are widely available

today. Law and Kelton (2000) identify two types of dedicated simulation

environments:

 General purpose simulation packages, serving a wide range of

applications (MATLAB, for instance). They are generously covering

almost everything which may be simulated, but require high skills

when implementing a particular application.

 Application orientated simulation packages, dealing with specific

cases (i.e. chemical processing – PRO/II, analog/digital electronics

– Pspice, ORCAD). These focused packages are easier to use, but

they serve a narrower range of application.

Almost all of these software packages, but especially the dedicated

environments, could be described as visual interactive modelling systems

(VIMS) (Pidd 1998). They enable a visual and interactive manner of

building a simulation application. VIMS software provides a predefined

set of simulation objects which can be used to define the model logic,

the simulation engine and the user interface through a set of menus. As

result, much more reduced programming skills are usually required. A

different situation appears when VIMS use an embedded programming

language, in order to deal with very complex modelling applications.

Obviously, adequate programming skills are required in this case.

As remark, Robinson (2004) reveals that VIS and VIMS terms should not be

confused. VIS deals with the intrinsic model nature while VIMS refers to

how it is built. Indeed, a VIS can be developed without using a VIMS (a

general-purpose programming language can be used instead, for

example). On the other hand, a simulation model built using a VIMS may

not have a visual display, so it is not a VIS.

20

2.3.4. Comparing spreadsheets, programming languages and specialist

simulation software

Table 2.1, adapted from Robinson (2004) presents a schematic

comparison between the simulation modelling approaches described

above, giving just an idea on their advantages and disadvantages.

Table 2.1. A comparison between spreadsheets, general programming

languages and dedicated simulation environments

Feature Spreadsheets
Programming

languages

Dedicated

software

Range of application Low High Low/medium

Modelling flexibility Low High Medium

Implementation time Medium Long Short

Ease of use Medium Low High

Ease of model validation Medium Low High

Performance (speed) Low High Medium

Time to obtain software skills Short/medium Long Medium

Price Relatively low Low High

It shows that general programming languages serve the widest range of

applications, also having the most flexible behavior when implementing

the model. Meanwhile, developing in programming languages leads to

a shorter execution time than equivalent implementations (by

spreadsheets or dedicated environments). On the other hand, the

model build within specialist simulation software is relatively easy and

takes a shorter time. Spreadsheets are sometimes better than

programming languages in respect of model build speed and ease of

use (at least for smaller applications), but they are not as quick or

straightforward to use as the specialist software (Robinson, 2004).

21

However, the time required for getting appropriate skills increases if the

macro language is used for model development. Regarding the costs,

spreadsheets and programming languages are similarly priced (at low or

moderate values), while dedicated simulation software tends to have

the biggest cost – which may be correct as time as it is very productive

as developing tool.

The software selection critically depends upon the simulation study

characteristics (especially its complexity). While for very simple

applications a spreadsheet may be the best option, usual applications,

with pertinent complexity, ask for more powerful software. Dedicated

(general purpose) simulation packages are able to model a wide range

of applications and can be used as time as the model is not highly

complex. In this last case it is expected that only a programming

language is appropriate.

As remark, this course assumes that a specialist simulation package is

used by the developing team, since there are big chances it is suitable

for modelling most operational systems.

2.4. Selecting the Simulation Software

Once the nature of simulation software was briefly presented, this section

deals with the problems which may be taken into account when

selecting an appropriate solution for the (dedicated) modeling and

simulation environment.

The importance of software package selection for a successful

simulation project implementation has been emphasized by some

authors (Law and McComas, 1989, for instance), while others minimize

this dependency (Robinson and Pidd, 1998). The truth is that many

researchers repeatedly use the same simulation environment on different

problems, always trying to adapt the software to meet the project

22

requirements. For them, the advantage of using an already available

and familiar tool seems to be above all selection criteria. But how can be

explained this apparent difference in view? A possible answer was

synthesized by Robinson in 2004 as follows. Within a certain domain of

application, most of the “more powerful” simulation packages are quite

capable of modelling what is required. Indeed, with their growing

capabilities over the past years, this domain of application has steadily

increased. There are always, of course, applications that go beyond the

capabilities of a software package. It is when we are dealing with these

applications that careful software selection is needed. Because much of

the available software has been designed specifically for modelling

operational systems, there are few occasions on which the software

simply cannot model these systems. As a result, software selection

becomes more a matter of the convenience with which the system can

be modelled than the capability of modelling the system. It has to be

said that as long as the software suffices, the expertise of the modeller

(e.g. in problem solving, statistics, project management, people

management and communication) is probably of far greater

importance to successful simulation modelling.

2.4.1. The process of software selection

Some authors describe, in the open literature, a series of steps for

selecting simulation software – Holder (1990), Hlupic and Paul (1996),

Nikoukaran and Paul (1999), Bard (1997). Although there are some

differences between them, the selection process could be summarized

as follows (Robinson, 2004):

 Step 1: establish the modelling requirements

 Step 2: survey and shortlist the software

 Step 3: establish evaluation criteria

 Step 4: evaluate the software in relation to the criteria

23

 Step 5: software selection

Usually this seems to be a linear process (from step 1 through to 5), with

possible iterations between steps 3 to 5, as it will be shown below.

2.4.2. Step 1: Establish the modelling requirements

When establishing these requirements, some aspects have to be also

taken into account. First, the nature of the systems to be modelled

should be identified. Then, the software future utility (singular or general

use) and application (focused on a narrow or wide domain of

application) have to be decided. The modelling type is also important,

as time as a simple approach requires ease-of-use, while

complex/detailed modelling needs a high level of functionality (Hlupic

and Paul, 1996). Of course, any other constraints have to be taken into

account (i.e. finance availability, existing personnel skills, and

hardware/software policy of the client organization).

2.4.3. Step 2: Survey and shortlist the software

After finishing step 1, the next task is to create a short list of appropriate

software. Starting from a “complete” list, the short one can be written by

obtaining outline information on the software to determine whether they

meet the modelling requirements (usually from vendor web sites). Further

to this, the critical surveys as well as experts advices carried out in the

open literature can provide some useful information (Robinson, 2004). All

these can quickly eliminate the packages not following the established

requirements.

2.4.4. Step 3: Establish evaluation criteria

Criteria for comparing the chosen simulation packages need also to be

established. Table 2.2, adapted from Robinson (2004) provides a list of

criteria, grouped under a series of main objectives. Obviously, not every

24

criterion from these lists should be included in the evaluation, but only

the selected ones, which fit the modelling requirements from step 1.

Table 2.2. Some Criteria for Simulation Software Selection

Main objectives Criteria to be taken into account

Hardware/software

requirements

Hardware platform required

Operating system required

Software protection (hardware keys)

Availability of network licenses

Features for use on the World Wide Web

Model coding and

testing

Ease of model development

Possibility to build and run models in small steps

Availability of debugging tools

Maximum model size

Maximum dimensions of objects (e.g. arrays)

Features for documenting a model

Availability of help facility

Availability of software wizard

Visual features

Online/offline results analysis on the display

Speed with which display can be developed

Customizable user icons

Availability of icon libraries

Ability to pan and zoom

Ability to locate objects on the display

Smoothness of animation

Availability of 3D animation

Input data and

analysis features

Distribution fitting

Ability to sample from empirical distributions

Availability of statistical distributions

Ability to import data from other software

Reporting and output

analysis features

Availability of standard reports for model objects

Availability of graphical reporting

Ability to develop customized reports

Ability to export results to other software

Statistical analysis of results

Experimentation

Probable run-speed

Run control (step, animated, batch)

Interactive capability

Number of random number streams available

Control of random number streams

Ability to perform multiple replications

Facilities for organizing batches of runs

Provision of advice on warm-up, run-length and multiple

replications

Availability of an optimizer

Ability to distribute runs across networked computers

25

Main objectives Criteria to be taken into account

Support

Availability of a help desk

Availability of consultancy support

Type of training given

Frequency of software upgrades

Foreign language versions and support

Quality of documentation

Pedigree

Size of vendor‟s organization

The package age/maturity

References on similar applications using the package

Number of users (in industry sector)

Geographic usage of the package

Availability of literature on the package and its use

Cost

Purchase price

Maintenance fee

Cost of support

Cost of training

Time to learn the software

Availability of lower cost run-only license

2.4.5. Step 4: Evaluate the software in relation to the criteria

Each of the chosen packages needs to be evaluated through the

selected criteria, by employing means like (Robinson, 2004):

 Discussion with the software vendor and other users of the software

 Software and model demonstrations

 Obtaining a free evaluation copy of the software

 Studying the software documentation and other literature

 Asking for expert opinion

Of course, one should take into account the time available for the

evaluation, as time as – for instance – any approach that requires the

development of models is going to require significantly more time.

The evaluation should lead to an assessment of the extent to which each

package meets the criteria previously set out. Sometimes, a simple “yes”

or “no” by each criterion to indicate whether or not a package has that

capability may be enough. However, when some degrees of capability

26

are involved, it is better to use a scoring scale (for 1 to 10, for instance)

indicating the compliance level. Some criteria can be assessed

objectively (e.g. purchase price), while for others subjective judgments

must be made (e.g. quality of documentation). As far as possible, it is

best to identify significant measures to evaluate the criteria (Robinson,

2004).

2.4.6. Step 5: Software selection

A specific package can be selected based upon the extent to which it

meets the chosen criteria. This may be based on a subjective judgment

(a simple comparison of the package evaluations – step 4) or can be

more objective when using an overall score. Because each criterion

does not have the same level of importance, Robinson (2004) suggests it

is useful to weight the criteria according to their objective/subjective

importance (in fact, the weighting factors need to be obtained from key

members of the client organization).

Then, an overall score could then be calculated for each package as

follows:

 ∑

where Si is the overall score for software package i, Wj – importance

weight for criterion j, Eji – evaluated score for criterion j for package i.

A special case is when, having a large number of criteria, it is impossible

to assign the Wi weights in a consistent way. This issue may be addressed

through the Analytic Hierarchy Process (AHP) technique, described by

Saaty (1980). Although its scope exceeds the purpose of this course, the

interested reader may follow a typical example of using AHP for

selecting simulation software, presented by Davis and Williams (1994).

27

2.5. Chapter’s Conclusions

This second chapter focuses on simulation software characteristics,

giving also some basic indications on how to select such a package. All

following the same model building/running principle (VIS – Visual

Interactive Simulations), three types of software are available for

developing simulations: spreadsheets, general programming languages

and dedicated simulation software. The software choice depends upon

the complexity of the simulation being performed.

When using specialist simulation software, the user can benefit from a

visual interactive modelling system (VIMS) that integrates predefined sets

of objects and programming interfaces oriented on model building and

running. The process of selecting such a package involves the

establishment of modelling requirements, packages primary selection

and the final decision (taken by evaluating the criteria reflecting the

needs of the client organization).

28

3.
The Conceptual Modelling Principles

3.1. Introduction

A simulation of a power plant could take many forms. At the simplest

level the model might include only the generators (seen as “black

boxes”) and their supervisory system. The model, however, could be

expanded to include the fuel supply system, operating personnel

behavior and site management structure. There is also a need to

consider the level of detail at which each sub-system has to be

modelled (the generators, for instance, could be assumed as having

fixed characteristics or following a statistical distribution). At a greater

level of detail, a single generator could be modelled through an input-

state-output approach (with equations describing its inner phenomena).

Also, the process failures and interruptions could be modelled. The

modeller, along with its clients, must determine the appropriate scope

and level of detail to model, a process known as conceptual modelling

or designing the model. In this context, this and the next chapter

describe the requirements for conceptual modelling, also presenting

how a simulation specialist might go about designing the conceptual

model. In this chapter the importance of conceptual modelling is

emphasized before defining the term conceptual model more precisely.

The requirements of a conceptual model are then described. Finally, the

practical issue of how to communicate the conceptual model to all

members of the simulation project team is discussed. In the next chapter,

the question of how to design the conceptual model is covered.

29

3.2. The Importance of Conceptual Modelling

Conceptual modelling is almost certainly the most important aspect of

the simulation modelling process (Law, 1991). The model design impacts

all aspects of the study, in particular the data requirements, the speed

with which the model can be developed, the validity of the model, the

speed of experimentation and the confidence that is placed in the

model results. A well designed model significantly enhances the

possibility that a simulation study will meet its objectives within the

required time-scale. What sets truly successful modellers apart is their

effectiveness in conceptual modelling (Ward, 1989).

Robinson (2004) has its own point of view: It is often said of simulation

studies that 50% of the benefit is obtained just from the development of

the conceptual model. The modeller needs to develop a thorough

understanding of the operations system in order to design an

appropriate model. In doing so, he/she asks questions and seeks for

information that often has not previously been considered. In this case,

the requirement to design a simulation model becomes a framework for

system investigation that is extremely useful in its own right. Indeed,

Shannon (1975) goes so far as to say that effective conceptual

modelling may lead to the identification of a suitable solution without the

need for any further simulation work.

But some might argue that the emergence of modern simulation

software has reduced, or even removed, the need for conceptual

modelling. After all, the specialist can now move straight from

developing an understanding of the real world problem to creating a

computer model. What this point of view ignores is that the modeller still

has to make decisions about the content and assumptions of the model.

Of course, modern simulation software provides an environment for more

rapid model development, making prototyping more feasible and

30

enabling a greater level of iteration between conceptual modelling and

computer modelling. But the software does not, however, reduce the

level of decision-making about the model design.

On the contrary, it could be said that the power and memory of modern

hardware and the potential for distributed software have increased the

need for conceptual modelling. Salt (1993) and Chwif et al. (2000) cite in

this context the “possibility” factor: People build more complex models

because the hardware and software enables them to. Although this

extends the utility of simulation to problems that previously could not

have been tackled, it is also likely that models are being developed that

are far more complex than they need be. In this sense there are certain

advantages in having only limited computing capacity; it forces the

modeller to design the model carefully! As a result of the extended

possibilities, careful model design is probably increasing in importance.

Although conceptual modelling is of utmost importance, it must also be

recognized that it is probably the least understood aspect of simulation

modelling (Robinson, 2004). There is surprisingly little written on the subject

in the open literature. The main reason for this lack of attention is no

doubt that conceptual modelling is more of an “art” than a “science”

and therefore it is difficult to define methods and procedures.

So, the “art of conceptual modelling” is largely learnt by experience. This

is not a satisfactory situation for such an important aspect of the

simulation modelling process. In order to address this issue, this and the

next chapter attempt to provide specific advice on how to develop a

conceptual model. This is done by looking at the subject from various

angles. This chapter introduces the basic concepts of conceptual

modelling. First, the meaning of conceptual modelling is more precisely

defined. Then the requirements of a conceptual model are discussed.

The chapter concludes by discussing the reporting and communication

31

of the conceptual model. Chapter 4 goes on to discuss the actual

process of conceptual modelling and how the conceptual model is

designed.

3.3. The Definition of a Conceptual Model

Zeigler (1976) tries to clarify the definition of a conceptual model by

distinguishing between four terms: the real system is that which the

simulation model is to represent. The experimental frame is the limited set

of circumstances under which the real system has been observed, in

other words, there is not a complete understanding of the real system.

The full-scale model is capable of accounting for the complete behavior

of the real system, but, since this model is very complex, it cannot be

completely known. Meanwhile, in the reduced-scale model the system

components and their interconnections are simplified. The structure of

this model is fully known to the specialist. In our terms, the reduced-scale

model (known as lumped model in the literature) and conceptual model

may be considered equivalent (Robinson, 2004).

This definition, however, provides little more than a sense that the

conceptual model is a simplified representation of the real system. A

more descriptive definition of a conceptual model is as follows:

The conceptual model is a non-software specific description of the

simulation model that is to be developed, describing the objectives,

inputs, outputs, content, assumptions and simplifications of the model

(Robinson, 2004).

There are two key features of this definition. First, it specifically identifies

the independence of the conceptual model from the software in which

the simulation is to be developed. Indeed, in an ideal world the software

should be selected on the basis of the conceptual model understanding.

32

Since the world is less than ideal, it is often the case that the conceptual

model is designed around the software that is available to the modeller.

The second feature is that the definition outlines the key components of

the conceptual model, which are as follows:

 Objectives: the purpose of the model and modelling project.

 Inputs (experimental factors): those elements of the model that

can be altered to effect an improvement in (or better

understanding of) the real world.

 Outputs: report the results from simulation.

 Content: the components that are represented in the model and

their interconnections.

 Assumptions: statements made when there are uncertainties

about the real world being modelled.

 Simplifications: statements on which the model is based, in order to

enable more rapid model development and use.

Assumptions and simplifications are different. Assumptions are ways of

incorporating uncertainties and beliefs about the real world into the

model. Simplifications are ways of reducing the complexity of the model.

As such, assumptions come from limited knowledge or presumptions,

while simplifications focus on the desire to create simple models

(Robinson, 2004).

The content of the model should be described in terms of two

dimensions (Robinson, 1994):

 The scope of the model: the model boundary or the real system

dimensionality that is to be included in the model.

 The level of detail: the detail to be included for each component

in the model‟s scope.

The purpose of the conceptual model is to set out the basis on which the

computer based simulation (computer model) is to be developed. It is in

33

effect a functional specification of the computer software. For many

modelling specialists there is a temptation to start coding the computer

model as soon as possible. Without due attention to the development of

the conceptual model, however, this can lead to a model that does not

achieve what is required and, at the extreme, the model may have to

be completely rewritten, wasting significant amounts of time (Robinson,

2004).

3.4. Requirements of the Conceptual Model

In designing a conceptual model it is useful to establish a set of

requirements. In this way the model can be designed so as to meet

these requirements.

3.4.1. The four requirements

Willemain (1994) emphasizes five qualities of an effective model: validity,

usability, value to client, feasibility and aptness for clients’ problem.

Meanwhile, Brooks and Tobias (1996) identify 11 performance criteria for

a good model. Based on these lists, here it is proposed that there are four

main requirements of a conceptual model:

 Validity

 Credibility

 Utility

 Feasibility.

A valid model is one that is sufficiently accurate for the purpose at hand.

However, since the notion of accuracy is of little meaning for a model

that has no numeric output, conceptual model validity might be defined

more precisely as a perception, on behalf of the modeller, that the

conceptual model will lead to a computer model that is sufficiently

accurate for the purpose at hand (Robinson, 2004).

34

Underlying this notion is the question of whether the model is right. This

definition places conceptual model validity as a perception of the

modelling specialist. It also maintains the notion that a model is built for a

specific purpose, which is common to most definitions of validity.

Credibility is similar to validity, but is taken from the perspective of the

clients rather than the modelling specialist. The credibility of the

conceptual model is therefore defined as a perception, on behalf of the

clients, that the conceptual model will lead to a computer model that is

sufficiently accurate for the purpose at hand (Robinson, 2004).

The third concept, utility, is defined as a perception, on behalf of the

modeller and the clients, that the conceptual model will lead to a

computer model that is useful as an aid to decision-making within the

specified context (Robinson, 2004).

Whereas the definitions of validity and credibility are specific to the

modelling specialist and the clients respectively, utility is seen as a joint

agreement about the usefulness of the model. The concept of utility, as

defined here, moves away from simply asking if the model is sufficiently

accurate, to whether it is useful. Within any context a range of models

could be designed, all of which might be sufficiently accurate for the

purpose at hand. As such, all these models would be valid and credible.

However, if a proposed model is sufficiently accurate, but too large and

stiff, it may have limited utility. Indeed, a less (but still sufficiently)

accurate and more flexible model that runs faster may have greater

utility by enabling a wider range of experimentation within a given time-

frame. The final requirement, feasibility, is defined as a perception, on

behalf of the modelling specialist and the clients, that the conceptual

model can be developed into a computer model (Robinson, 2004).

Various factors may make a model infeasible. For instance, it might not

be possible to build the proposed model within the required time-scale,

35

the data requirements of the model may be too high, or there is

insufficient knowledge of the real system to develop the proposed

model.

A final point to note is that these four concepts are not mutually

exclusive. A specialist‟s perception of a model‟s accuracy is likely to be

highly correlated with the clients‟ perceptions of the same. On the other

hand, an infeasible model is not a useful model. It is good idea, however,

to separate these concepts, so a specialist can independently use them

when designing the conceptual model (Robinson, 2004).

3.4.2. Simplicity – a key feature

In the context of avoiding an over-complex model development, the

aim should be to keep the model as simple as possible to meet the

objectives of the simulation study (Robinson, 2004). Simple models have

a number of advantages. They can be developed faster, are more

flexible, require less data, run faster, and it is easier to interpret the results

since the structure of the model is better understood (Innis and Rexstad,

1983; Ward, 1989; Salt, 1993; Chwif et al., 2000). As the complexity

increases these advantages are lost.

Keeping models simple is a basic principle of good modelling practice.

This does not mean that complex models should never be developed,

because they are sometimes necessary to achieve the objectives of the

study. There is, however, a tendency to try and model every aspect of a

system when a simpler, more focused model would achieve the

modelling objectives with far less effort.

On the other hand, it is impossible to create a model that is 100%

accurate, since it is not possible to capture every aspect of the real

world in a model. Indeed, increasing the complexity too far may lead to

a less accurate model, since the data and information are not available

to support the details being modelled.

36

Ward (1989) makes a useful distinction between constructive simplicity

and transparency. Transparency is an attribute of the client (how well

he/she understands the model) while constructive simplicity is an

attribute of the model itself (the simplicity of the model). The modelling

specialist must not only consider simplicity, but also transparency in

designing a model. Since transparency is an attribute of the client, it is

dependent on the client‟s knowledge and skill. In other words, a model

that is transparent to one client may not be to another. The specialist

must, therefore, design the model with the needs of the particular client

in mind. This is necessary to develop the credibility of the model as

previously discussed, since a model that is not transparent to the client is

unlikely to have credibility.

3.5. The Conceptual Model Dissemination

In order to determine whether the conceptual model meets the four

requirements already set out, it is important that there is a shared

understanding of the modelling context (real world) and model design

between the modelling specialist and clients (as well as the other roles in

the simulation study). In this context, a mechanism for communicating

the conceptual model is strongly required, as part of the project

specification.

3.5.1. Project specification

The output from conceptual modelling should be described in a project

specification along with details of how the simulation study is to be

managed. In this way a shared understanding of the conceptual model

and the simulation study can be developed between all project team

members. Indeed, the project specification acts as the primary means

for validating the conceptual model. It also provides a reference point

for developing and verifying the computer model, performing

37

appropriate experiments and reviewing the success of the simulation

study.

Depending on the nature of the project and the relationship between

the clients and modelling specialist, the specification should describe the

majority, if not all, of the following items (Robinson, 2004):

 Background to the problem situation

 Objectives of the simulation study

 Expected benefits

 The conceptual model: inputs, outputs, content (scope and level

of detail), assumptions and simplifications

 Experimentation: scenarios to be considered

 Data requirements: data required, when required and

responsibility for collection

 Project time-scale

 Estimated cost.

In general the specification takes the form of a written document that

can be circulated to all involved in the simulation study. If possible, it is

best to keep the document fairly short, to ensure that it is read and

valuable feedback is obtained. But, in fact, all depends on the size and

complexity of the model and the formality of the process required.

It is vital that the specialist obtains feedback, so being able to judge the

validity, credibility, utility and feasibility of the proposed model. There

should also be some discussion about the management of the project,

for instance, the collection of data, time-scales and costs. To aid this

process, it may be useful formally to present the project specification to

the simulation project team and to obtain immediate feedback

(Robinson, 2004). This is particularly necessary when assumptions and

simplifications are questioned. The modelling specialist must decide to

change the model or justify the assumption or simplification. The

38

judgment as to which depends on the extent to which a change versus

a justification affects the validity, credibility, utility and feasibility of the

model.

Because any simulation study is an iterative process, it should not be

expected that once model coding is started the specification remains

unchanged. There are four main reasons why it should be expected that

the specification will change during a simulation study (Robinson, 2004):

 Omissions in the original specification

 Changes in the real world

 An increased understanding of simulation on behalf of the clients

 The identification of new problems through the development and

use of the simulation model.

Effective conceptual modelling, communication and feedback should

limit the first cause of change. Changes to the real world inevitably

happen, for instance, a change to the design of a power plant that may

be on a small scale (e.g. an additional generator) or on a larger scale

(e.g. a complete redesign). The last two reasons for change are both

positive aspects of simulation modelling and should be encouraged.

Because things change, it is important that a mechanism is put in place

for handling these changes. If the model is simply updated without any

proper reporting, then the specification soon becomes outdated and

there is no way to trace the model alterations. To maintain a record of

changes, it is useful to have a “specification change form” that is used

every time an alteration is made (Robinson, 2004). This can be circulated

to ensure all are informed and agree to the change.

Of course, if the conceptual model is continuously changing, it may

become impossible to complete the model development and

experimentation. It is useful, therefore, to reach a point where it is agreed

that the specification is fixed. From this point on, all change issues are

39

logged, but unless the change is particularly significant, the conceptual

model is not altered. Once the simulation is complete and the results

have been reported, a further run of the simulation process may be

carried out with the logged changes included in the model. The need for

this depends on whether the changes are judged to be of sufficient

significance to warrant further modelling.

3.5.2. Methods of representation

As part of the project specification it is important to have a means for

representing the content of the conceptual model. There are four main

methods of representation in common use (Robinson, 2004):

 Component lists

 Process flow diagrams

 Logic flow diagrams

 Activity cycle diagrams.

It is not the intention of this course to provide detailed descriptions of

these model representation methods, but the interested reader may

consult the related literature for additional information.

Of course, more than one of these methods may be used to give a

different view of the same conceptual model. There are also some other

methods of conceptual model representation, for instance, Petri nets

(Torn, 1981), event graphs (Som and Sargent, 1989) and condition

specification (Overstreet and Nance, 1985). UML (the Unified Modeling

Language) is currently used for representing a conceptual model

(Richter and Marz, 2000). Meanwhile, Pooley (1991) gives an overview of

diagramming techniques that might support conceptual modelling.

3.6. Chapter’s Conclusion

Conceptual modelling is almost certainly the most important aspect of a

simulation study. It is vital that an appropriate model is designed in order

40

for the rest of the simulation study to succeed. Unfortunately, conceptual

modelling is also the least understood aspect of simulation modelling. This

course chapter addresses the issue by providing a definition for a

conceptual model and describing the requirements of a conceptual

model (validity, credibility, utility and feasibility). It is important to design a

model that is as simple as possible, while ensuring that it can meet the

objectives of the study. The use of a project specification for

communicating the conceptual model and methods of representing the

model are also described. As consequence, the attention finally turns to

the process of designing the conceptual model.

41

4.
The Conceptual Model Aggregation

4.1. Introduction

The previous chapter provided the basic concepts behind conceptual

modelling, in particular, the definition and requirements for a conceptual

model. This chapter focuses on how to develop a conceptual model,

from two perspectives. First, a framework for developing a conceptual

model is described. Secondly, some methods of model simplification are

discussed, in order to improve its quality, usability and significance.

4.2. Modelling in a Conceptual Framework

The process of designing a conceptual model is seen as “art”, so there is

very little guidance available. The most useful one may come from those

who have offered a set of modelling principles (Morris, 1967; Powell, 1995;

Pidd, 1999). These range from the socio-political, such as regular contact

with subject matter experts, to the more technical, such as developing

prototype models along the way. Although these principles are useful for

giving some guide to conceptual model design, they do not answer the

question of how to develop the conceptual model.

Figure 4.1 (Robinson, 2004) provides a general framework for conceptual

modelling. The purpose of this framework is to provide a modelling

specialist with an understanding of how to develop a conceptual model.

The framework consists of four key elements:

 Develop an understanding of the problem situation

 Determine the modelling objectives

42

 Design the conceptual model: inputs and outputs

 Design the conceptual model: the model content.

Figure 4.1 A Framework for Conceptual Modelling.

Starting with an understanding of the problem situation, a set of

modelling objectives are determined. These objectives then drive the

derivation of the conceptual model, first by defining the inputs and

outputs, and then by defining the content of the model itself. These

elements are described in detail below.

Before going on to detailed descriptions, it is worth remembering that in

the same way that the process of performing a simulation study is

iterative, so too is conceptual modelling. There is likely to be a great deal

of iteration between the elements in the conceptual modelling

framework, as well as with the other processes in a simulation study

(Robinson, 2004). Some of the reasons for this iteration are discussed in

the description that follows.

In order to illustrate the framework utility, an example of modelling the

same power plant is used. This context has been chosen since it should

43

be already familiar to the reader. More, this case study is referred to

throughout the rest of the course and it is suggested that the reader

follow these as a means of seeing how the modelling principles are

applied.

4.2.1. Understanding the problem

It is obviously necessary for the modelling specialist to develop a good

understanding of the problem situation when developing a model that

adequately describes the real world. The approach to this process

depends in large measure on the extent to which the clients understand

and are able to explain the problem situation.

In many circumstances the clients will be able to provide such an

explanation, for instance, by describing the operation of the (proposed)

real world system that is at the heart of the problem situation. The

accuracy of the description, however, may be dubious (Robinson, 2004).

One issue is that the clients may not have a good understanding of the

cause-effect relationships within the problem situation. For instance, in a

modelling study of a power plant site, the belief may be that technical

assistance department is understaffed (cause) which resulted in poor

plant service (effect). Although the effect was correctly identified (and

was in fact the reason why the study is performed), it has been observed

that increasing staff resources provides almost no benefit in terms of

improved technical assistance. What is required is a change to the

human resources supervising process.

Another problem for the modelling specialist is that the clients almost

certainly have different world views (Checkland, 1981). In the above

study, it may seem there are as many different descriptions of how the

maintenance technicians go about their tasks as people who are

interviewed. This should be no surprise, especially when dealing with

44

human activity systems in which the human behavior and decision-

making process impact on the performance of the system.

What becomes apparent is that the modelling specialist has to play a

much more active role. Providing the right prompts and speaking with

the right people is vital to developing this understanding. The specialist

should also suggest alternative versions of the events in order to facilitate

new ways of perceiving the problem situation (Robinson, 2004). Such

discussions might be carried out face-to-face in meetings and

workshops, or remotely by telephone or email, for example.

When the clients have a reasonable image of the problem situation then

discussion and careful note-taking should be enough. In addition, it is

important that the modelling specialist confirms his/her understanding by

providing descriptions of the problem situation for the clients. This acts as

a means of validating the conceptual model as it is developed

(Robinson, 2004). If the clients have a poor image of the problem

situation, then more formal problem structuring methods may be useful,

for instance, soft systems methodology (Checkland, 1981), cognitive

mapping (Eden and Ackermann, 2001) and causal loop diagrams

(Sterman, 2000). Balci and Nance (1985) describe a methodology for

problem formulation in simulation modelling that includes developing an

understanding of the problem situation, as well as objective setting and

verification of the formulated problem.

It is during the process of understanding the problem situation that areas

where there is limited knowledge of the operational system are likely to

be identified and so assumptions have to be made. These should be

documented and recorded too in the project specification, as previously

described. In fact, these areas of limited knowledge will continue to be

identified as a simulation study progresses. This means that new

45

assumptions need to be made and then added to the project

specification (Robinson, 2004).

The problem situation and the understanding of it should not be seen as

static, because both will change as the simulation study progresses. A

simulation model and the information required to develop it almost

always act as a focus for clarifying and developing a deeper

understanding of the real world system that is being modelled. This acts

to increase the level of iteration between modelling processes across a

simulation study, with adjustments to the conceptual model being

required, even at the point when the model is being used for

experimentation, as new facets of the problem situation emerge

(Robinson, 2004).

As stated earlier, the conceptual modelling framework is illustrated with

an example of a power plant. Table 6.1 describes the problem situation

at the plant.

Table 4.1. Power Plant Illustration – The Problem Situation

The Problem

A power plant is experiencing problems with one of the branches in its energy

distribution network. Customers regularly complain about the length of time they have

to wait for service personnel when a power failure occurs. It is apparent that this is not

the result of shortages in fuel supply (for the generators), but a shortage of technical

staff.

4.2.2. Identifying the modelling objectives

The modelling objectives are central to the modelling process. They are

the means by which the nature of the model is determined, the

reference point for model validation, the guide for experimentation, and

one of the metrics by which the success of the study is judged. Later it is

shown how the objectives can be used to help design the conceptual

model.

46

Robinson (2004) has a very interesting point of view: A model has little

intrinsic value unless it is used to aid decision-making, and so the purpose

of a modelling study is not the development of the model itself. If it were,

then having developed the model, the objective would have been met

and the study would be complete. The logical conclusion to this process

is the existence of models that have never served any useful purpose, or

models that are looking for a problem to solve. There are exceptions to

this rule of course. For instance, a generic model of a hospital

emergency unit may be developed with a view to selling the model to

numerous hospitals. On the surface, the purpose of the original modelling

project is the development of a model. Underlying this, however, the

model developers must have in mind some purpose for the model, for

instance, to determine resource requirements. Indeed, many military

models are apparently developed in this fashion. A model is developed

and then an application for the model is sought. In this paradigm, the

model needs to be assessed whenever a new purpose is found (Gass

1977).

In forming the objectives, a useful question to ask is “by the end of this

study what is going to be achieved?” Beyond this, three aspects should

be considered. First, what is it that the clients wish to achieve? Typically

this involves increasing throughput, reducing cost or improving customer

service. Improving the clients‟ understanding of the real world system, or

reducing the risk of an investment may be also considered as valid

objectives.

Secondly, what level of performance is required? To state that the

objective is to increase throughput is insufficient. By how much should

the throughput be increased? Whenever it is possible, targets of

performance for each objective should be identified. These might be

expressed as straightforward targets (e.g. increase/reduce by a

percentage or absolute amount) or the need to optimize (i.e. maximize

47

or minimize) some measure. Of course, this can only be done when the

objective can be quantified (Robinson, 2004).

Finally, what constraints must the clients (or modelling specialist) work

within? Often there is a limited budget or a limited number of

approaches available for achieving the objectives. For instance, the

clients may only be willing to consider changes in production scheduling

to gain throughput improvements, while ruling out the purchase of

additional equipment.

It must be recognized that the clients may not be able to give a

complete set of objectives, for the same reasons as their understanding

of the problem situation may be incomplete (Robinson, 2004). Further to

this, the clients may have a limited understanding of what a simulation

model can do for them, particularly if they have not been involved in

simulation studies previously. Therefore, it is important that the modelling

specialist is able to suggest additional objectives as well as to redefine

and eliminate the objectives suggested by the clients. The specialist

should also educate the clients, explaining how simulation might act as

an aid. One means for achieving this is to demonstrate one or more

models of similar problem situations, and to provide descriptions of the

modelling work that underlay them. In this way the clients will obtain a

better understanding of how simulation can or cannot help (Robinson,

2004). Objective setting should involve the clients in learning about

simulation and its potential, as much as the modeller in learning about

the problem situation. In this way the modelling specialist is able to

manage the expectations of the clients, aiming to set them at a realistic

level (Robinson, 2004).

Since the problem situation and the understanding of it can change, so

too can the objectives. Added to this, as the clients‟ understanding of

the potential of simulation improves, as it inevitably does during the

48

course of the study, their requirements and expectations will also

change. Consequently the iteration between the modelling processes is

further increased, with changes in objectives affecting the design of the

model, the experimentation and the outcomes of the project. It is for this

reason that there is a two-way arrow between the problem situation and

the modelling objectives in Figure 4.1.

The modelling objective for the power plant example is given in Table

4.2.

General project objectives

In designing a simulation model the modelling objectives are not the only

concern. The modeller should also be aware of some more general

project objectives. Time-scale is particularly important. If there is only a

limited time available for the project, then the modeller may be forced

into a more conservative model design. This helps reduce model

development time and quicken its run-speed, reducing the time required

for experimentation.

Table 4.2. Power Plant Illustration – Modelling Objectives

Modelling Objectives

The number of service staff required during each period of the day to ensure that 95%

of customers wait less than one hour for service. Due to space constraints, a maximum

of ten service staff can be employed at any one time.

The modeller should also clarify the nature of the model required by the

clients, specifically in terms of the visual display and the type of model

use. What level of visual display is needed? Is a simple schematic

sufficient, or is a 3D view required? Do the clients wish to use the model

themselves? If so, what data input and results viewing facilities do they

require? What level of interactive capability is necessary to enable

49

appropriate experimentation? All these issues have an impact on the

design of the simulation model.

4.2.3. The conceptual model design: inputs and outputs

The first stage of conceptual model design does not involve the details of

the model itself, but the model‟s inputs and outputs, depicted as the

experimental factors and responses in Figure 4.1. It is much easier to start

by giving consideration to these, than to the content of the model

(Robinson, 2004). Indeed, it should be a fairly straightforward task to

move from the modelling objectives to the experimental factors. In

effect, these are the means by which it is proposed that the objectives

are to be achieved.

Although the clients would often have control over the experimental

factors in the real world, it is sometimes useful to experiment with factors

over which they have little or no control (e.g. the arrival rate of

complaining customers). By experimenting with such factors a greater

understanding of the real system can be obtained. This, after all, is a key

benefit of simulation (Robinson, 2004).

Where possible, it is useful to determine the range over which the

experimental factors are to be varied. This can be achieved through

discussion between the modelling specialist and the clients. In the

considered case study, if the number of technical staff on a shift is being

investigated, what is the minimum and maximum number possible? The

simulation model can then be designed to enable this range of data

input. On some occasions this helps to avoid an over-complex model

design that provides for a much wider range of data input than is

necessary.

There should also be some discussion on the method of data entry for

the experimental factors. This might be direct into the model code,

through a set of menus, through a data file or via third party software

50

such as a spreadsheet. In large measure this depends upon the intended

users of the model and their familiarity with computer software. This

decision relates to the general project objectives discussed above.

Similarly, the identification of the responses required from the model

should not provide a major challenge. The responses have two purposes.

The first is to identify whether the objectives have been achieved. For

example, if the objective is to increase throughput of a production site

by a certain amount, then it is obvious that the model needs to report

the throughput. The second purpose of the responses is to point to the

reasons why the objectives are not being achieved. Taking the

throughput example, this might require reports on machine and resource

utilization and buffer/work-in-progress levels at various points in the

model. By inspecting these reports, the user should be able to identify

potential bottlenecks, and look for solutions (Robinson, 2004).

Another issue to be considered is how the information is reported, for

instance, as numerical data (mean, maximum, minimum, standard

deviation) or graphical data (time-series, histograms, Gantt charts, pie

charts). The identification of suitable responses and methods of reporting

should be determined by close consultation between the simulation

specialists and the clients. The nature of the reports depends upon the

requirements for visual and interactive features in the model, as outlined

in the discussion on general project objectives above.

Table 4.3 shows the relevant experimental factors and responses for the

power plant example.

As with all aspects of the modelling process, both the experimental

factors and responses will change as the project progresses. It may be

realized, for instance, that changing the number of technicians is not

effective in improving customer service, but that changing the human

resources supervising and management is. As experimentation

51

progresses, the need to inspect reports on the level of rework to

understand the restrictions in throughput may become apparent. The

experimental factors and responses may also change as a result of

changes to the problem situation, the understanding of the problem

situation or the modelling objectives (Robinson, 2004).

Table 4.3. Power Plant Illustration – Experimental Factors and Responses

Experimental Factors and Responses

Experimental Factors

- Total number of technical staff at each hour of the day

Responses (to determine achievement of objectives)

- Percentage of complaining customers waiting for less than 1 hour

Responses (to identify reasons for failure to meet objectives)

- Histogram of waiting time for each customer, mean, standard deviation, minimum

and maximum

- Staff utilization (cumulative percentage)

It should be apparent from the description above that the modelling

objectives are central to the conceptual modelling framework described

here. It is for this reason that determining the modelling objectives is

described as part of the conceptual modelling process. Since the

understanding of the problem situation is central to the formation of the

modelling objectives, it is also considered to be part of the conceptual

modelling process.

4.2.4. The conceptual model design: model content

Having identified the model‟s inputs and outputs, the modelling specialist

can identify the content of the model itself. Although this course is about

managing the model-based simulation, the need to consider the

appropriate modelling approach should not be forgotten at this point. In

designing the content of the model, and indeed before this point is

reached, the specialist should consider whether simulation is the most

52

suitable approach (also taking into account some alternatives to be

used whenever possible).

Assuming that simulation is the answer, the starting point in designing the

model content is to recognize that the model must be able to accept

the experimental factors and to provide the required responses. The

experimental factors and responses provide the basis of what the model

needs to include. Taking the example of technical staff shifts, it is

immediately obvious that the model must represent these (as numbered

lists, for example). The model must then provide the relevant reports, for

instance, complaining customers waiting time. It is likely that such a

model must include some queues as basic data structures.

Having identified the immediate entry point of the experimental factors,

and exit point of the responses, the modelling specialist must then

identify the key interconnections between these and the other

components of the real world. It is only those interconnections that are

judged to be important, with respect to correctly interpreting the

experimental factors and providing accurate values for the responses

that need to be included in the model. It is probably useful first to think in

terms of the scope and then the level of detail (Robinson, 2004).

The scope of the model must be sufficient to provide a link between the

experimental factors and the responses. For instance, a model that looks

at the throughput (response) resulting from a particular production

schedule (experimental factor) needs to include at least all the critical

processes within the manufacturing flow from entry of the schedule to

creation of the finished items. The scope must also include any processes

that interconnect with this flow such that they have a significant impact

on the responses, the meaning of significant being defined by the level

of model accuracy required. For instance, the manufacturing model

must include any processes that interconnect with the production flow

53

and have a significant impact on the throughput. If the supply of raw

materials has only a small impact on the throughput, because material

shortages are rare, then it is probably unnecessary to model them. If a

high level of model accuracy is needed, however, then it is more likely

that the supply of raw materials (or at least the shortage of raw

materials) needs to be modelled (Robinson, 2004).

The level of detail must be such that it represents the components

defined within the scope and their interconnection with the other

components of the model with sufficient accuracy. This again can be

considered with respect to the impact on the model‟s responses. For

example, considering a single machine on a manufacturing line, the

cycle time and breakdowns are very likely to have a significant impact

on throughput. Beyond this, the small variations in the machine cycle,

the type of machine failure etc., are probably of little importance to

accurately predicting throughput, and so can be excluded from the

model.

Prototyping is a powerful method in helping to form a decision about the

scope and level of detail to include in a model (Powell, 1995; Pidd, 1999).

The modelling specialist develops simple computer models, gradually

increasing the scope and level of detail. The intention is to throw these

models away and not to use them for formal analysis, although they can

often provide useful insights for the clients. Their primary purpose is to

provide an insight into the key variables and interconnections in order to

help with the design of the conceptual model.

In designing the simulation, the modeller must always keep in mind the

general project objectives. If the requirement is for a complex visual

display, then additional detail may need to be added to the model. If

the time-scale is limited, then the scope and level of detail in the model

may need to be reduced, possibly compromising on accuracy.

54

It is also important to keep a record of any assumptions that are made

during the design of the model content. They need to be presented to

all involved in the simulation study to ensure that everyone understands

and agrees the assumptions that are being made. Any simplifications

should be noted and explained as well.

Table 4.4 shows the proposed scope of the power plant model, with a

justification for what is to be included and excluded. Table 4.5 provides

similar information for the level of detail. These tables represent the

conceptual model as a component list.

Table 4.4. Power Plant Illustration – Model Scope

Model Scope

Component Include/Exclude Justification

Customers Include Flow through the service process

Staff – service Include
Experimental factor, required for staff

utilization response

Staff – supply chain

management
Exclude

Supply materials shortage is not

significant

Staff – site buildings

maintenance
Exclude Does not interfere with the service

Queues at customer

care desk or phone line
Include

Required for waiting time and queue

size response

Throughout the development of the conceptual model, the modelling

specialist should look for opportunities to simplify the model. This is the

subject of the next section.

55

Table 4.5. Power Plant Illustration: Model Level of Detail

Model Level of Detail

Component Detail Include/Exclude Comment

Customers

Customer

inter-arrival

times

Include Modelled as a distribution

Type of

customer

complaint

Exclude Represented in service time

Service staff

Service time Include

Modelled as a distribution,

taking account of variability in

performance and type of

customer complaint/system

fault

Number of

technicians

per shift

Include Experimental factor

Absenteeism Exclude

Not explicitly modelled, but

could be represented by

perturbations to number of

technicians per shift

Queues at

customer care

desk or phone line

Queuing Include
Required for waiting time and

queue size response

Capacity Exclude Assume no effective limit

Queue

behavior

Exclude

(except joining

the shortest

queue)

Behavior not well understood

56

4.2.5. The data significance

Preliminary or contextual data are required for developing an

understanding of the problem situation and so are central to the

development of conceptual modelling. Meanwhile, data for model

realization (developing the computer model) are not required for

conceptual modelling, but are identified by the conceptual model

(Robinson, 2004).

When accurate data for any part of a process can be obtained, the

conceptual model may be designed without consideration for whether

the data can be gathered. But this happens only theoretically. In reality,

not all data are readily available or indeed collectable and sometimes it

is impossible to obtain adequate data, making the proposed

conceptual model problematic (Robinson, 2004). This leaves the

modelling specialist with two options:

 To redesign the conceptual model in such a way as to engineer

out the need for troublesome data.

 To resist changing the conceptual model and to handle the data

in other ways.

In practice, the specialists probably use a mixture of the two

approaches. As such, the conceptual model defines the data that are

required, while the data that are available, or collectable, affect the

design of the conceptual model. This serves to increase the level of

iteration required in the modelling process, as the modeller must move

between consideration for the design of the model and the availability

of data (Robinson, 2004).

4.2.6. The conceptual modelling framework – a summary

The framework described above consists of four key stages:

 Developing an understanding of the problem situation.

57

 Determining the modelling objectives.

 Determining the model inputs and outputs.

 Designing the model content.

It is also necessary to consider whether simulation is the most appropriate

modelling approach as part of the conceptual modelling process. The

aim of the framework is to provide the modelling specialist with some

guidance over how to design the conceptual model. Throughout the

design process, the specialist must take into account the four

requirements of a conceptual model described in the previous chapter:

validity, credibility, utility and feasibility, as well as to develop a model

that is as simple as possible.

Many iterations of conceptual model design and client interaction are

required. It is not a case of providing a design and then going ahead

and developing the computer model. Frequent iterations between

model coding, experimentation and model design are also necessary.

Practically, the conceptual model will change as the simulation study

progresses.

4.3. Model Simplification

Apart from having a framework for conceptual modelling, it is also useful

for the modeller to have some methods of model simplification. As

previously shown, simplifications are not assumptions about the real

world, but they are ways of reducing the complexity of a model. Model

simplification involves reducing the scope and level of detail in a

conceptual model by two means:

 Removing components and interconnections that have little or no

effect on model accuracy.

 Representing more simply components and interconnections while

maintaining a satisfactory level of model accuracy.

58

This can either be achieved by identifying opportunities for simplification

during conceptual modelling or once the conceptual model is complete

and beyond, for instance, during model coding (Robinson, 2004). The

main purpose of simplification is to increase the utility of a model while

not significantly affecting its validity or credibility. In general,

simplification enables more rapid model development and use.

Simplification may be necessary if the original model design is infeasible,

for instance, because required data are not available.

Before shortly describing some methods of model simplification, it is worth

noting that one of the most effective approaches for simplifying a model

is, in fact, to start with the simplest model possible and gradually to add

to its scope and level of detail (Pidd, 1999). Once a point is reached at

which the study‟s objectives can be addressed by the model, then no

further detail should be added (Robinson, 2004). Finding an appropriate

point at which to stop, however, requires careful attention on the part of

the modelling specialist, but the framework described earlier in this

chapter should aid this process.

4.3.1. Model components aggregation

Aggregation of model components provides a means for reducing the

level of detail. Two specific approaches are described here: black-box

modelling and grouping entities.

Black-box modelling

In black-box modelling a section of an operation is represented as a time

delay. Model entities that represent parts, people, information and such

like enter the black-box and leave at some later time. This approach can

be used for modelling anything from a group of machines/devices to a

complete factory or plant.

59

Figure 4.2 illustrates the approach. As an entity Xi enters the black-box,

the time at which it is due to leave, ti, is calculated. When the simulation

reaches time ti, the entity leaves the box. The time an entity spends in the

box can of course be sampled from a distribution. The approach can

also be extended to account for re-sequencing of entities (e.g. re-work),

stoppages and shifts by manipulating the values of ti for each entity in

the box.

Figure 4.2. Black-Box Modelling.

Grouping entities

Instead of modelling individual items as they move through a system, a

simulation entity can represent a group of items. This is particularly useful

when there is a high volume of items moving through a system, for

example, a confectionery wrapping process in which hundreds of

products are wrapped each minute. To model each product individually

would lead to hundreds of events per simulated minute, which would

have a negative effect on simulation run-speed. It is beneficial in this

case for an entity to represent, say, 100 products.

The approach can easily be adapted to model situations where the

number of items represented by an entity changes as the entity moves

through the model. For example, a certain number of products are

rejected at an inspection area. This can be modelled by holding as an

attribute of the entity the number of products it represents. The attribute

value can then be adjusted as the entity moves through the model.

60

4.3.2. Excluding components and details

On occasions it is not necessary to include some components in a

simulation because their omission has little effect on the accuracy of the

model. This is a form of scope reduction.

Resources required for a process to take place need not be modelled if

it can be assumed that the resource is always, or almost always,

available to perform that task. In this case it is only necessary to model

the process. For instance, an operator who is dedicated to a task on a

manufacturing line need not be modelled explicitly (Robinson, 2004).

The same author gives an interesting image over this approach: The

modelling of machine repairs provides a very specific example of model

simplification, in this case driven by the availability of appropriate data. If

the resources required for repair (normally maintenance operators and

possibly some equipment) are to be modelled explicitly, then it is

necessary to have data on actual repair times. However, many

organizations only collect data on machine down times, that is, the total

time the machine is down including the time for the resources to be

made available. If down time data are being modelled, then the

resources should not be explicitly included in the simulation, otherwise a

form of double counting is taking place.

Some details may be excluded from a model because they also have

little impact on model accuracy. An example would be the modelling of

shift patterns. These only need to be modelled if:

 Different areas work to different shifts.

 The availability of labor, process speed or process rules vary

between shifts.

 Operations continue outside of shifts (i.e. machine repair).

 Shifts need to be modelled to give the simulation credibility.

Otherwise, it is unnecessary to model the dead time between shifts.

61

4.3.3. Using random variables

Rather than modelling a component or group of components in detail it

may be possible to represent them as a set of random variables,

sampled from some distributions. For instance, modelling transportation

systems such as fork-lift trucks, automatic guided vehicles, heavy goods

vehicles or trains can be complex. Depending on the context,

allowance needs to be made for breakdowns, traffic congestion,

weather conditions, turnaround times and driver shifts.

4.3.4. Rare events exclusion

Some events only affect an operational system on an infrequent basis. A

power line (for energy distribution) may be completely burned by

lightning once every 5 years. It is probably best to exclude the possibility

of such events occurring during a simulation run so as to investigate the

operational system under normal working conditions. The effect of such

events can always be investigated by performing specific runs in which

the event is forced on the model.

4.3.5. Reducing the rule set

Rules are used in simulation models to determine routes, processing

times, schedules, allocation of resources and so on. A model can be

simplified by reducing the rule set, while maintaining a sufficient level of

accuracy. In many cases, 80% of circumstances are covered by 20% of

the rule set, for instance, routing decisions for automatic guided vehicles.

Judgment is required as to whether it is worth modelling the other 80% of

the rule set for a small improvement in model accuracy (Robinson, 2004).

One specific difficulty in simulation modelling is to represent the human

interaction with an operational system (i.e. it is very difficult to know how

people behave when queuing in a service system). In this case it is

practically impossible to assume a valid rule set for all people in all

62

situations. Therefore, normal practice is to use a simplified set of rules, for

instance, “customers choose the shortest queue” or “they will not join a

queue if there are more than five people in it”.

An extreme but useful approach is to neglect all rules (Robinson, 2004). In

the service system example above the simulation could make no

assumptions about queuing behavior except assuming people join the

shortest queue. This would mean that if there is an imbalance between

service rate and arrival rate the queues would become very large. This

gives useful information, that is, the system is not balanced and custom is

likely to be lost unless the service rate can be increased.

4.3.6. Splitting models

Instead of building one large model, it can be useful to split the model

into parts. A simple way of achieving this is to split the models such that

the output of one sub-model (model A) is the input to another (model B),

as seen in Figure 4.3. As model A runs, data concerning the output from

the model, such as output time and any entity attributes, can be written

to a data file. Model B is then run and the data read such that the

entities are recreated in model B at the appropriate time.

Figure 4.3. Split Models.

The advantage of splitting models is that the individual models run faster.

It is also quite probable that a single run of all the sub-models is quicker

than one run of a combined model. Another advantage of splitting

models is that it is possible to speed development time by having

separate modelling specialists for each model in parallel.

63

But splitting models may not be successful when there is feedback

between the models. For instance, if model B cannot receive entities,

because the first buffer is full, then it is not possible to stop model A

outputting that entity, although in practice this is what would happen. It

is best, therefore, to split models at a point where there is minimal

feedback (i.e. where there is a large buffer – Robinson, 2004).

There is much interest in running simulations in parallel on separate

computers, with the aim of gaining run-speed advantages. If split models

run in parallel, then it should be possible to model feedback effects and

so overcome the difficulty described above. At present, however, there

are a number of obstacles to the use of parallel computing for

simulation, the most important being that an efficient mechanism for

synchronizing the models as they run still has to be found.

4.3.7. Estimating the simplification quality

Although model simplifications are beneficial, a poor choice of

simplification, or oversimplifying a model, may seriously affect the

accuracy of the simulation. A good simplification is one that brings the

benefits of faster model development and run-speed (utility), while

maintaining a sufficient level of accuracy (validity). Two approaches are

used in order to determine whether a simplification is good or not.

The first is to use judgment in deciding whether a simplification would

have a significant effect on model accuracy. This should be determined

by discussion between the modelling specialist, client and other

members of the simulation project team. The project specification is a

useful mechanism for explaining and discussing the efficacy of proposed

simplifications. Of course, this approach provides no certainty over

whether a simplification is appropriate or not.

The second approach is to test the simplification in the computer model.

The modelling specialist develops two computer models, one with and

64

one without the simplification. It is then possible to compare the results

from the two models to see the effect on accuracy. This, of course,

provides much greater certainty over the simplification quality, but the

advantage of faster model development is lost.

Apart from maintaining a sufficient level of accuracy (validity), a good

simplification should not compromise credibility. Over-simplification can

make a model less transparent, reducing its credibility. For example,

although a black-box may provide a sufficiently accurate representation

of part of an operational system, the representation details are not

transparent. For some clients this may be satisfactory, but for others it

may be necessary to provide a more detailed representation to give the

model credibility. It is sometimes necessary to include a greater scope

and level of detail than is required to assure the accuracy of the model,

in order to assure the model‟s credibility. A poor simplification is one that

causes a client to lose confidence in a model (Robinson, 2004). Indeed,

there are occasions when it is necessary to reverse the concept of

simplification and actually increase the complexity (scope and level of

detail) of the model, simply to satisfy the requirement for credibility.

4.4. Chapter’s Conclusions

The issue of how to develop a conceptual model is discussed from two

perspectives:

 by presenting a framework for conceptual modelling, enabling a

modelling specialist to design a conceptual model from ground;

 by describing a number of methods for simplifying an existing

conceptual model.

The framework is illustrated with reference to an example of a power

plant. A final issue that has not been discussed is the validation of the

conceptual model, but – except some guiding remarks – this is beyond

the coverage area of this course.

65

5.
REFERENCES

Balci, O. and Nance, R.E. (1985) „„Formulated problem verification as an

explicit requirement of model credibility‟‟. Simulation, 45(2), 76–86.

Banks, J., Carson, J.S. and Nelson, B.L. (1996) Discrete-Event System

Simulation, 2nd edn. Upper Saddle River, NJ: Prentice-Hall.

Bard, J.F. (1997) „„Benchmarking simulation software for use in modeling

postal operations‟‟. Computers and Industrial Engineering, 32(3), 607–625.

Brooks, R.J. and Tobias, A.M. (1996) „„Choosing the best model: level of

detail, complexity and model performance‟‟. Mathematical and

Computer Modelling, 24(4), 1–14.

Checkland, P.B. (1981) Systems Thinking, Systems Practice. Chichester,

UK: Wiley.

Chwif, L., Barretto, M.R.P. and Paul, R.J. (2000) „„On simulation model

complexity‟‟. Proceedings of the 2000 Winter Simulation Conference

(Joines, J.A., Barton, R.R., Kang, K. and Fishwick, P.A., eds). Piscataway,

NJ: IEEE: pp. 449–455.

Coyle, R.G. (1996) System Dynamics Modelling: A Practical Approach.

London: Chapman & Hall.

Dahl, O. and Nygaard, K. (1966) „„SIMULA: an Algol-based simulation

language‟‟. Communications of the ACM, 9(9), 671–678.

Davis, L. and Williams G. (1994) „„Evaluating and selecting simulation

software using the analytic hierarchy process‟‟. Integrated

Manufacturing Systems, 5(1), 22–32.

Eden, C. and Ackermann, F. (2001) „„SODA–the principles‟‟. In Rational

Analysis for a Problematic World Revisited, 2nd edn. (Rosenhead, J.V.

and Mingers, J., eds), Chichester, UK: Wiley, pp. 21–41.

Fiddy, E., Bright, J.G. and Hurrion, R.D. (1981) „„SEE-WHY: interactive

simulation on the screen‟‟. Proceedings of the Institute of Mechanical

Engineers C293/81, pp. 167–172.

66

Hlupic, V. and Paul, R.J. (1996) „„Methodological approach to

manufacturing simulation software selection‟‟. Computer Integrated

Manufacturing Systems, 9(1), 49–55.

Holder, K. (1990) „„Selecting simulation software‟‟. OR Insight, 3(4), 19–24.

Innis, G. and Rexstad, E. (1983) „„Simulation model simplification

techniques‟‟. Simulation, 41(1), 7–15.

Law, A.M. (1991) „„Simulation model‟s level of detail determines

effectiveness‟‟. Industrial Engineering, 23(10), 16–18.

Law, A. and McComas, M. (1989) „„Pitfalls to avoid in the simulation of

manufacturing systems‟‟. Industrial Engineering, 21(5), 28–69.

Law, A.M. and Kelton, W.D. (2000) Simulation Modeling and Analysis, 3rd

edn. New York: McGraw-Hill.

Morris, W.T. (1967) „„On the art of modeling‟‟. Management Science,

13(12), B707–717.

Nikoukaran, J. and Paul, R.J. (1999) „„Software selection for simulation in

manufacturing: a review‟‟. Simulation Practice and Theory, 7(1), 1–14.

Overstreet, M.C. and Nance, R.E. (1985) „„A specification language to

assist in analysis of discrete event simulation models‟‟. Communications

of the ACM, 28(2), 190–201.

Pidd, M. (1998) Computer Simulation in Management Science, 4th edn.

Chichester, UK: Wiley.

Pidd, M. (1999) „„Just modeling through: a rough guide to modeling‟‟.

Interfaces, 29(2), 118–132.

Pidd, M. (2003) Tools for Thinking: Modelling in Management Science,

2nd edn. Chichester, UK: Wiley.

Pooley, R.J. (1991) „„Towards a standard for hierarchical process oriented

discrete event diagrams‟‟. Transactions of the Society for Computer

Simulation, 8(1), 1–41.

Powell. S.G. (1995) „„Six key modeling heuristics‟‟. Interfaces, 25(4), 114–

125.

Richter, H. and Marz, L. (2000). „„Toward a standard process: the use of

UML for designing simulation models‟‟. Proceedings of the 2000 Winter

Simulation Conference (Joines, J.A, Barton, R.R., Kang, K. and Fishwick,

P.A., eds). Piscataway, NJ: IEEE, pp. 394–398.

67

Robinson, S. (1994) „„Simulation projects: building the right conceptual

model‟‟. Industrial Engineering, 26(9), 34–36.

Robinson, S. (2001) „„Soft with a hard centre: discrete-event simulation in

facilitation‟‟. Journal of the Operational Research Society, 52(8), 905–915.

Robinson, S. (2004). Simulation: The Practice of Model Development and

Use, UK: Wiley.

Robinson, S. and Pidd, M. (1998) „„Provider and customer expectations of

successful simulation projects‟‟. Journal of the Operational Research

Society, 49(3), 200–209.

Saaty, T.L. (1980) The Analytic Hierarchy Process. New York: McGraw-Hill.

Salt, J. (1993) „„Simulation should be easy and fun‟‟. Proceedings of the

1993 Winter Simulation Conference (Evans, G.W., Mollaghasemi, M.,

Russell, E.C. and Biles, W.E., eds). Piscataway, NJ: IEEE, pp. 1–5.

Schriber, T. (1974) Simulation Using GPSS. New York: Wiley.

Senge, P.M. (1990) The Fifth Discipline: The Art and Practice of the

Learning Organization. London: Random House.

Shannon, R.E. (1975) Systems Simulation: the Art and Science. Englewood

Cliffs, NJ: Prentice-Hall.

Som, T.K. and Sargent, R.G. (1989) „„A formal development of event

graphs as an aid to structured and efficient simulation programs‟‟. ORSA

Journal on Computing, 1(2), 107–125.

Sterman, J.D. (2000) Business Dynamics: Systems Thinking and Modeling

for a Complex World. New York: McGraw-Hill.

Torn, A.A. (1981) „„Simulation graphs: a general tool for modeling

simulation designs‟‟. Simulation, 37(6), 187–194.

Ward, S.C. (1989) „„Arguments for constructively simple models‟‟. Journal

of the Operational Research Society, 40(2), 141–153.

Willemain, T.R. (1994) „„Insights on modeling from a dozen experts‟‟.

Operations Research, 42(2), 213–222.

Zeigler, B.P. (1976) Theory of Modelling and Simulation. Chichester, UK:

Wiley.

Cursul de Modelare $i simulare se ocupa cu studiul principiilor, metodelor ~i tehnicilor prin
care obiecte din lumea reala, fenomene, operatii si instalatii tehnologiee, (numite generic
procese), sunt reprezentate matematic ~iapoi analizate indirect utilizand tehnica de calcul.
Modelarea si simularea sunt, intr-un mod specific, etape esentiale, necesare, in majoritatea
activitatilor umane.
Astfel, in general, se parcurg urmatoarele etape:

~ analiza de sistem - implica formularea problemei, precizarea scopurilor, delimitarea
dintre "sistemul" studiat ~i "mediu" (tot ceea ce este "exterior" sistemului). Se pun in
evidenta marimile caracteristice, factorii specifici ~.a.m.d.

~ modelare - se determina relatiile dintre marimile caracteristice, se construie~te 0
"imagine" a obiectului real, un model "simplificat" al procesului considerat.

~ simulare - presupune efectuarea unor "experimente" cu modelul, testarea si validarea
modelului, prevedereaevolutiilor viitoare;

~ decizie, actiune - in care pe baza rezultatelor experimentelor de simulare se determina
actiuni, se iau deeizii (inclusiv decizii de conducere) etc.

Analiza de
sistem

Indiferent care este scopul unei activitati umane rationale, dupa precizarea si delimitarea
problemei, analistul ia in considerare 0 serie de factori pe care-i considera importanti si
construieste 0 imagine proprie, un "model" al procesului respectiv.
Modelul constituie deci, 0 reprezentare simplificata, aproximativa a realitatii, in care se
ignora in mod voit (sau poate involuntar) 0 serie de detalii, dar care este considerat
satisfacator in raport eu obiectivul propus. Folosind acest model, analistul incearca sa
prevada, sa deduca cum se vor desfasura fenomenele, realizand astfel un "experiment de
simulare" .
In functie de rezultate se pot lua decizii (inclusiv decizii de conducere), se stabilesc
actiuni etc.

Sistem.
In general in domeniul tehnic, un sistem este definit ca un obiect sau ansamblu de

entitati, de elemente interconectate, ce interactioneaza intr-un anumit mod pentru a realiza
un obiectiv, un scop, cu anumite performante.

In particular, in automatica, obiectul din lumea realii, fenomenul, procesul tehnologic,
instalatia, se nume~te sistem (fizic).

Tot ceea ce nu apartine sistemului face parte din lumea exterioara (mediu).
Linia de separatie dintre sistem ~i mediu pune in evidenta marimile de intrare I -

marimi "cauza" (u) ~i marimile de ie~ire E - marimi "efect" (y), determinate prin
cauzalitatea intrare-ie§ire.

Obs. Sistemul depinde esential de de obiectivele studiului, analizei; ceea ce intr-un caz
este considerat un "sistem", in alt context poate fi doar un "subsistem" component al
unuia mai complex.

Stare.
Starea x(t) a unui sistem, se defineste ca fiind iriformafia minima necesara la un

moment dat de timp t, care impreuna cu intrarile ulterioare u(t) , determina univoc
evolutia ie~irilor y(t).

Multimea tuturor variabilelor de stare (liniar independente) , formeaza vectorul de
stare x(t).

Model.
in domeniul ~tiintelor tehnice, experimentul ~i observatia (masurarea) constituie

aspecte esentiale pentru un model ce se elaboreaza iterativ.
In ultima instanta, elaborarea unei teorii reprezinta construirea unui model (verbal sau

matematic) al realitatii.
Def: Modelul este reprezentarea intr-o forma utilizabila, a cuno~tintelor, a aspectelor

esentiale ale unui sistem.

Observatia 1. Modelul este 0 reprezentare simplijicata, deci aproximativa a
sistemului real. Nu e de regula nici posibil, nici necesar sa se realizeze 0 descriere
atnanuntita a tuturor mecanismelor interne: E suficient ca modelulsa reproduca, .sa' .
mimeze, suficient de exact comportarea sistemului real.

Observatia 2. Exista multe tipuri de modele ~ianume:
> modele jizice ("empiriee" sau "laseara redusa"- de' exemplu in clomeniul

ehimiei, elaborarea unei noi tehnologii se incepe eu faza de "mieropilot" a
instalatiei, cand se testeaza procesul tehnologic pe acest model fizic urmand ca
apoi sa se realizeze instalatia industriala).

~ modele fenomenologice ("conceptuale" - sistemele reale respective sunt
descrise prin anumite legi fizice)

~ modele funclionale ("formale" - sistemul e reprezentat prin relatii funetionale,
scheme functionale)

> modele matematice ("analitice").
Observatia 3. Modelul trebuie sa fie intr-o "forma utilizabila", deoarece modelul nu

este un seop in sine. El constituie doar 0 baza pentru analiza, pentru luarea deciziilor; in acest
sens modelul trebuie sa fie de 0 complexitate cat mai redusa in eoncordanta cu obiectivele
studiului.

Definitie. Simularea este 0 metodaexperimental-aplicativa prin care se realizeaza, se··
implementeaza, de obicei pe un calculator, un model al unui sistem real in vederea analizei
indirecte a acestuia.

Modelarea ~i simularea sunt instrumente de analiza a sistemului. Simularea este utila
in special in eazurile in care analiza directa este imposibila:

• sistemul nu are inca 0 existenta reala (este in faza de proiectare)
• sistemul nu poate fi pus la dispozitia analistului pentru experimentari directe (ex. in

aviatie)
• exista pericolul producerii unor pagube prin experimentare directa (ex. baraj

hidroenergetic)
• sistemul este caracterizat prin evolutii foarte lente in timp - (ex. de ordinul lunilor,

anilor - cazul sistemelor economice, sociale)
• nu pot fi generate direct conditiile de (experimentare (ex. comportarea dinamica a

unei cladiri in cazul cutremurelor).

Experimente cu
sistemul real

Model
fizic

• Nu se pot obtine solutii, rezultate, foarte exacte, pentru ca principial modele Ie
sunt imperfecte (modelele fiind aproximari ale lumii reale, materiale).

• Exista erori (in preeizarea datelor, a parametrilor, a conditiilor de simulare)
care nu pot fi in totalitate compensate.

• In cazul proceselor foarte complexe, modelul de simulare poate deveni mai
complex decat procesuIInsu~i.

• eel mai important dezavantaj este aeela ea nu se genereaza solu{ii analitice.

Exista 0 mare diversitate de tipuri, de clase de modele, alegerea modului de
reprezentare depinzand de obiectivele studiuh~i Deasemeneamajoritatea erite~jilor de .
clasificare au dezavantajul de a nu reu~i sa caracterizeze complet, In totalitate fiecare model In
parte.

Criterii
1. Dupa natura modelului, exista modele:

• fizice (empiriee),
• fenomenologice (conceptuale),
• matematice (simbolice -formale sau analitice).

2. Dupa caracterul dinamic al modelului, exista modele
• dinamice·
• statice.

In modelele dinamice variabilele caraeteristic~, starile, ie~irile depind ~i de "istorie", de
evolutia anterioara a aeestora.
Ex. model dinamie in reprezentare de stare:

{
X = !(x,u,t)

tER
y=g(x,Y,t)

Model dinamic in reprezentare de stare in timp discret:

{
X(k + 1) = !(x(k),u(k),k) d k Z, un e E .
y(k) = g(x(k),y(k),k)

3.Dupa gradul de liniaritate sunt modele:
• liniare ~i

.• neliniare.

{
X=Ax+BU

, eu L:(A,B,C,D) pentru sisteme liniare.
y=Cx+Du

{X = !(x,u,e,t) , _ pentru sisteme neliniare (unde .B-este veetorul parametrilor).
y = g(x,u,e,t) '.' ..' .

Obs. 0 clasa speciala de modele este clasa modelelor liniare in parametri.
Ex: y(k)=rpT(k)·B

unde B- este vectorul parametrilor iar (;l este vectorul "observatiilor" intrare-iesire

.4.Exista modele:
• variante In timp sau
• invariante In timp.

. ., {X(t) = A(t)x(t) +B(t)u(t)
Ex. model varzant m tlmp

yet) = c(t)x(t)
E suficient ca doar una din matricele A, B, C sa fie dependenta de timp.
In cazul modelelor invariante in timp aplidind acelea~i intrari decalate cu 't, se obtin
raspunsuri identice, dar decalate cu acela~i interval 'to

5. Dupa caracterul structural, sunt
• modele funcfionale -(intrare-iesire lIE) ~i
• modele structurale (intrare-stare-iesire VSIE).

Ex: Modele funcfionale (sau VB) sunt de tip funcfie de transfer (SISO) - in domeniul
complex sau din modele in domeniul timp (ec. diferentiale).

Cafuncfie de transfer: Y(s)=H(s)·U(s)

I~ d . I' ~ diy ~b diu d I ~~, d d' I .n omemu timp: LJai-i = LJ i-i ~ mo e cu "mtarzlere e or mu n ~l
i=O dt i=O dt

cu anticipare de ordinul m",
Aplicand transformata Laplace se obtine,echivalenta dintre cele doua reprezentari :

yes) R(s) bo + brs + + bm sm
H(s) = -- = -- = -------- , cu conditia de "cauzalitate" stricta n>m

U(s) A(s) ao + arS + + ansn

(neanticiparea iesirii in raport cu intrarea).
Modelele structurale sau liSlE (intrare/stare/ie~ire): De ex, 0 forma echivalenta pentru
modelele anterioare (pentru an = 1) iar x(t) este stare a, poate fi L:(A,B,C,D)

[
0 1 0 0] [OJ

[.] ° ° 1... 0 [] °
x = . x + 'u(t)

........ 1 ...

-Qo -Qt ..·.. -Qn-t 1

y = [0 O bm bm-1 •••••. ho]· [;]

6. Dupa caracterul continuu sau discret al variabilei independente timp:
• modele continue ~i
• modele discrete.

- La sistemele discrete reprezentarea se face prin relafii de recurenfa in timp discret
(ex. modele de tip ARMAX - AutoRegressive Moving Average with eXogenous)

sau reprezentari polinomiale VE in operatorul de intarziere q-l unde q-l f(k)= f(k-l) , sau
echivalent de tip funcfie de-transfer in z.

Ex. Model ARMAX
A(q-l)y(k) = B(q-l)u(k) + C(q-l)e(k)

A(q-l) = 1+a1q-l +...+anaq-na

B(q-l) =b1q-l +b2q-2 + ... +bnbq-fzb

C(q-l) = 1+ c1q-l +...+ cncq-nc

Ee(k)e(l) =)'}8o(k-l)

Vk,l EZ
La sistemele continue variabilele de intrare u(t) ~i de ie~ire yet) sunt funetii continue in
timp.

7. Dupa dependenta modelului de eoordonatele geometrice, modelele se pot imparti in:
• modele cu parametri concentrati ~i
• modele cu parametri distribuiti.

La modele Ie cu parametri eoneentrati marimile variabile au aeeea~i valoare indiferent de
coordonatele geometrice ale punctului respectiv in care sunt precizate. In modelele cu
parametri distribuiti, variabilele depind si de coordonatele geometrice , dinamica fiind
exprimata prin ecuatii eu derivate partiale. De ex. in cazul unui sehimMtor de ealdura de
tip tub in tub, temperatura produsului Tp (x,t) depinde atat de timp cat si de coordonata x in
lungul schimbatorului:

Fig.4. Schimbator de caldura elementar cu parametri concentrati
Obs. Modelele eu parametri distribuiti sunt aproximate deseori in automatic a prin modele
cu timp mort.
8. Deasemenea modelele pot fi

• parametricesau
• neparametrice.

Modelele parametrice sunt caracterizate printr-un numar finit de parametri (ex.
coefieientii ai , bj din functia de transfer, pe ca.nd la modelele neparametrice
comportarea dinamiea se caraeterizeaza prin reprezentari grafice in domeniul timp sau
frecventa.
Ca exemple de modele neparametrice sunt: riispunsul pondere (la impuls Dirac),
raspunsul indicial, caracteristica de frecventa (Nyquist), caracteristica Bode,
caracteristica Nichols.

9. Dupa numarul de intrari/iesiri (1/0)
• Modele SISO (Single- Input-Single-Output)
• Modele MIMO (Multiple- Input-Multiple-Output)
• Modele SIMO si modele MISO

Incazurile simple, 0 data determinat modelul matematic, sistemul poate fianalizat- pe baza· .
solutiilor analitice. In cazul modele lor mai complexe solutia analitica nu mai este posibila,
fiind necesara utilizarea unui calculator. Simularea este 0 metoda experimental - aplicativa
prin care se implementeaza pe un calculator, un model al unui sistem real in vederea analizei
indirecte a acestuia. Modelul matematic trebuie insa sa aiba 0 reprezentare adecvata numita
model de simulare.
Modelul de simulare depinde de programul de simulare sau de simulatorul utilizat. Exista 0

mare diversitate de programe ~i medii de simulare. Actualmente, mediile de simulare
specializate, practic, nu mai necesita elaborarea de programe pentru obtinerea modelului de
simulare, ci prin interfete grafice utilizator (GUI - Graphical User Interface) asigura
posibilitatea selectarii prin meniuri a componentelor necesare, realizarea structurii, definirea
parametrilor ~i executia simularii. Astfel de limbaje ~i medii de simulare sunt: MATLAB,
MATLAB cu SIMULINK, SIMNON, LABVIEW, MATHCAD, MATHEMATICA,
MAPLE, SIMAN, VISSIM (Visual Simulation).
Un experiment de simulare consta in executia pe simulator a modelului de simulare pentru
seturi de date ~i/sau parametri specificati. Forma de reprezentare a rezultatelor este foarte
diversa, de la cea mai simpla (tabel de valori), pana la reprezentari 2D sau 3D ~i utilizarea
animatiei pentru reprezehtarea evolufieiin tinip. '. .
In particular, simularea este procesul de solutionare, de executie pe calculator a modele lor de
tip schema bloc.
Schemele bloc sunt 0 componenta a unui "mediu de programare grafica "(vizuala) sau "medii
de programare orientata pe obiecte"(MPOO).

Cele mai utilizate medii de simulare sunt :
· Matlab - Simulink (firma Mathworks) ;
· Lab View (National Instruments) ;
· VisSim (Visual Solutions) ;
· Easy 5 (Boeing) ;
· Matrixx (Integrated Systems) ;
· MathCad, Simnon, Siman.

Toate medii Ie de simulare ofera 2 funetii de baza :
1. Editare grafica - pentru crearea, editarea ~i procesarea modelelor ; editorul

poate fi utilizat ~i pentru crearea modelului intrarilor, simuHirii (stabilirea
conditiilor), prezentarea rezultatelor ;

2. Simulare propriu-zisa - executia. modelului prin itera.tiisliccesive ::-.caleul.
numeric + integrare etc.

Mediile de simulare grafica sunt orientate pe schema bloc, deci nu este efectiv necesara 0

"programare" propriu-zisa. Cele mai utilizate sunt :
· Matlab - Simulink ;
· VisSim.

Ex. Menu-rile Simulink, blocurile Simulink, crearea unui program.
Etape:

CD > > Simulink
Funetiile disponibile in Simulink pot fi accesate prin intermediul unor

blocuri aflate in biblioteci de functii Simulink. Fereastra activa permite selectia
(double-click) unei subbiblioteci (ex. Simulink v 1.3 c).

Ex.
Linear Library Sum

Integrator
Gain
State-Space
Transfer Fcn
Zero-Pole

Sumator
Integrare semnal
Multiplicare cu 0 constanta a semnalului de intrare
Reprezentarea de stare a unui sistem liniar
Reprezentarea sub forma de functie de transfer
Reprezentarea sub forma de poli-zerouri

CV Se deschide 0 noua fereastra pentru crearea modelului.
New din meniul File -7 (se deschide 0 fereastra "untitled").

Q) Pentru crearea unui model blocurile necesare vor fi "mutate" din
subbiblioteci in fereastra activa prin "tragere".

® Se realizeaza conexiunile intre..blocuri- (prin desenare ell mouse-ulapasat) ..
~ Se configureaza blocurile (se stabilesc parametrii specifici fiecarui bloc)
® Simularea propriu-zisa prin Start din meniul Simulation (anterior fiind

stabiliti "pararnetrii" de simulare - ex: stop time).
Ex. de model grafic Simulink

(9-.j timp
Clock timp

Simularea este un proces iterativ cu urmatoarele etape:
1. Stabilirea cadrului simularii - definirea sistemului de analizat, a obiectivelor, a

variantelor care se vor avea ill vedere, a criteriilor de apreciere;
2. Construirea modelului matematic (modelarea analitica);
3. Realizarea modelului de simulare ;
4. Definirea experimentelor de simulare (inc1usiva datelor pentru validarea modelelor);
5. Experimentul de simulare propriu-zis (verificarea ~i validarea modelului, bazata pe

experienta a celui care realizeaza simularea);
6. Analiza ~i interpretarea rezultatelor.

Cap2. Modelarea analitica a proceselor tehnologice

Modelul este 0 reprezentare sub forma utilizabiIa, a cunostintelor, a aspectelor esentiale ale
unui sistem.
Modelul matematic este un model exprimat analWe prin relatii cantitative specifice (ecuatii
diferentiale, ecuatii cu derivate partiale s.a.).
In general un sistem fizic (un obiect din lumea reala) este caracterizat printr-o serie de
variabile specifice v=[VI,V2... Vq] si 0 serie de relatii Ri=R[VI, V2... vq]=O consecinte a
~.:latHor fizice.
In automatic a e esentiala introducerea unei orientiiri lIE (cauza /efect) in sensul ca unele
dintre marimile specifice V sunt intrari (marimi cauza-u), altele sunt iesiri (marimi efect-y)
altele sunt variabile interne (x stari).

v=uUyUx
astfel incat relatiile Ri vor fi functii de intrari , iesirie, de vectorul de stare x si eventual de
vectorii parametrilor ()si timp t, in mod explicit:

Rlu,y,x, B,t)=O

Se spune ca modelul M reprezinta sistemul fizic S, daca distanta D(M,S) dintre model si.
sistem e mai mica decat un € ales corespunzator:

D(M,S)s €
Exemplu de definire a "distantei" D , pentru un set de N date intrare/iesire:

N
D= L[y(i) - YM(i)] 2-

i=l
D[M,S} ?f) (semipozitiv definim)
D[M,S}=O => M=S (in realitate este imposibil ca modelul sa reflecte "exact" sistemul fizic)

Intrari

Sistem
fizic

Obsl: Modelul matematic reprezinta 0 aproximare, 0 simplijicare a realitatii.
Modelul nu poate (si in general nici nu trebuie) sa reprezinte exact sistemul real in toata
complexitatea sa.

Obs2: In acelasi timp modelul matematic are 0 existenta de sine statatoare si extema
realitatii fizic masurabile.

Modelul are un caracter generalizator pentru 0 clasa de sisteme echivalente indiferent
de natura fizica a fenomenelor pe care Ie caracterizeaza.
Construirea modelui matematic se poate aborda in doua moduri:
1) modelare analitica- ca 0 consecinta a legilor fizice ce descriu destasurarea

fenomenelor.
2) modelare experimentalii (sau identijicare) in care determinarea modelelor se face prin

prelucrarea datelor obtinute din masuratori experimentale.
Daca modelul este cunoscut ca structura, doar parametrii 8 fiind necunoscuti, atunci
problema determinarii modelului se reduce la 0 problema de "estimare de parametri".

In g~ner~l pr~cesele ~ehnologi~e s~t C~~l~!~~a~de ~ux~ri m~sice sau volumice ~<p/Q)-
numlte SI deblte maslce/volumlce- sl/sa~ergIe- numlte SI puter~ (w / p), care se mtroduc
in proces pentru a fi prelucrate in instalatia tehnologica si a se obtine fluxuri masice si/sau de
energie la iesire.

<Di
<DeWi m

Qi > W > We
Pi (V) Qe

Pe

Dad notam, m / W, masa / energia, (volumul V) acumulate in process, atunci, consideram
ca procesul e in regim stationar daca exista un echilibru :

Procesul este in regim dinamic daca cele doua fluxuri nu sunt egale, diferenta lor fiind de
fapt egala cu viteza de variatie (de acumulare/evacuare) a masei/energiei (mIW) sau cu
vari.atia acestora in unitatea de timp:

dW<D'-<D=-
1 e dt

Fluxurile au ca unitate de masura :

-pentru fluxuri masice (debit masic) < kg >
s

m3

-pentru fluxuri volumetrice (debit volumic) <->
s

-pentru fluxuri energetice (puteri) < J >
s

Indiferent care ar fi in particular procesul al dirui model dorim sa-l obtinem , in modelarea
analitica se parcurg urmatoarele etape:

1) evidentierea variabilelor si manmilor caracteristice: VI, V2, ... ,vq

2) determinarea pe baza legilor fizice (conservarea energiei, a masei etc) a relatiilor
Ri[VI, V2, ... , vq]=o intre variabilele caracteristice.
Tot in aceasta etapa se evidentiaza relatiile de regim stationar si regim dinamic

3) "Orientarea intrare-iesire" a modelului prin punerea in evidenta a variabilelor de tip
cauzii (intrari - u) si respectiv elect(iesiri - y)

U\i if
v

4) "Liniarizarea" modelulm presupune :
-"centrarea 11 variabilelor (trecerea Ia mici variatii in jurul "punctului static de

functionare" PSF, sau trecerea la variabile centrate);
AV=v-vo

- "normarea 11 variabilelor raportand variabilele centrate Ia anumite valori de
regim stationar (de ex. Valorile corespunzatoare PSF -ului):

D.v *
-=V
va

5) etapa de "validare" a modelului.

Procesele se incadreaza in c1asa de sisteme numite monocapacitive (procesele au 0 singura
capacitate care poate acumula masa si/sau energie) fiind reprezentabile prin modele
matematice de tip ecuatii diferentiale de ordin I.

:: ~IProces I
[
masa/]

[
debit masic / VO!Umic]_ [debit masic / VO!Umic]= [viteza] = d energie = C dy

de int rare de iesire de acumu!are dt dt

Unde s-a notat in general:
y-variabila dependenta (presiune, nivel, temperatura ...)
C-capacitatea elementului de a acumula masa, energie (de ex. energie termica -caldura)

a) Modelarea unni proees de umplere /golire en gaz

Rezervor
pentru
gaze

• Evidentierea variabilelor specifice (masa, densitatea, presiunea in rezervor si cea
externa, debitele volumetrice, volumul rezervorului pentru gaze, temperatura absoluta
Tk, masa molara a gazului Jl)
v=[m, p, p, pc, Ql, Q2, V, ...]

• Legea conservarii masei revine la:
dm

pQl-pQ2 = dt

-Dar legea gazelor perfecte exprima dependenta intre m- masa de gaz sip -presiunea
m f-lV

pV=-RTk =>m=--p
f-l RTk

f-lV dp
---=Ql -Q2 =>
pRTk dt

Obs. Se noteaza C = ~ - "capacitatea" pt. gaze a rezervorului
pRTk

Q2 (p) == a~ pep - Pc) =>evidentierea cauzalitatii (separarea variabilelor lIE)

C dp + a~ pcP - Pc) = Ql (t) => model matematic neliniar
dt

(8Q2 J (p) (82Q2)Q2(p) = Q20 + - . - Po + -2-
8PO 8p 0

=>introducem "variabilele centrate" punand in evidenili regimul stationar (PSF)
• !:i.p= P-Po

• Q2=Q20+ !:i. Q2
• Ql=QlO+ !:i. Ql

Regimul stationar este regimul in care QlO= Q20= Qo=constant caruia ii corespunde p=po.
Inlocuind si oprind din dezvoltarea Taylor °doartermenulliniar rezulta:

C d (POd; 6p) ~ QIO + Ll.Ql - [Q20 + (a~2)6p]

Dadi se tine cont de regimul stationar (QlO= Q20= Qo) si se noteaza: (8Q2 J = _l_
Op 0 Rp

inversul unei rezistente pneumatice, se obtine modelul matematic liniarizat in care variabilele
lIE sunt "separate"(modelul in variabile "centrate" este "orientat" lIE):

C d!:i.p + _1_!:i.p = !:i.Ql
dt Rp

Modelul se poate exprima in forma cu "constante de timp" =>
RpC!:i.p +!:i.p = Rp!:i.Q2

dt
unde:
T=RpC -constanta de timp [1]= s - secunde
K=Rp -factor de proportionalitate (in regim stationar) [K]= bar/m3 Is

T d!:i.p +!:i.p = K!:i.Ql
dt

Echivalent modelul poate fi reprezentat sub forma "neparametrica" daca se caracterizeaza
prin "raspunsul" obtinut pentru semnal "treapili" de debit de intrare, numit "raspuns indicial":

!:i.Q
1

=!:i.Qo

=> rezulili rasunsul !:i.p(t) = K!:i.Qo[1 - e -1/ T]

Obs. 0 aWi forma eehivalenta de reprezentare a modelului este ea model functional de tip

fi d ,.r, S b· H(s) __ b.p(s) -- ~unctie e transJer. eo tme: ---
b.Q,(s) Ts + 1

Modelul in variabile "normate" poate fi dedus in mod similar introducand:

b.p = P * = y; b.QI = Q* = u
Po Qo

dy 1
Cpo - + -YPo = Qou

dt Rp

In forma echivalenta "cu constante de timp" (inmultim totul cu Po) =>
Rp

~ Rp dy *RpC·-+y=-Qou , sau T-+y=K u
dt Po dt

iar constanta de timp este nemodificata T=RpC
* 7 *- Daca se ealculeaza y(T)=K l[l-e- =O,63K = 63% Ystationar =>rezulta 0 metoda

simpla de determinare a constantei de timp T
- pentru Rp == R statica => K* == 1 .
- u=l(treapta "unitara") este de fapt 0 variatie a debitului de intrare=> b.Q, = b.Qo

b) Modelul proceselor de umplere/golire a rezervoarelor hidraulice
Procesul este un rezervor hidraulie eu A=aria rezervorului constanta si evacuare prin pompa
cu debit constant Q2=const. (ventilul V2 - inchis si Vi -desehis) sau prin "eadere libera"
Q2 == a.Jh.

Se doreste determinarea unui model matematic care sa evidentieze comportarea din punct de
vedere al variatiei nivelului de lichid in rezervor (marime de iesire - "efect" -) atunci cand se
modifica debitul de la intrare (marime de intrare - "cauza")

Se parcurg aceleasi etape:
• Evidentierea variabilelor specifice, v=[Ql,Q2,h, V,... J
• Legea conservarii volumului de fluid (Q - debite volumetrice)

dV
Ql(t)-Q2(t)="di

V=f(h)=Ah=> daca A= constant, atunci rezulta modelul matematic neliniar:
dh

A dt = Ql(t)-Q2(P,t)

• Liniarizarea modelului
In fU1}ctiede cele doua regimuri de functionare ale rezervorului , exista doua situatii:

b.1) Evacuare prin pompa cu debit constant Q2=Q20 -ventilul de trecere V2- inchis-
Se introduc variabilele centrate iJh=h-ho unde ho corespunde unui PSF (punct static de

functionare) in care: QlO=Q20=QO=ct si Ql(t)=QO+L1Ql
Rezulta astfel:

A d(ho +tlh) = Q +~Q_Q
dt 0 0

Eliminand regimul stationar => A dtlh = ~Q
dt 1

tlh
Se trece la variabile normate notand : y =h;

o
~y

Aho - = Qou unde Aho= Vo astfel
dt

dy = Qo u. => yet) = Qo fudt =~ fudt
dt Vo Vo 1';

Acesta este modelul unui sistem "integrator" avand urmatorul "raspuns indicial":

v:
Ii= _0 -" constanta de timp de integrare"

Qo

Acest proces e un proces "fara autostabilizare". Echivalentul in reprezentare prin functie de
transfer este:

H(s) = Yes) =_1
U(s) J;s

b.2) Evacuare prin "ciidere liberii" -ventilul de trecere V\- inchis => Q2=Q2(h)

Dependenta neliniarii (Bernoulli), se liniarizeazii prin
dezvoltare in sene Taylor in jurul PSF (ho, Qo)

Q,(h) = Q,o +(;')0 (h-ho)+(iJ:h~'JJ (h-z~o)')+...
Se trece la variabile centrate :
LJ.h=h-ho
LJ.Ql=Ql-Q10
LJ.Q2=Q2-Q20

Modelulliniarizat se obtine prin inlocuire tinand cont cii :

(;'1+z~l =zk
Rezultii:

A d(ho +M) = (QlO+dQI)-[Q20 + ~dh]
dt . 2~ho

Se orienteazii liE modelul prin separarea variabilelor pentru a evidentia cauzalitatea si se
obtine:

dM a
A-+--dh=dQdt 2..jh; I

M * dQI *-=h =y si --=QI =u
ho Qo

Rezultii in final modelulliniarizat:
. dy a
Aho -. + ri::"" hoY = Qou -+

dt 2~ho
Parametrii modelului sunt:

2V
- constanta de timp este T = _0 (dublul timpului de golire) si

Qo .

- factorul de proportionalitate K* = 2 (adimensional)

2V dy
_0 - +Y = 2u unde Qo = a..jh;
Qo dt

o reprezentare echivalenta a modelului este prin functia de transfer (proportional cu
intarziere de ordin 1 P-Tl):

yes) 2. 1
H(s) =--=-- -are un smgurpol real egal cu --UW Th+l T

Sistemul se poate deasemenea reprezenta echivalent printr-un alt model ,,neparametric" si
anume caracteristica defrecventii (caracteristica Bode).

,
" ~

",I tlr

VTi t'",,
fara autostabilizare '"

Reprezentarea echivalenta ca "model discret" se poate obtine simplu prin "discretizare"
aproximand derivata din modelul continuu si trecand la "timpul discret" k=t/Ts:

y(k)

~ y(k+l)

I T, I

T y(k + 1) - y(k) + y(k) = Ku(k)
Ts

(T) KTy(k+l)= 1-; y(k)+ TS u(k)

Rezulta modelul discret functional in domeniul
timp (relatia de recurenta lIE) sub forma:
y(k + 1) = ay(k) +bu(k)

discret functional in domeniul complex, aplicandEchivalent se poate obtine
transformata Z :
zY(z) =aY(z)+bY(z)
Se obtine:

H(z) = Y(z) = _b_ = bz-
1

U(z) z-a l-az-1

PA *CA *QA * TAl + Ps *cS *Qs *TBJ - Pc *cC *Q*T2 +a*S*(Ta2 -T2)+
+(-tili)*V*k *e-EIRT*COI *C02 =PC*CC*V*dT2

o A2 S2 dt

• Pentru agent:

dT
(5) P * c * Q * T - P * c * Q *T - a *S* (r - T) = P * c * V *---.£l.o 0 0 oJ 0 0 0 02 02 2 0 0 0 dt

Observatie:
Modelul matematic este foarte puternic neliniar ~i de aceea solu{ia analitidi este imposibila.
Singura posibilitatepentru a cerceta modelul este prin simulare. Din punct de vedere istoric
toate reactoarele industriale complexe au fost dezvoltate initial prin simulare pe modele jizice la
scara redusa in faza de instalatie "pilot" sau "micropilot" apoi prin ridicarea la scara
realizandu-se instalatiile industriale.

Concluzie:
De multe ori acest model In ansamblul sau este instabil. Reactiile chimice nu conduc la regimuri
stationare care sa exprime stabilitatea procesului. Ele sunt in mod natural instabile ~i este
necesara stabilizarea prin sisteme de reglare automata cu structura specifica .

..--

Elementul component principal a1sistemelor de actionare electrica este motorul electric care
ponstitue convertor electromecanic al sistemului deactionare. Se estimeaza ca aproximativ 40-
60% din energia electrica se converte~te In energie mecanica prin siteme de actionare electrica.
Exemplu: modelul unui motor de curent continuu:

+g i Ue
) 1 U

Re
Le CI>

•

• Modelarea analitica
Au loc doua fenomene:
1) aparitia tensiunii electromotoare e prin fenomenul de inductie electromagnetic a
Tensiunea electromotoare indus a este proportionala cu fluxul de excitatie ~i viteza cu
care se rote~te rotorul

e=KC/Jn

2) Generarea cuplului electromagnetic
m=KC/Ji

Din echilibrul dinamic intre cup1ul mecanic la axul rotoric si euplul de sarcina rezulta
mi§carea de rotatie: viteza unghiulara n,pozitia unghiulara e. Presupunem ea sarcina
este caracterizata de momentul de inertie J §i de coeficientul de frecare vascoasa F.

radulescu
Typewritten Text

Teorema a doua a lui Kirchhoff, relatiile specifice motorului , ecuatia de miscare
mecanica pre cum si ecuatia circuitului de excitatie conduc-la:

di
u(t) = RAi(t)+LA-+e(t)

dt
e(t) = KIS>(t)O(t)

met) = KIS>(t)i(t)

dO
]-+FO=m-mrdt

U R· L diE
E = ElE + E-

dt
Pentru a obtine 0 reprezentare ca model functional (de tip functie de transfer) - pentru relap.ile
liniare se poate aplica. transformata Laplace.
Rezulta schema bloc functionaUi:

M J-
01 »

U(s)
E

Modelul neliniar poate fi folosit doar In simulare numerica .
Liniarizarea modelului:

1. Dad IS>este constant, atunci modelul se liniarizeaza in mod natural
Schema bloc simplificata este urmatoarea:

Putem ca1cula functia de transfer pe calea directa aplicand reguli1e algebrei schemelor .
bloc

1 1 1 1
_ K¢ (TAS + 1)TmS _ K¢ K¢-------'---- --_~--;::;

TATmS2 + TmS + 1 - TATmS2 + TmS + 1 (TmS + 1)(TAS + 1)
(TAS + 1)TmS

Se observa ea modelul este de tip P-T2 proportional eu intarziere de ordinul2 (eu poli reali) .

Pe eanalul tensiune -curent rezulta similar funetia de transfer:
1

_1 SI
. RA m Uo (Mr)

Istolionor = hm S 2 ~ 0 pt. =0
s~O T TS + T S + 1 S .m s. m

di = _ R A i _ ~ Q + _1_ u
dt LA LA LA
dO. 1 . F 1 ,- = - Kz - - 0. - - m
dt J J J r

Eventual se poate adaga ~i:

~~ = n Vectorul de stare fiind x = [~]

Presupunand euplulrezistent nul, se pot obtine prin ealcul aeeleasi funetii de transfer:
1

H1(s) = o.(s) = ensI - At! b = ~
U(s) TmTAs + Tms + 1

H2(s) =[1 O][sI-Arlb.

Simulink®

Getting Started Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Getting Started Guide
© COPYRIGHT 1990–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2005 Online only New for Version 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 First printing Revised for Simulink 6.6 (Release 2007a)
September 2007 Second printing Revised for Simulink 7.0 (Release 2007b)
March 2008 Third printing Revised for Simulink 7.1 (Release 2008a)
October 2008 Fourth printing Revised for Simulink 7.2 (Release 2008b)
March 2009 Fifth printing Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Sixth printing Revised for Simulink 7.8 (Release 2011b)
March 2012 Seventh printing Revised for Simulink 7.9 (Release 2012a)
September 2012 Eighth printing Revised for Simulink 8.0 (Release 2012b)
March 2013 Ninth printing Revised for Simulink 8.1 (Release 2013a)
September 2013 Tenth printing Revised for Simulink 8.2 (Release 2013b)
March 2014 Eleventh printing Revised for Simulink 8.3 (Release 2014a)
October 2014 Twelfth printing Revised for Simulink 8.4 (Release 2014b)
March 2015 Thirteenth printing Revised for Simulink 8.5 (Release 2015a)
September 2015 Fourteenth printing Revised for Simulink 8.6 (Release 2015b)
October 2015 Online only Rereleased for Simulink 8.5.1 (Release

2015aSP1)
March 2016 Fifteenth printing Revised for Simulink 8.7 (Release 2016a)
September 2016 Sixteenth printing Revised for Simulink 8.8 (Release 2016b)
March 2017 Seventeenth printing Revised for Simulink 8.9 (Release 2017a)
September 2017 Eighteenth printing Revised for Simulink 9.0 (Release 2017b)
March 2018 Nineteenth printing Revised for Simulink 9.1 (Release 2018a)
September 2018 Twentieth printing Revised for Simulink 9.2 (Release 2018b)
March 2019 Online only Revised for Simulink 9.3 (Release 2019a)

Introduction
1

Simulink Product Description . 1-2
Key Features . 1-2

Model-Based Design with Simulink . 1-3
Example Model-Based Design Workflow in Simulink 1-4

System Definition and Layout . 1-8
Determine Modeling Objectives . 1-9
Identify System Components and Interfaces 1-9

Model and Validate a System . 1-16
Model the Components . 1-16
Validate Components Using Simulation 1-21
Validate the Model . 1-24

Design a System in Simulink . 1-29
Identify Designed Components and Design Goals 1-29
Analyze System Behavior Using Simulation 1-30
Design Components and Verify Design 1-34

Documentation and Resources . 1-40
Simulink Online Help . 1-40
Simulink Examples . 1-40
Website Resources . 1-42

Modeling in Simulink
2

Simulink Block Diagrams . 2-2

v

Contents

Simple Simulink Model
3

Create a Simple Model . 3-2
Open New Model . 3-3
Open Simulink Library Browser . 3-5
Add Blocks to a Model . 3-7
Connect Blocks . 3-9
Add Signal Viewer . 3-12
Run Simulation . 3-12
Refine Model . 3-14

Navigate a Simulink Model
4

Navigate Model . 4-2
Navigate Through Model Hierarchy . 4-2
View Signal Attributes . 4-4
Trace a Signal . 4-7

vi Contents

Introduction

• “Simulink Product Description” on page 1-2
• “Model-Based Design with Simulink” on page 1-3
• “System Definition and Layout” on page 1-8
• “Model and Validate a System” on page 1-16
• “Design a System in Simulink” on page 1-29
• “Documentation and Resources” on page 1-40

1

Simulink Product Description
Simulation and Model-Based Design

Simulink is a block diagram environment for multidomain simulation and Model-Based
Design. It supports system-level design, simulation, automatic code generation, and
continuous test and verification of embedded systems. Simulink provides a graphical
editor, customizable block libraries, and solvers for modeling and simulating dynamic
systems. It is integrated with MATLAB®, enabling you to incorporate MATLAB algorithms
into models and export simulation results to MATLAB for further analysis.

Key Features
• Graphical editor for building and managing hierarchical block diagrams
• Libraries of predefined blocks for modeling continuous-time and discrete-time systems
• Simulation engine with fixed-step and variable-step ODE solvers
• Scopes and data displays for viewing simulation results
• Project and data management tools for managing model files and data
• Model analysis tools for refining model architecture and increasing simulation speed
• MATLAB Function block for importing MATLAB algorithms into models
• Legacy Code Tool for importing C and C++ code into models

1 Introduction

1-2

Model-Based Design with Simulink
Modeling is a way to create a virtual representation of a real-world system. You can
simulate this virtual representation under a wide range of conditions to see how it
behaves.

Modeling and simulation are especially valuable for testing conditions that are difficult to
reproduce with hardware prototypes alone. This is especially true in the early phase of
the design process when hardware is not yet available. Iterating between modeling and
simulation can improve the quality of the system design early, by reducing the number of
errors found later in the design process.

You can automatically generate code from a model and, when software and hardware
implementation requirements are included, create test benches for system verification.
Code generation saves time and prevents the introduction of manually coded errors.

In Model-Based Design, a system model is at the center of the workflow. Model-Based
Design enables fast and cost-effective development of dynamic systems, including control
systems, signal processing systems, and communications systems.

Model-Based Design allows you to:

• Use a common design environment across project teams
• Link designs directly to requirements
• Identify and correct errors continuously by integrating testing with design
• Refine algorithms through multidomain simulation
• Automatically generate embedded software code and documentation
• Develop and reuse test suites

 Model-Based Design with Simulink

1-3

Example Model-Based Design Workflow in Simulink
To get started with a Model-Based Design task, consider this workflow:

1 Introduction

1-4

The workflow in this tutorial focuses on fundamental Simulink tasks as they relate to
Model-Based Design.

 Model-Based Design with Simulink

1-5

For an example workflow, see:

• “System Definition and Layout” on page 1-8 — Identify modeling goals, determine
components, model system layout

• “Model and Validate a System” on page 1-16 — Model and test components, integrate
components, test system

• “Design a System in Simulink” on page 1-29 — Design and test new components

The first two tasks in this workflow model an existing system and establish the context for
designing a component. The next step in this workflow would be to implement the new
component. You can use rapid prototyping and embedded code generation products to
generate code and use the design with a real, physical system.

1 Introduction

1-6

See Also

Related Examples
• “System Definition and Layout” on page 1-8
• “Model and Validate a System” on page 1-16
• “Design a System in Simulink” on page 1-29
• “Organize Large Modeling Projects”

External Websites
• Simulink Overview
• Model-Based Design with MATLAB and Simulink

 See Also

1-7

https://www.mathworks.com/videos/simulink-overview-61216.html
https://www.mathworks.com/videos/model-based-design-with-matlab-and-simulink-69040.html

System Definition and Layout

In this section...
“Determine Modeling Objectives” on page 1-9
“Identify System Components and Interfaces” on page 1-9

The top-level system layout of a Simulinkmodel is a common context that many
engineering teams can use, and is the basis for many tasks in the Model-Based Design
paradigm: Analysis, design, test, and implementation. You define a system at the top level
by identifying the structure and individual components. You then organize your model in a
hierarchical manner that corresponds to the components. Then you define interfaces for
each component, and the connections between components.

The featured model is a flat robot that can move or rotate with the help of two wheels,
similar to a home vacuuming robot. This tutorial assumes that the robot moves in one of
two ways:

• Linear — Both wheels turn in the same direction with the same speed, and the robot
moves linearly.

• Rotational — The wheels turn in opposite directions with the same speed, and the
robot rotates in place.

1 Introduction

1-8

Each type of motion starts from a resting state, that is, both rotational and linear speeds
are zero. With these assumptions, linear and rotational motion components can be
modeled separately for this introductory tutorial.

Determine Modeling Objectives
Before designing a model, consider your goals and requirements. The goals dictate both
the structure, and the level of detail for the model. For example, if the goal is simply to
figure out how fast the robot can go, modeling just for linear motion is sufficient. If the
goal is to design a set of inputs for the device to follow a given path, then the rotational
component is involved. If obstacle avoidance is a goal, then the system needs a sensor.
This tutorial builds a model for the goal of designing sensor parameters so that the robot
stops in time when it detects an obstacle on its path. To achieve this goal, the model must
enable you to:

• Determine how quickly the robot stops when the motors stop
• Provide a series of commands for linear and rotational motion so that it can move over

a two-dimensional space

The first modeling objective enables you to analyze the motion so you can design the
sensor. The second objective enables you to test your design.

Identify System Components and Interfaces
Once you understand your modeling requirements, you can begin to identify the
components of the system. Identifying individual components and their relationships
within a top-level structure help build a potentially complex model systematically. You
perform these steps outside Simulink before you begin building your model.

This task involves answering these questions:

• What are the structural and functional components of the system? When a layout
reflects the physical and functional structure, it helps to understand, build,
communicate, and test the system. This becomes more important when parts of the
system are to be implemented in the process.

• What are the inputs and outputs for each component? Draw a picture showing the
connections between components. This picture leads to signal flow within the model,
and, in addition to the source and sink of each signal, it helps determine if all
necessary components exist.

 System Definition and Layout

1-9

• What level of detail is necessary? Include major parameters in your diagram. Creating
a picture of the system can help you identify and model the parts that are essential to
the behaviors you want to observe. Each component and parameter that contributes to
the goal must have a representation in the model, but there is a tradeoff between
complexity and readability. Modeling can be an iterative process: You can start with a
high-level model with few details, and gradually increase complexity where required.

In addition, it is often beneficial to consider the following:

• What parts of the system need testing?
• What is the test data and success criteria?
• Which outputs are necessary for analysis and design tasks?

Identify Robot Motion Components

The system in this tutorial defines a robot that moves with two electric wheels in two
dimensions. It includes:

• Linear motion characteristics
• Rotational motion characteristics
• Transformations to determine the location of the system in two dimensions
• A sensor to measure the distance of the robot from an obstacle

The model for this system includes two identical wheels, input forces applied to the
wheels, rotational dynamics, coordinate transformation, and a sensor. The model uses a
Subsystem to represent each component.

1 Open a new Simulink model: “Open New Model” on page 3-3.
2 From the Display menu, clear the Hide Automatic Names check box.
3 Open the Library Browser: “Open Simulink Library Browser” on page 3-5
4 Add Subsystem blocks. Drag five Subsystem blocks from the Ports & Subsystems

library to the new model.

1 Introduction

1-10

Arrange and rename the Subsystem blocks as shown. Double-click a block name and
type the new name.

Define Interfaces Between Components

Identify input and output connections (for example, signal lines) between subsystems.
Input and output values change dynamically during a simulation. Lines connecting blocks
represent data transfer. The table below shows the inputs and outputs for each
component.

Block Input Output Notes
Inputs None Force to right wheel

Force to left wheel

Right wheel Force to right wheel Right wheel velocity Directional, negative
means reverse
direction

Left wheel Force to left wheel Left wheel velocity Directional, negative
means reverse
direction

Rotation Velocity difference
between right and
left wheels

Rotational angle Measured
counterclockwise

Coordinate
transformation

Normal speed

Rotational angle

Velocity in X

Velocity in Y

 System Definition and Layout

1-11

Block Input Output Notes
Sensor X coordinate

Y coordinate

None No block necessary
for modeling. Sensor
dynamics is part of
the design task.

From the table, you can see that some block inputs do not exactly match block outputs.
Therefore, in addition to the dynamics of the individual components, the model must
compute the following:

• Input to the rotation computation — Subtract the velocities of the two wheels and
divide by two.

• Input to the coordinate transformation — Average the velocities of the two wheels.
• Input to the sensor — Integrate the outputs of the coordinate transformation.

The wheel velocities are always equal in magnitude and the computations are accurate
within that assumption.

Add the necessary components and finalize connections:

1 Add necessary input and output ports to each subsystem. Double-click a Subsystem
block.

Each new Subsystem block contains one Inport (In1) and one Outport (Out1) block.
These blocks define the signal interface with the next higher level in a model
hierarchy.

Each Inport block creates an input port on the Subsystem block, and each Outport
block creates an output port. The model reflects the names of these blocks as the
input/output port names. Add more blocks for additional input and output signals. On
the Simulink Editor toolbar, click the Up to Parent button to return to the top
level.

For each block, add and rename Inport and Outport blocks:

1 Introduction

1-12

When copying an Inport block to create a new one, you must use the Paste option.
2 Compute required inputs from left wheel and right wheel velocities shown.

a Add an Add block from the Math Operations library and connect the outputs of
the two-wheel components. Click the output port of the source block and then
click the input port of the destination block. Add a Gain block and set the
parameter to 1/2. Compute the Linear speed input to the Coordinate Transform
subsystem, connect the output of the Add block to this Gain block.

b Add a Subtract block from the Math Operations library and connect the outputs
of the two-wheel components. Add a Gain block and set the parameter to 1/2.
Compute the Speed difference input to the Rotation subsystem, connect the
output of the Subtract block to this Gain block.

3 Compute X and Y coordinates from the X and Y velocities. Add two Integrator blocks
from the Continuous library and connect the outputs of the Coordinate Transform
block. Leave initial conditions to the Integrator blocks as 0.

 System Definition and Layout

1-13

4 Complete the connections for the system as shown.

Parameters and Data

Determine the parameters that are part of the model and their values. Use modeling goals
to determine whether these values are always fixed or change from simulation to
simulation. Parameters that contribute to the modeling goal require explicit
representation in the model. This table helps determine the level of detail when modeling
each component.

Parameter Block Symbol Value/Unit Notes
Mass Left/right wheel m 2.5 kg Variable
Rolling
resistance

Left/right wheel k_drag 30 Ns2/m Variable

Robot radius Rotation
computation

r 0.15 m Variable

Initial angle Rotation
computation

None. 0 Fixed

Initial velocities Left/right wheel None. (0,0) Fixed
Initial
coordinates

Integrators None (0,0) Fixed

Simulink uses MATLAB workspace to evaluate parameters. Set these parameters in the
MATLAB command window:

1 Introduction

1-14

m = 2.5;
k_drag = 30;
r = 0.15;

See Also

Related Examples
• “Model and Validate a System” on page 1-16
• “Design a System in Simulink” on page 1-29

 See Also

1-15

Model and Validate a System
You model each component within the system structure to represent the physical or
functional behavior of that component. You verify the basic component behavior by
simulating them using test data.

A big-picture view of the whole system layout is useful when modeling individual
components. Start by loading the layout model:

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'system_layout'))

Model the Components
A Simulink model of a component is based on several starting points:

• An explicit mathematical relationship between the output and the input of a physical
component — You can compute the outputs of the component from the inputs, directly
or indirectly, through algebraic computations and integration of differential equations.
For example, computation of the water level in a tank given the inflow rate is an
explicit relationship. Each Simulink block executes based on the definition of the
computations from its inputs to its outputs.

• An implicit mathematical relationship between model variables of a physical
component — Because variables are interdependent, assigning an input and an output
to the component is not straightforward. For example, the voltage at the + end of a
motor connected in a circuit and the voltage at the – end have an implicit relationship.
To model such a relationship in Simulink, you can either use physical modeling tools
such as Simscape™ or model these variables as part of a larger component that allows
input/output definition. Sometimes, closer inspection of modeling goals and
component definitions helps to define input/output relationships.

• Data obtained from an actual system — You have measured input/output data from the
actual component, but a fully defined mathematical relationship does not exist. Many
devices have unmodeled components that fit this description. An example would be the
heat a TV set dissipates. You can use System Identification Toolbox™ to define the
input/output relationship for such a system.

• An explicit functional definition — You define the outputs of a functional component
from the inputs through algebraic and logical computations. The switching logic of a
thermostat is an example. You can model most functional relationships as Simulink
blocks and subsystems.

1 Introduction

1-16

This tutorial models physical and functional components with explicit input/output
relationships:

1 Use the system equations to create a Simulink model.
2 Add Simulink blocks in the Simulink Editor. Blocks represent coefficients and

variables from the equations. Connect blocks.
3 Build the model for each component separately. The most effective way to build a

model of a system is to consider components independently.
4 Start by building simple models using approximations of the system. Identify

assumptions that can affect the accuracy of your model. Iteratively add detail until
the level of complexity satisfies the modeling and accuracy requirements.

Model the Physical Components

Describe the relationships between components, for example, data, energy, and force
transfer. Use the system equations to build a graphical model of the system in Simulink.

Some questions to ask before you begin to model a component:

• What are the constants for each component and the values that do not change unless
you change them?

• What are the variables for each component and the values that change over time?
• How many state variables does a component have?

Derive the equations for each component using scientific principles. Many system
equations fall into three categories:

• For continuous systems, differential equations describe the rate of change for
variables with the equations defined for all values of time. For example, a second-
order differential equation provides the velocity of a car:

• For discrete systems, difference equations describe the rate of change for variables,
but the equations are defined only at specific times. For example, the following
difference equation gives the control signal from a discrete propositional-derivative
controller:

• Equations without derivatives are algebraic equations. For example, an algebraic
equation gives the total current in a parallel circuit with two components:

 Model and Validate a System

1-17

Wheels and Linear Motion

There are two forces that act on a wheel:

• Force applied by the motor — This force F acts in the direction of velocity change, and
is an input to the wheel subsystem.

• Drag force — This force Fdrag acts against the direction of velocity change, and is a
function of the velocity itself:

Fdrag = kdragV V

The acceleration is proportional to the sum of these forces:

(/)

(/)

(/)

m V F F

m V F k V V

V
F k V V

m

drag

drag

drag

2

2

2

&

&

&

= -

= -

=

-

Where kdrag is the drag coefficient and m is the mass of the robot. Each wheel carries half
of this mass.

Build the wheel model:

1 In the layout model, double-click the Right Wheel subsystem to display the empty
subsystem. Delete the connection between the Inport and the Outport blocks.

2 Model velocity and acceleration. Add an Integrator block. Leave the initial condition
as 0. The output of this block is the velocity, V, and the input is the acceleration,
Vdot.

3 Model the drag force. Add an Fcn block from the User-Defined Functions library. Set
the expression to k_drag*u*abs(u). You can resize the block to see the expression
on its icon. The Fcn block provides a quick way to type simple mathematical
expressions of one input variable, u.

4 Subtract the drag force from the motor force with Subtract block, and complete the
force-acceleration equation with a Gain block with parameter 1/(2*m).

5 To reverse the direction of the Fcn block, right-click the block and select Rotate &
Flip > Flip Block. Make the connections between blocks as shown.

1 Introduction

1-18

6
View the top level of the model: Click the Up to Parent button . Make a copy of
the subsystem you modeled as the dynamics for both wheels are the same.

Rotational Motion

When the two wheels turn in opposite directions, that is, they have directionally opposite
velocities, they move in a circle with radius r, causing rotational motion. When they turn
in the same direction, there is no rotation. Therefore, with the assumption that the wheel
velocities are always the same in magnitude, it is practical to model rotational motion as
dependent on the difference of the two velocities, VR and VL:

θ̇ =
VR− VL

2r

Build the Rotation Dynamics model:

1 In the layout model, double-click the Rotation subsystem to display the empty
subsystem. Delete the connection between the Inport and the Outport.

2 Model angular speed and angle: Add an Integrator block. Leave the initial condition
as 0. The output of this block is the angle, theta, and the input is the angular speed,
theta_dot.

3 Compute angular speed from tangential speed. Add a Gain with parameter 1/(2*r).
4 Make the connections between blocks as follows.

 Model and Validate a System

1-19

5
View the top level: Click the Up to Parent button .

Model the Functional Components

Describe the function from the input of a function to its output. This description can
include algebraic equations and logical constructs, which you can use to build a graphical
model of the system in Simulink.

Coordinate Transformation

The velocity of the robot in the X and Y coordinates, Vx and Vy, are related to the linear
speed, Vn, and the angle as follows:

VX = − VNcos(θ)
VY = VNsin(θ)

Build coordinate transformation model:

1 In the layout model, double-click the Coordinate Transform subsystem to display the
empty subsystem.

2 Model trigonometric functions. Add a SinCos block from the Math Operations library.
3 Model multiplications. Add two Product blocks from the Math Operations library.
4 Make connections between the blocks as shown.

5
View the top level: Click the Up to Parent button .

Set Model Parameters

A source for model parameter values can be:

• Written specifications such as standard property tables or manufacturer data sheets

1 Introduction

1-20

• Direct measurements on an existing system
• Estimations using system input/output

The model uses these parameters:

Parameter Symbol Value/Unit
Mass m 2.5 kg
Rolling resistance k_drag 30 Ns2/m
Robot radius r 0.15 m

Simulink uses MATLAB workspace to evaluate parameters. Set these parameters in the
MATLAB command window:

m = 2.5;
k_drag = 30;
r = 0.15;

Validate Components Using Simulation
Validate components by supplying an input and observing the output. Even such a simple
validation can point out immediate ways to improve the model. This example validates the
following behavior:

• When a force is applied continuously to a wheel, the velocity increases until it reaches
a steady-state velocity.

• When the wheels are turning in opposite directions, the angle increases steadily.

Validate Wheel Component

Create and run a test model for the wheel component:

1
Create a model. Click and copy the Right Wheel block into the new model.

2 Create a test input in the new model. Add a Step block from the Sources library.
Connect it to the input of the Right Wheel block.

3 Add a viewer to the output. Right-click the output port of the Right Wheel block and
select Create & Connect Viewer > Simulink > Scope.

 Model and Validate a System

1-21

4
Run the simulation. Click .

The simulation result exhibits the general expected behavior. There is no motion until
force is applied at step time. When force is applied, the speed starts increasing and then
settles at a constant when the applied force and the drag force reach an equilibrium.
Besides validation, this simulation also gives information on the maximum speed of the
wheel with the given force.

Validate Rotation Component

Create and run a test model for the rotation model:

1 Introduction

1-22

1
Create a model. Click and copy the Rotation block into the new model.

2 Create a test input in the new model. Add a Step block from the Sources library.
Connect it to the input of the Rotation block. This input represents the difference of
the wheel velocities when the wheels are rotating in opposite directions.

3 Add a viewer to the output. Right-click the output port of the Rotation block and
select Create & Connect Viewer > Simulink > Scope.

4
Run the simulation. Click .

This simulation shows that the angle increases steadily when the wheels are turning with
the same speed in opposite directions. You can make some model improvements to make
it easier to interpret the angle output, for example:

 Model and Validate a System

1-23

• You can convert the output in radians to degrees. Add a Gain block with a gain of
180/pi.

• You can display the degrees output in cycles of 360 degrees. Add a Math Function
block with function mod.

MATLAB trigonometric functions take inputs in radians.

Validate the Model
After you validate components, you can perform a similar validation on the complete
model. This example validates the following behavior:

• When the same force is applied to both wheels in the same direction, the vehicle
moves in a line.

• When the same force is applied to both wheels in opposite directions, the vehicle turns
around itself.

1 In the layout model, double-click the Inputs subsystem to display the empty
subsystem.

2 Create a test input by adding a Step block. Connect it to both Outport blocks.

3 At the top level of the model, add both output signals to the same viewer:

4 Run the model.

1 Introduction

1-24

In this figure, the yellow line is the X direction and the blue line is the Y direction.
Since the angle is zero and is not changing, the vehicle moves only in the X direction,
as expected.

5 Double-click the Inputs subsystem and add a Gain with parameter -1 between the
source and the second output. This reverses the direction for the left wheel.

6 Add a scope to the angle output.
7 Run the model.

 Model and Validate a System

1-25

1 Introduction

1-26

The first view shows that there is no motion in the X-Y plane. The second view shows
that there is steady rotation.

You can use this final model to answer many questions about the model by changing the
input. Some examples are:

• What happens when the initial angle is not zero?
• How long does it take for the motion to stop when the force drops to zero?
• What happens when the robot is heavier?
• What happens when the robot moves on a smoother surface, that is, the drag
coefficient is lower?

 Model and Validate a System

1-27

See Also

Related Examples
• “System Definition and Layout” on page 1-8
• “Design a System in Simulink” on page 1-29

1 Introduction

1-28

Design a System in Simulink
In this section...
“Identify Designed Components and Design Goals” on page 1-29
“Analyze System Behavior Using Simulation” on page 1-30
“Design Components and Verify Design” on page 1-34

Model-Based Design paradigm is centered around models of physical components and
systems as a basis for design, testing, and implementation activities. This tutorial adds a
designed component to an existing system model.

The model is a flat robot that can move or rotate with the help of two wheels, similar to a
home vacuuming robot. Open the model by entering the code at the MATLAB command
line.

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'system_model'))

This tutorial analyzes this system and adds functionality to it.

Identify Designed Components and Design Goals
Proper specification of the objective is a critical first step to the design task. Even with a
simple systems, there could be multiple, and even competing design goals. Consider these
for the example model:

• Design a controller that varies the force input so that the wheels turn at a desired
speed.

• Design inputs that make the device move in a predetermined path.
• Design a sensor and a controller so that the device follows a line.
• Design a planning algorithm so that the device reaches a certain point using the

shortest path possible while avoiding obstacles.
• Design a sensor and an algorithm so that the device moves over a certain area while

avoiding obstacles.

This tutorial designs an alert system. You determine the parameters for a sensor that
measures the distance from an obstacle. A perfect sensor measures the distance from an
obstacle accurately, an alert system samples those measurements at fixed intervals so

 Design a System in Simulink

1-29

that the output is always within 0.05 m of the measurement, and generates an alert in
time for the robot to come to a stop.

Analyze System Behavior Using Simulation
The design of the new component requires analyzing linear motion to determine:

• How far the robot can travel at the top speed if power to the wheels is cut
• The robot's top speed

Run the model with a force input that starts motion, waits until the robot reaches a steady
velocity, and then sets the force to zero:

1 In the model, double-click the Inputs subsystem.
2 Delete the existing input and add a Pulse Generator block with the default

Amplitude parameter.
3 Set parameters for the Pulse Generator block:

• Period: 20
• Pulse Width: 15

These parameters are designed to ensure that the top speed is reached. You can
change parameters to see their effect.

4 Run the model for 20 sec.

1 Introduction

1-30

 Design a System in Simulink

1-31

The first scope shows that the speed rapidly starts decreasing when the power is cut at
time 3, and then asymptotically approaches zero but does not quite reach it. This is a
limitation of modeling — the dynamics at low speeds without external force may require a
more complex representation. For the objective here, however, it is possible to make
approximations. Zoom into the position signal

1 Introduction

1-32

At time 3, the position of the robot is at about 0.55 m, and when the simulation ends, it is
less than 0.71 m. It is safe to say that the robot travels less than 0.16 m after the power is
cut.

To find the top speed,

1 Zoom on the stable region of the velocity output in time, from 1 s to 3 s.
2 Leave zoom mode by clicking the zoom button again. Click Cursor Measurements

button .
3 Set the second cursor to the region where the line is horizontal.

 Design a System in Simulink

1-33

The Value column in Cursor Measurements indicate that the top speed of the robot is
0.183 m/s. Divide 0.05 by this speed to obtain the time it takes the robot to travel 0.05 m
— 0.27 s.

Design Components and Verify Design
Sensor design consists of these components:

• Measurement of the distance between the robot and the obstacle — This example
assumes that the measurement is perfect.

• The interval at which the sensor system measures the distance: To keep the
measurement error below 0.05 m, this interval should be less than 0.27 sec. Use 0.25
sec.

• The distance at which the sensor produces an alert — Analysis shows that slow down
must start at 0.16 m, but the actual alert distance must also take the measurement
error, 0.05, into account.

1 Introduction

1-34

Add Designed Component

Build the sensor:

1 Create a subsystem with the ports as shown.

2 Construct the distance measurement. In the sensor model block, use Subtract, Math
Function with magnitude^2 function, Sum, and Sqrt blocks as shown. Note the
reordering of the input ports.

3 Model sampling. Add a Zero-Order Hold block from the Discrete library to the
subsystem and set its Sample Time parameter to 0.25.

4 Model the alert logic. Use the Compare to Constant from Math Operations and set its
parameters:

• Operator: <=
• Constant Value: 0.21

 Design a System in Simulink

1-35

This logical block sets its output to 1 when its input is less than 0.21.

Verify Design

Test the design with an obstacle location of X=0.65, Y=0, using Constant blocks as input.
This test verifies functionality in the X direction, you can create similar tests for different
paths. This model only generates an alert. It does not control the robot.

1 Introduction

1-36

1 Set the obstacle location: Add two Constant blocks from the Sources library set the
constant values to 0.65 and 0. Connect the position outputs of the robot to the inputs
of the sensor.

2 Add a scope to the Alert output.

3 Run the model.

 Design a System in Simulink

1-37

Observe that the alert status becomes 1 once the position is within 0.21 m of the obstacle
location and the design requirement for this component is satisfied.

For real-world systems with complex components and formal requirements, the Simulink
product family includes additional tools refine and automate the design process. Simulink
Requirements™ provide tools to formally define requirements and link them to model
components. Simulink Control Design™ can facilitate the design if you want to build a
controller for this robot. Simulink Verification and Validation™ products establish a formal
framework for testing components and systems.

1 Introduction

1-38

See Also

Related Examples
• “Model-Based Design with Simulink” on page 1-3
• “System Definition and Layout” on page 1-8
• “Model and Validate a System” on page 1-16

 See Also

1-39

Documentation and Resources
In this section...
“Simulink Online Help” on page 1-40
“Simulink Examples” on page 1-40
“Website Resources” on page 1-42

Simulink Online Help
Simulink software provides comprehensive online help describing features, blocks, and
functions with detailed procedures for common tasks.

Access online help from Help menus and context-sensitive block labels.

•
From the Simulink Library Browser toolbar, select the Help button .

• From the Simulink Editor menu, select Help > Simulink > Simulink Help.
• Right-click a Simulink block, and then select Help.
• From the model Configuration Parameters dialog box or a block parameters dialog

box, right-click a parameter label, then select What’s This?

Simulink Examples
Simulink provides example models that illustrate key modeling concepts and Simulink
features. To view a list of examples:

• From the Simulink Editor menu, select Help > Simulink > Examples.
• From the Help browser, open the Simulink product page, and then click Examples at

the top right.

1 Introduction

1-40

To open the Simulink model for an example, click the Open Model button.

 Documentation and Resources

1-41

Website Resources
You can access additional Simulink resources on the MathWorks website, including a
description of capabilities, technical articles, tutorials, and hardware support.

https://www.mathworks.com/products/simulink

1 Introduction

1-42

https://www.mathworks.com/products/simulink

Modeling in Simulink

2

Simulink Block Diagrams
Simulink is a graphical modeling and simulation environment for dynamic systems. You
can create block diagrams, where blocks represent parts of a system:

A block can represent a physical component, a small system, or a function; an input/
output relationship fully characterizes the block. Consider these examples:

• A faucet fills a bucket: Water goes into the bucket at a certain flow rate, and the
bucket gets heavier. Here, a block represents the bucket, with flow rate as its input
and its weight as the output.

• You use a megaphone to make your voice heard: Sound produced at one end of the
megaphone is amplified at the other end. The megaphone is the block, the input is the
sound wave at its source, and the output is the sound wave as you hear it.

• You push a cart and it moves: Here the cart can be the block, the force you apply is the
input and cart position is the output.

The definition of a block is only complete with its inputs and outputs and this task relates
to the goal of the model. For example, the cart velocity may be a natural choice as an
output if the modeling goal does not involve its location.

Simulink provides block libraries that are collections of blocks grouped by functionality.
For example, to model a megaphone that simply multiplies its input by a constant, you
would use a Gain block from the Math Operations library.

2 Modeling in Simulink

2-2

A sound wave goes into the megaphone, as its input, and a louder version of the same
wave comes out as its output.

The ">" signs denote the inputs and outputs of a block, and can be connected to other
blocks.

You can connect blocks to other blocks to represent more complex functionality and form
systems. An audio player, for example, turns a digital file into sound: A digital
representation is read from storage, gets interpreted mathematically, and is turned into
sound physically. The software that processes the digital file to compute the sound
waveform can be one block; the speaker that takes the waveform and turns it into sound
can be another block. A component that generates the input is also a block in its own
right.

To model the sine wave input to the megaphone in Simulink, you would include a Sine
Wave source:

The primary function of Simulink is to simulate behavior of system components over time.
In its simplest form, this task involves keeping a clock, determining the order in which the

 Simulink Block Diagrams

2-3

blocks are to be simulated, and propagating the outputs, computed in the block diagram,
to the next block. Consider the megaphone. At each time step, Simulink must compute the
value of the sine wave, propagate it to the megaphone, and then compute the value of its
output.

At each time step, each block computes its outputs from its inputs. Once all the signals in
a diagram are computed at a given time step, Simulink determines the next time step
(based on the model configuration and numerical solver algorithms) and advances the
simulation clock. Then each block computes their output for this new time step.

2 Modeling in Simulink

2-4

In simulation, time progresses differently from a real clock. Each time step takes as much
time as it takes to finish the computations for that time step, whether that time step
represents a fraction of a second or a few years.

Often, the effect of a component's input on its output is not instantaneous. For example,
turning on a heater does not result in an instant change in temperature. Rather, this
action provides input to a differential equation, and the history of the temperature (a
state) is also a factor. When simulation requires solving a differential or difference
equation, Simulink employs memory and numerical solvers to compute the state values
for the time step.

Simulink handles data in three categories:

• Signals — Block inputs and outputs, computed during simulation
• States — Internal values, representing the dynamics of the block, computed during

simulation
• Parameters — Values that affect the behavior of a block, controlled by the user

 Simulink Block Diagrams

2-5

At each time step, Simulink computes new values for signals and states. By contrast, you
specify parameters when you build the model and can occasionally change them while
simulation is running.

2 Modeling in Simulink

2-6

Simple Simulink Model

3

Create a Simple Model
In this section...
“Open New Model” on page 3-3
“Open Simulink Library Browser” on page 3-5
“Add Blocks to a Model” on page 3-7
“Connect Blocks” on page 3-9
“Add Signal Viewer” on page 3-12
“Run Simulation” on page 3-12
“Refine Model” on page 3-14

You can use Simulink to model a system and then simulate the dynamic behavior of that
system. The basic techniques you use to create a simple model in this tutorial are the
same as those you use for more complex models. This example simulates simplified
motion of a car. A car is typically in motion while the gas pedal is pressed. After the pedal
is released, the car idles and comes to a stop.

A Simulink block is a model element that defines a mathematical relationship between its
input and output. To create this simple model, you need four Simulink blocks.

Block Name Block Purpose Model Purpose
Pulse Generator Generate an input signal for

the model
Represent the accelerator
pedal

Gain Multiply the input signal by
a factor

Calculate how pressing the
accelerator affects the car
acceleration

Integrator, Second-Order Integrate input signal twice Obtain position from
acceleration

Outport Designate a signal as an
output from the model

Designate the position as an
output from the model

3 Simple Simulink Model

3-2

Simulating this model integrates a brief pulse twice to get a ramp. The results display in a
Scope window. The input pulse represents a press of the gas pedal — 1 when the pedal is
pressed and 0 when it is not. The output ramp is the increasing distance from the starting
point.

Open New Model
Use the Simulink Editor to build your models.

1
Start MATLAB. From the MATLAB toolstrip, click the Simulink button .

 Create a Simple Model

3-3

2 Click the Blank Model template.

The Simulink Editor opens.

3 Simple Simulink Model

3-4

3 From the File menu, select Save as. In the File name text box, enter a name for
your model, For example, simple_model. Click Save. The model is saved with the
file extension .slx.

Open Simulink Library Browser
Simulink provides a set of block libraries, organized by functionality in the Library
Browser. The following libraries are common to most workflows:

• Continuous — Blocks for systems with continuous states
• Discrete — Blocks for systems with discrete states
• Math Operations — Blocks that implement algebraic and logical equations
• Sinks — Blocks that store and show the signals that connect to them
• Sources — Blocks that generate the signal values that drive the model

1
From the Simulink Editor toolbar, click the Library Browser button .

 Create a Simple Model

3-5

2 Set the Library Browser to stay on top of the other desktop windows. On the Library

Browser toolbar, select the Stay on top button .

To browse through the block libraries, select a category and then a functional area in the
left pane. To search all of the available block libraries, enter a search term.

For example, find the Pulse Generator block. In the search box on the browser toolbar,
enter pulse, and then press the Enter key. Simulink searches the libraries for blocks with
pulse in their name or description, and then displays the blocks.

3 Simple Simulink Model

3-6

Get detailed information about a block. Right-click a block, and then select Help for the
Pulse Generator block. The Help browser opens with the reference page for the block.

Blocks typically have several parameters. You can access all parameters by double-
clicking the block.

Add Blocks to a Model
To start building the model, browse the library and add the blocks.

1 From the Sources library, drag the Pulse Generator block to the Simulink Editor. A
copy of the Pulse Generator block appears in your model with a text box for the value
of the Amplitude parameter. Enter 1.

 Create a Simple Model

3-7

Parameter values are held throughout the simulation.
2 Add the following blocks to your model using the same approach.

Block Library Parameter
Gain Simulink/Math Operations Gain: 2
Integrator,
Second Order

Simulink/Continuous Initial condition: 0

Outport Simulink/Sinks Port number: 1

Add a second Outport block by copying the existing one and pasting it at another
point using keyboard shortcuts.

Your model now has the blocks you need.
3 Arrange the blocks as follows by clicking and dragging each block. To resize a block,

click and drag a corner.

3 Simple Simulink Model

3-8

Connect Blocks
Connect the blocks by creating lines between output ports and input ports.

1 Click the output port on the right side of the Pulse Generator block.

The output port and all input ports suitable for a connection get highlighted.

 Create a Simple Model

3-9

2 Click the input port of the Gain block.

Simulink connects the blocks with a line and an arrow indicating the direction of
signal flow.

3 Simple Simulink Model

3-10

3 Connect the output port of the Gain block to the input port on the Integrator, Second
Order block.

4 Connect the two outputs of the Integrator, Second Order block to the two Outport
blocks.

5 Save your model. Select File > Save and provide a name.

 Create a Simple Model

3-11

Add Signal Viewer
To view simulation results, connect the first output to a Signal Viewer.

Access the context menu by right-clicking the signal. Select Create & Connect Viewer >
Simulink > Scope. A viewer icon appears on the signal and a scope window opens.

You can open the scope at any time by double-clicking the icon.

Run Simulation
After you define the configuration parameters, you are ready to simulate your model.

3 Simple Simulink Model

3-12

1 On the model window, set the simulation stop time by changing the value at the
toolbar.

The default stop time of 10.0 is appropriate for this model. This time value has no
unit. Time unit in Simulink depends on how the equations are constructed. This
example simulates the simplified motion of a car for 10 seconds — other models could
have time units in milliseconds or years.

2
To run the simulation, click the Run button .

The simulation runs and produces the output in the viewer.

 Create a Simple Model

3-13

Refine Model
This example takes an existing model, moving_car.slx, and models a proximity sensor
based on this motion model. In this scenario, a digital sensor measures the distance
between the car an obstacle 10 m (30 ft) away. The model outputs the sensor
measurement, and the position of the car, taking these conditions into consideration:

• The car comes to a hard stop when it reaches the obstacle.
• In the physical world, a sensor measures the distance imprecisely, causing random

numerical errors.
• A digital sensor operates at fixed time intervals.

Change Block Parameters

To start, open the moving_car model. In the MATLAB Command Window, enter

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'moving_car'))

You first need to model the hard stop when the car position reaches 10. The Integrator,
Second Order block has a parameter for that purpose.

1 Double-click the Integrator, Second Order block. The Block Parameters dialog box
appears.

2 Select Limit x and enter 10 for Upper limit x.

3 Simple Simulink Model

3-14

The background color for the parameter changes to indicate a modification that is not
applied to the model.

3 Click OK to apply the changes and close the dialog box.

Add New Blocks and Connections

Add a sensor that measures the distance from the obstacle.

1 Modify the model. Extend the model window to accommodate the new blocks as
necessary.

 Create a Simple Model

3-15

• Find the actual distance. To find the distance between the obstacle position and
the vehicle position, add the Subtract block. Also add the Constant block to set the
constant value of 10 for the position of the obstacle.

• Model the imperfect measurement that would be typical to a real sensor. Generate
noise by using the Band-Limited White Noise block from the Sources library. Set
the Noise power parameter to 0.001. Add the noise to the measurement by
using an Add block from the Math Operations library.

• Model the digital sensor that fires every 0.1 seconds. In Simulink, sampling of a
signal at a given interval requires a sample and hold, implemented by a zero-order
hold. Add the Zero-Order Hold block from the Discrete library. After you add the
block to the model, change the Sample Time parameter to 0.1.

• Add another Outport to connect to the sensor output. Leave the Port number
parameter as default.

2 Connect the new blocks. Note that the output of the Integrator, Second-Order block is
already connected to another port. To create a branch in that signal, left-click the
signal to highlight potential ports for connection, and click the appropriate port.

Annotate signals

Add signal names to the model to make it easier to understand.

1 Double-click the signal. An editable textbox appears.

3 Simple Simulink Model

3-16

2 Type the signal name.

3 To finish, click away from the textbox.
4 Repeat these steps to add the names as shown.

Compare Multiple Signals

Compare the actual distance signal with the measured distance signal.

1 Create and connect a Scope to the actual distance. Note that the name of the signal
appears in the viewer title.

2 Add the measured distance signal to the same viewer. Right-click the signal, and
select Connect to Viewer > Scope1. Make sure you are connecting to the viewer
you created in the previous step.

 Create a Simple Model

3-17

3 Run the model. The Viewer shows the two signals, actual distance in yellow and
measured distance in blue.

3 Simple Simulink Model

3-18

4 Zoom into the graph to observe the effect of noise and sampling. Click the Zoom

button . Left-click and drag a window around the region you want to see.

 Create a Simple Model

3-19

You can repeatedly zoom in to observe the details.

3 Simple Simulink Model

3-20

From the plot, you can see that the measurement can deviate from the actual value by as
much as 0.3 m. This information becomes useful when designing a safety feature, for
example, a collision warning.

See Also
Blocks
Add | Band-Limited White Noise | Constant | Gain | Pulse Generator | Second-Order
Integrator, Second-Order Integrator Limited | Zero-Order Hold

Related Examples
• “Model and Validate a System” on page 1-16

 See Also

3-21

Navigate a Simulink Model

4

Navigate Model
In this section...
“Navigate Through Model Hierarchy” on page 4-2
“View Signal Attributes” on page 4-4
“Trace a Signal” on page 4-7

Simulink models are hierarchical, so you can build models using both top-down and
bottom-up approaches. You can view the system at a high level, then drill down to see
increasing levels of model detail. This approach provides insight into how a model is
organized and how parts interact.

To start, open the smart_braking model. In the MATLAB Command Window, enter

open_system(fullfile(matlabroot,...
'help', 'toolbox', 'simulink', 'examples', 'smart_braking'))

This model includes the following components and data flow:

• A vehicle moves as the gas pedal is pressed.
• A proximity sensor measures its distance from an obstacle.
• An alert system generates an alarm based on that proximity.
• The alarm automatically controls the brake to avoid hitting the obstacle.

Navigate Through Model Hierarchy
You connect blocks together to model complex components. In this model, Vehicle,
Proximity sensor, and Alert system are all complex components with multiple blocks, and
they exist in a hierarchy of subsystems. To view its contents, double-click any subsystem:

4 Navigate a Simulink Model

4-2

To view the complete tree, click the Hide/Show Model Browser button at the
bottom left corner of the model window.

The Model Browser shows that all subsystems you view at the top level also have
subsystems of their own. Click > icons to see the subsystems. You can navigate through
the hierarchy in the Model Browser. For example, click the Sensor model subsystem:

 Navigate Model

4-3

Observe that the subsystem is highlighted in the Model Browser. The address bar also
shows which subsystem you are viewing. To open the subsystem in a separate window
instead, right-click the subsystem name and select Open In New Window.

Every input or output port on a subsystem has a corresponding Inport or Outport block
inside the subsystem. These blocks indicate data transfer between a subsystem and its
parent. In the case of multiple inputs or outputs, the number on the block designates
which port it connects to on the subsystem.

View Signal Attributes
The signal lines in Simulink indicate data transfer from block to block. These signals have
attributes essential to the function of the model:

4 Navigate a Simulink Model

4-4

• Size: Scalar, vector, or matrix
• Data type: String, double, unsigned integer, etc.
• Sample time: The fixed time interval at which this signal has an updated value, or

continuous sampling

To show the data type of all signals on a model, select Display > Signals & Ports > Port
Data Types:

The model displays data types along the signal types. Observe that most signals are
double, except the output of the Alert subsystem. Double-click this subsystem to
investigate why:

The labels in this subsystem suggests that data type change occurs in the Alert device
subsystem, double-click to investigate:

 Navigate Model

4-5

This shows that the Alert device component converts the alert index signal from a double
to an integer. You can set the data type at sources, or use a Data Type Conversion block
from the Signal Attributes library. The double data type, the default, provides the best
numerical precision and is supported in all blocks. It also uses the most memory and
computing power. Other numerical data types serve to model typical embedded systems
where memory and computing power are limited.

To show sample times, select Display > Sample Time > Colors. This updates the model
to show different colors for different sample times, and also displays a legend:

4 Navigate a Simulink Model

4-6

• A block or signal with continuous dynamics is black. They update as often as Simulink
requires to make the computations as close to the physical world as possible.

• A block or signal that is constant is magenta. They remain unchanged through
simulation.

• A discrete block or signal that updates at the lowest fixed interval is red: They update
only at fixed intervals. If the model contains components with different fixed sample
times, each sample time has a different color.

• A subsystem that contains continuous and discrete components are yellow: They are
hybrid systems.

Trace a Signal
This model has a constant source and a discrete output. To determine where the sampling
scheme changes., trace the output signal through blocks:

1
Open the Model Browser: Click the Hide/Show Model Browser button .

2 Highlight the source of the output signal: Right-click the signal and select Highlight
Signal to Source.

 Navigate Model

4-7

This takes the editor into highlight mode. Click the editor to continue. Make sure
there is a blue frame around the editor.

3 To continue tracing the signal to its source, press the left arrow key.

4 Navigate a Simulink Model

4-8

4 Keep tracing the signal to its source until you reach the Alert logic subsystem. You
see that the Subtract block has two inputs. Choose the signal path from the Inport by
pressing the down arrow key.

5 To find the source of the discretization, keep pressing the left arrow and note the
colors of port names that reflect the sample time.

 Navigate Model

4-9

You find that the Zero-Order Hold block in the Sensor model subsystem does the
conversion from continuous to discrete.

4 Navigate a Simulink Model

4-10

Simulation of a Bouncing Ball
This example shows how to use two different approaches to modeling a bouncing ball using
Simulink®.

Overview

Figure 1: A ball is thrown up with a velocity of 15 m/s from a height of 10 m.

A bouncing ball model is a classic example of a hybrid dynamic system. A hybrid dynamic system is
a system that involves both continuous dynamics, as well as, discrete transitions where the system
dynamics can change and the state values can jump. The continuous dynamics of a bouncing ball is
simply given by:

where is the acceleration due to gravity, is the position of the ball and is the velocity.
Therefore, the system has two continuous states: position and velocity .

The hybrid system aspect of the model originates from the modeling of a collision of the ball with the
ground. If one assumes a partially elastic collision with the ground, then the velocity before the
collision, , and velocity after the collision, , can be related by the coefficient of restitution of the
ball, , as follows:

The bouncing ball therefore displays a jump in a continuous state (velocity) at the transition
condition, .

A bouncing ball is one of the simplest models that shows the Zeno phenomenon. Zeno behavior is
informally characterized by an infinite number of events occurring in a finite time interval for certain
hybrid systems. As the ball loses energy in the bouncing ball model, a large number of collisions with
the ground start occurring in successively smaller intervals of time. Hence the model experiences
Zeno behavior. Models with Zeno behavior are inherently difficult to simulate on a computer, but are
encountered in many common and important engineering applications.

Using Two Integrator Blocks to Model a Bouncing Ball

You can use two Integrator blocks to model a bouncing ball. The Integrator on the left is the velocity
integrator modeling the first equation and the Integrator on the right is the position integrator. Navigate
to the position integrator block dialog and observe that it has a lower limit of zero. This condition
represents the constraint that the ball cannot go below the ground.

The state port of the position integrator and the corresponding comparison result is used to detect
when the ball hits the ground and to reset both integrators. The state port of the velocity integrator is
used for the calculation of .

To observe the Zeno behavior of the system, navigate to the Solver pane of the Configuration
Parameters dialog box. In the 'Zero-crossing options' section, confirm that 'Algorithm' is set to
'Nonadaptive' and that the simulation 'Stop time' is set to 25 seconds. Run the simulation.

Observe that the simulation errors out as the ball hits the ground more and more frequently and loses
energy. Consequently, the simulation exceeds the default limit of 1000 for the 'Number of consecutive
zero crossings' allowed. Now navigate to the Configuration Parameters dialog box. In the 'Zero-
crossing options' section, set the 'Algorithm' to 'Adaptive'. This algorithm introduces a sophisticated
treatment of such chattering behavior. Therefore, you can now simulate the system beyond 20
seconds. Note, however, the chatter of the states between 21 seconds and 25 seconds and warning
from Simulink about the strong chattering in the model around 20 seconds.

Using a Second-Order Integrator Block to Model a Bouncing Ball

You can use a single Second-Order Integrator block to model this system. The second
equation is internal to the Second-Order Integrator block in this case. Navigate to the
Second-Order Integrator block dialog and notice that, as earlier, has a lower limit of zero. Navigate
to the Attributes tab on the block dialog and note that the option 'Reinitialize dx/dt when x reaches
saturation' is checked. This parameter allows us to reinitialize (in the bouncing ball model) to
a new value at the instant reaches its saturation limit. For the bouncing ball model, this option

therefore implies that when the ball hits the ground, its velocity can be set to a different value, i.e., to
the velocity after the impact. Notice the loop for calculating the velocity after a collision with the
ground. To capture the velocity of the ball just before the collision, the output port of the
Second-Order Integrator block and a Memory block are used. is then used to calculate the rebound
velocity .

Navigate to the Solver pane of the Configuration Parameters dialog box. Confirm that 'Algorithm' is set
to 'Nonadaptive' in the 'Zero-crossing options' section and the simulation 'Stop Time' is set to 25
seconds. Simulate the model. Note that the simulation encountered no problems. You were able to
simulate the model without experiencing excessive chatter after t = 20 seconds and without setting the
'Algorithm' to 'Adaptive'.

Second-Order Integrator Model Is the Preferable Approach to Modeling Bouncing
Ball
One can analytically calculate the exact time when the ball settles down to the ground with zero
velocity by summing the time required for each bounce. This time is the sum of an infinite geometric
series given by:

Here and are initial conditions for position and velocity respectively. The velocity and the position
of the ball must be identically zero for . In the figure below, results from both simulations are
plotted near . The vertical red line in the plot is for the given model parameters. For and far
away from , both models produce accurate and identical results. Hence, only a magenta line from
the second model is visible in the plot. However, the simulation results from the first model are inexact
after ; it continues to display excessive chattering behavior for . In contrast, the second model
using the Second-Order Integrator block settles to exactly zero for .

Figure 2: Comparison of simulation results from the two approaches.

Figure 2 conclusively shows that the second model has superior numerical characteristics as
compared to the first model. The reason for the higher accuracy associated with the Second-Order
Integrator model is as follows. The second differential equation is internal to the Second-
Order Integrator block. Therefore, the block algorithms can leverage this known relationship between
the two states and deploy heuristics to clamp down the undesirable chattering behavior for certain
conditions. These heuristics become active when the two states are no longer mutually consistent with
each other due to integration errors and chattering behavior. You can thus use physical knowledge of
the system to alleviate the problem of simulation getting stuck in a Zeno state for certain classes of
Zeno models.

Simulating Systems with Variable Transport Delay
Phenomena
This example shows two cases where you can use Simulink® to model variable transport delay
phenomena.

Vertical Wheel Displacement on a One-Dimensional Car

Figure 1: Illustration of a car with speed v(t).

A car is running along a road with speed v(t). A sensor is installed at the front wheel to measure the
vertical displacement Hi(t) of the front wheel caused by the road profile. If the wheels and road never
lose contact, then the vertical displacement of the rear wheel, Ho(t), can be seen as a variable
transport delay of Hi(t), which is determined by the length L between the two wheels and the speed
v(t).

Figure 2: Vertical displacement of the wheels.

Incompressible Flow Through a Fixed Length Pipe

Figure 3: Illustration of a fixed-length pipe.

An incompressible flow goes through a pipe of length L with speed v(t). At the inlet, the flow
temperature is Ti. We can model the temperature at the outlet To as a variable transport delay of Ti. At
time t=0, the pipe is empty and until t=2, there is no flow at the outlet. Thus, the output temperature
before t=2 is the initial output temperature.

Figure 4: Incompressible flow through a fixed-length pipe.

Single Hydraulic Cylinder Simulation
This example shows how to use Simulink® to model a hydraulic cylinder. You can apply these
concepts to applications where you need to model hydraulic behavior.

Analysis and Physics of the Model
Figure 1 shows a schematic diagram of the basic model. The model directs the pump flow, Q, to supply
pressure, p1, from which laminar flow, q1ex, leaks to exhaust. The control valve for the piston/cylinder
assembly is modeled as turbulent flow through a variable-area orifice. Its flow, q12, leads to
intermediate pressure, p2, which undergoes a subsequent pressure drop in the line connecting it to
the actuator cylinder. The cylinder pressure, p3, moves the piston against a spring load, resulting in
position x.

Figure 1: Schematic diagram of the basic hydraulic system

At the pump output, the flow is split between leakage and flow to the control valve. We model the
leakage, q1ex, as laminar flow (see Equation Block 1).

Equation Block 1

We modeled turbulent flow through the control valve with the orifice equation. The sign and absolute
value functions accommodate flow in either direction (see Equation Block 2).

Equation Block 2

The fluid within the cylinder pressurizes due to this flow, q12 = q23, minus the compliance of the
piston motion. We also modeled fluid compressibility in this case (see Equation Block 3).

Equation Block 3

We neglected the piston and spring masses because of the large hydraulic forces. We completed the
system of equations by differentiating this relationship and incorporating the pressure drop
between p2 and p3. Equation Block 3 models laminar flow in the line from the valve to the actuator.
Equation block 4 gives the force balance at the piston.

Equation Block 4

Modeling
Figure 2 shows the top level diagram of the model. The pump flow and the control valve orifice area
are simulation inputs. The model is organized as two subsystems: the 'Pump' and the
'Valve/Cylinder/Piston/Spring Assembly'.

Opening the Model and Running the Simulation
To try it in MATLAB, type sldemo_hydcyl at MATLAB® terminal (click on the hyperlink if you are
using MATLAB Help). Press the "Play" button on the model toolbar to run the simulation.

• Note: The model logs relevant data to MATLAB workspace in a structure
called sldemo_hydcyl_output. Logged signals have a blue indicator.

Figure 2: Single cylinder model and simulation results

'Pump' Subsystem
Right click on the 'Pump' masked subsystem and select "Look Under Mask" to see its components.
The pump model computes the supply pressure as a function of the pump flow and the load (output)
flow (Figure 3). Qpump is the pump flow data (saved in the model workspace). A matrix with column
vectors of time points and the corresponding flow rates [T, Q]specifies the flow data. The model
calculates pressure p1 as indicated in Equation Block 1. Because Qout = q12 is a direct function
of p1 (via the control valve), an algebraic loop is formed. An estimate of the initial value, p10, enables
a more efficient solution.

Figure 3: The pump subsystem

We masked the 'Pump' subsystem in Simulink to allow the user to easily access the parameters (see
Figure 4). The parameters to be specified are T, Q, p10, and C2. We then assigned the masked block
the icon shown in Figure 2, and saved it in a Simulink library.

Figure 4: Entering pump parameters

'Valve/Cylinder/Piston/Spring Assembly' Subsystem
Right click on the 'Valve/Cylinder/Piston/Spring Assembly' in the model and select "Look Under Mask"
to see the Actuator subsystem (see Figure 5). A system of differential-algebraic equations models the
cylinder pressurization with the pressure p3, which appears as a derivative in Equation Block 3 and is
used as the state (integrator). If we neglect piston mass, the spring force and piston position are direct
multiples of p3 and the velocity is a direct multiple of p3's time derivative. This latter relationship forms
an algebraic loop around the 'Beta' Gain block. The intermediate pressure p2 is the sum of p3 and the
pressure drop due to the flow from the valve to the cylinder (Equation Block 4). This relationship also
imposes an algebraic constraint through the control valve and the 1/C1 gain.

The control valve subsystem computes the orifice (Equation Block2). It uses as inputs the upstream
and downstream pressures and the variable orifice area. The 'Control Valve Flow' Subsystem
computes the signed square root:

Three nonlinear functions are used, two of which are discontinuous. In combination, however, y is a
continuous function of u.

Figure 5: The valve/cylinder/piston/spring subsystem

Results

Simulation Parameters

We simulated the model using the following data. The information is loaded from a MAT-file -
 sldemo_hydcyl_data.mat, which is also used for the other two hydraulic cylinder models. The users
can enter data via the Pump and Cylinder Masks shown in Figures 4 and 6.

T = [0 0.04 0.04 0.05 0.05 0.1] sec

Q = [0.005 0.005 0 0 0.005 0.005] m^3/sec

Figure 6: Entering valve/cylinder/piston/spring assembly parameters

Plotting Simulation Results

The system initially steps to a pump flow of 0.005 m^3/sec=300 l/min, abruptly steps to zero
at t=0.04 sec, then resumes its initial flow rate at t=0.05 sec.

The control valve starts with zero orifice area and ramps to 1e-4 sq.m. during the 0.1
sec simulation time. With the valve closed, all of the pump flow goes to leakage so the initial pump
pressure increases to p10 = Q/C2 = 1667 kPa.

As the valve opens, pressures p2 and p3 build up while p1 decreases in response to the load increase
as shown in Figure 7. When the pump flow cuts off, the spring and piston act like an accumulator
and p3 decreases continuously. Then the flow reverses direction, so p2, though relatively close to p3,
falls abruptly. At the pump itself, all of the back-flow leaks and p1 drops radically. The behavior
reverses as the flow is restored.

The piston position is directly proportional to p3, where the hydraulic and spring forces balance.
Discontinuities in the velocity at 0.04 sec and 0.05 sec indicate negligible mass. The model reaches a
steady state when all of the pump flow again goes to leakage, now due to zero pressure drop across
the control valve (which means p3 = p2 = p1 = p10).

Figure 7: Simulation Results: System Pressures

Figure 8: Simulation Results: Hydraulic Cylinder Piston Position

Closing the Model
Close the model and clear generated data.

Thermal Model of a House
This example shows how to use Simulink® to create the thermal model of a house. This system
models the outdoor environment, the thermal characteristics of the house, and the house heating
system.

The sldemo_househeat_data.m file initializes data in the model workspace. To make changes, you
can edit the model workspace directly or edit the file and re-load the model workspace. To view the
model workspace, select View > Model Explorer from the Simulink editor.

Opening the Model
Open the sldemo_househeat model

Figure 1: The House Heating Model

Model Initialization
This model calculates heating costs for a generic house. When the model is opened, it loads the
information about the house from the sldemo_househeat_data.m file. The file does the following:

• Defines the house geometry (size, number of windows)
• Specifies the thermal properties of house materials
• Calculates the thermal resistance of the house
• Provides the heater characteristics (temperature of the hot air, flow-rate)
• Defines the cost of electricity (0.09$/kWhr)
• Specifies the initial room temperature (20 deg. Celsius = 68 deg. Fahrenheit)
• Note: Time is given in units of hours. Certain quantities, like air flow-rate, are expressed per hour (not

per second).

matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')
matlab:openExample('simulink_general/sldemo_househeatExample');
matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')

Model Components

Set Point

"Set Point" is a constant block. It specifies the temperature that must be maintained indoors. It is 70
degrees Fahrenheit by default. Temperatures are given in Fahrenheit, but then are converted to
Celsius to perform the calculations.

Thermostat

"Thermostat" is a subsystem that contains a Relay block. The thermostat allows fluctuations of 5
degrees Fahrenheit above or below the desired room temperature. If air temperature drops below 65
degrees Fahrenheit, the thermostat turns on the heater. See the thermostat subsystem below.

Figure 2: The "Thermostat" Subsystem

Heater

"Heater" is a subsystem that has a constant air flow rate, "Mdot", which is specified in
the sldemo_househeat_data.m file. The thermostat signal turns the heater on or off. When the heater
is on, it blows hot air at temperature THeater (50 degrees Celsius = 122 degrees Fahrenheit by
default) at a constant flow rate of Mdot (1kg/sec = 3600kg/hr by default). The heat flow into the room is
expressed by the Equation 1.

Equation 1

Figure 3: The Heater Subsystem

matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')

Cost Calculator

"Cost Calculator" is a Gain block. "Cost Calculator" integrates the heat flow over time and multiplies it
by the energy cost. The cost of heating is plotted in the "PlotResults" scope.

House

"House" is a subsystem that calculates room temperature variations. It takes into consideration the
heat flow from the heater and heat losses to the environment. Heat losses and the temperature time
derivative are expressed by Equation 2.

Equation 2

Figure 4: The House Subsystem

Modeling the Environment

We model the environment as a heat sink with infinite heat capacity and time varying temperature
Tout. The constant block "Avg Outdoor Temp" specifies the average air temperature outdoors. The
"Daily Temp Variation" Sine Wave block generates daily temperature fluctuations of outdoor
temperature. Vary these parameters and see how they affect the heating costs.

Running the Simulation and Visualizing the Results
Run the simulation and visualize the results. Open the "PlotResults" scope to visualize the results. The
heat cost and indoor versus outdoor temperatures are plotted on the scope. The temperature outdoor
varies sinusoidally, whereas the indoors temperature is maintained within 5 degrees Fahrenheit of
"Set Point". Time axis is labeled in hours.

Figure 5: Simulation results (time axis labeled in hours)

According to this model, it would cost around $30 to heat the house for two days. Try varying the
parameters and observe the system response.

Remarks
This particular model is designed to calculate the heating costs only. If the temperature of the outside
air is higher than the room temperature, the room temperature will exceed the desired "Set Point".

You can modify this model to include an air conditioner. You can implement the air conditioner as a
modified heater. To do this, add parameters like the following to sldemo_househeat_data.m.

• Cold air output
• Temperature of the stream from the air conditioner
• Air conditioner efficiency

You would also need to modify the thermostat to control both the air conditioner and the heater.

matlab:cd(setupExample('simulink_general/sldemo_househeatExample'));edit('sldemo_househeat_data.m')

Modeling an Anti-Lock Braking System
This example shows how to model a simple model for an Anti-Lock Braking System (ABS). It
simulates the dynamic behavior of a vehicle under hard braking conditions. The model represents a
single wheel, which may be replicated a number of times to create a model for a multi-wheel vehicle.

This model uses the signal logging feature in Simulink®. The model logs signals to the MATLAB®
workspace where you can analyze and view them. You can view the code in
sldemo_absbrakeplots.m to see how this is done.

In this model, the wheel speed is calculated in a separate model named
sldemo_wheelspeed_absbrake. This component is then referenced using a 'Model' block. Note that
both the top model and the referenced model use a variable step solver, so Simulink will track zero-
crossings in the referenced model.

Analysis and Physics
The wheel rotates with an initial angular speed that corresponds to the vehicle speed before the
brakes are applied. We used separate integrators to compute wheel angular speed and vehicle speed.
We use two speeds to calculate slip, which is determined by Equation 1. Note that we introduce
vehicle speed expressed as an angular velocity (see below).

Equation 1

From these expressions, we see that slip is zero when wheel speed and vehicle speed are equal, and
slip equals one when the wheel is locked. A desirable slip value is 0.2, which means that the number
of wheel revolutions equals 0.8 times the number of revolutions under non-braking conditions with the
same vehicle velocity. This maximizes the adhesion between the tire and road and minimizes the
stopping distance with the available friction.

Modeling
The friction coefficient between the tire and the road surface, mu, is an empirical function of slip, known
as the mu-slip curve. We created mu-slip curves by passing MATLAB variables into the block diagram
using a Simulink lookup table. The model multiplies the friction coefficient, mu, by the weight on the
wheel, W, to yield the frictional force, Ff, acting on the circumference of the tire. Ff is divided by the
vehicle mass to produce the vehicle deceleration, which the model integrates to obtain vehicle
velocity.

In this model, we used an ideal anti-lock braking controller, that uses 'bang-bang' control based upon
the error between actual slip and desired slip. We set the desired slip to the value of slip at which the
mu-slip curve reaches a peak value, this being the optimum value for minimum braking distance (see
note below.).

• Note: In an actual vehicle, the slip cannot be measured directly, so this control algorithm is not
practical. It is used in this example to illustrate the conceptual construction of such a simulation model.
The real engineering value of a simulation like this is to show the potential of the control concept prior
to addressing the specific issues of implementation.

Creating a Temporary Directory for the Example
During this example, Simulink generates files in the current working directory. If you do not want to
generate files in this directory, change the working directory to a suitable directory:

origdir = cd(tempdir);

Opening the Model
To open this model type sldemo_absbrake in MATLAB terminal (or click on the hyperlink if you are
using MATLAB Help).

Figure 1: Anti-Lock Braking (ABS) Model

Double click on the 'Wheel Speed' subsystem in the model window to open it. Given the wheel slip, the
desired wheel slip, and the tire torque, this subsystem calculates the wheel angular speed.

Figure 2: Wheel Speed subsystem

To control the rate of change of brake pressure, the model subtracts actual slip from the desired slip
and feeds this signal into a bang-bang control (+1 or -1, depending on the sign of the error, see Figure
2). This on/off rate passes through a first-order lag that represents the delay associated with the
hydraulic lines of the brake system. The model then integrates the filtered rate to yield the actual brake
pressure. The resulting signal, multiplied by the piston area and radius with respect to the wheel (Kf),
is the brake torque applied to the wheel.

The model multiplies the frictional force on the wheel by the wheel radius (Rr) to give the accelerating
torque of the road surface on the wheel. The brake torque is subtracted to give the net torque on the
wheel. Dividing the net torque by the wheel rotational inertia, I, yields the wheel acceleration, which is
then integrated to provide wheel velocity. In order to keep the wheel speed and vehicle speed positive,
limited integrators are used in this model.

Running the Simulation in ABS Mode
Press the "Play" button on the model toolbar to run the simulation. You can also run the simulation by
executing the sim('sldemo_absbrake') command in MATLAB. ABS is turned on during this
simulation.

Figure 3: Baseline Simulation Results

• Note: The model logs relevant data to MATLAB workspace in a structure
called sldemo_absbrake_output. Logged signals have a blue indicator. In this
case yout and slp are logged (see the model). Read more about Signal Logging in Simulink Help.
Figure 3 visualizes the ABS simulation results (for default parameters). The first plot in Figure 3 shows
the wheel angular velocity and corresponding vehicle angular velocity. This plot shows that the wheel

matlab:open_system('sldemo_absbrake')

speed stays below vehicle speed without locking up, with vehicle speed going to zero in less than 15
seconds.

Running the Simulation Without ABS
For more meaningful results, consider the vehicle behavior without ABS. At the MATLAB command
line, set the model variable ctrl = 0. This disconnects the slip feedback from the controller (see
Figure 1), resulting in maximum braking. The results are shown in Figure 4.

ctrl = 0;

Now run the simulation again. This will model braking without ABS.

Figure 4: Maximum braking simulation results (braking without ABS)

Braking With ABS Versus Braking Without ABS
In the upper plot of Figure 4, observe that the wheel locks up in about seven seconds. The braking,
from that point on, is applied in a less-than-optimal part of the slip curve. That is, when slip = 1, as
seen in the lower plot of Figure 4, the tire is skidding so much on the pavement that the friction force
has dropped off.

This is, perhaps, more meaningful in terms of the comparison shown in Figure 5. The distance
traveled by the vehicle is plotted for the two cases. Without ABS, the vehicle skids about an extra 100
feet, taking about three seconds longer to come to a stop.

Figure 5: Stopping distance for hard braking with and without ABS

Closing the Model
Close the model. Close the 'Wheel Speed' subsystem. Clear logged data. Change back to the original
directory.

cd(origdir);

Conclusions
This model shows how you can use Simulink to simulate a braking system under the action of an ABS
controller. The controller in this example is idealized, but you can use any proposed control algorithm
in its place to evaluate the system's performance. You can also use the Simulink® Coder™ with
Simulink as a valuable tool for rapid prototyping of the proposed algorithm. C code is generated and
compiled for the controller hardware to test the concept in a vehicle. This significantly reduces the time
needed to prove new ideas by enabling actual testing early in the development cycle.

For a hardware-in-the-loop braking system simulation, you can remove the 'bang-bang' controller and
run the equations of motion on real-time hardware to emulate the wheel and vehicle dynamics. You
can do this by generating real-time C code for this model using the Simulink Coder. You can then test
an actual ABS controller by interfacing it to the real-time hardware, which runs the generated code. In
this scenario, the real-time model would send the wheel speed to the controller, and the controller
would send brake action to the model.

BULETINUL

Universităţii Petrol – Gaze din Ploieşti
Vol. LXI

No. 3/2009
93 - 98 Seria Tehnică

An Adjusted Mathematical Model

for Realistic Road Traffic Simulation

Gabriel Rădulescu

Petroleum – Gas University of Ploiești, 39 Bucureşti Blvd., Ploiești, ROMÂNIA

e-mail: gabriel.radulescu@upg-ploiesti.ro

Abstract

Modelling and simulation, as one of the most used tools in processes investigation, are successfully

applied for road traffic dynamic studies. As shown in the open literature, such a system with complex

behavior is characterized by strong interactions between traffic participants, transport infrastructure and

traffic controls, having a serious environmental impact – even deeper than other fields of human activity

[1]. This paper addresses a modern modelling approach, originally adapted and included in the already

announced software framework for controlled traffic investigation [3], as mathematical core-engine for

independent lanes dynamic behavior description.

Key words: road traffic, dynamic modelling.

Introduction

Recently, the author of this paper has started a research project focused on road traffic

mathematical modeling techniques, embedded within a modern framework which allows an

easy traffic simulators implementation – presented in [3]. As the cited paper presents the project

overview, from general aspects (like general/standard modeling and simulation approaches) to

specific solved problems when building-up the software framework, this work offers a more

complex look inside the mathematical model which is the core-engine of the application.

Modeling the traffic actors – a new approach

Since each mobile entity acts accordingly with its neighbors’ behavior and (own) established

rules, this work adopts a microscopic representation technique which may become the

mathematical core of a traffic cellular automaton. This approach naturally leads to a significant

flexibility in numerically defining a wide range of behavioral entities, which can be easily used

for simulation and/or analysis purposes [2].

In the current representation, an independent traffic actor is determined by its passive properties

(seen as model constant parameters: car length l, maximal acceleration a+, maximal deceleration

a–, driver reaction time treact and sensitivity S) and active properties (its allocated state variables:

position x, actual speed v and acceleration a – updated with each simulation step ∆t).

Acceleration is considered as the main state variable, because it strongly depends on the

environment and, more, v and x can be easily calculated from a. The only macroscopic

parameter, seen as traffic scene property, is the maximum allowed speed value vmax.

Gabriel Rădulescu

94

Figure 1 shows the simplest case of a one-way road with only two cars, where vehicle 1 (in the

back) behavior is described via the proposed algorithm, while vehicle 2 (in the front) is

controlled by directly specifying its acceleration values over the entire simulation time horizon.

Fig. 1. Traffic scene: one-way road with two vehicles.

So, focusing on car 1 only, the first simplifying assumption is to have a constant acceleration

value for each ∆t time horizon, the a1 value (positive for acceleration, negative for deceleration)

being directly influenced by the driver’s actions on gas pedal. Considering also that a1 should

tend to its extreme values (a1+ or a1–), the following equations in the model gives the vehicle 1

acceleration:

𝑎1 𝑡 =
𝑎+ tanh 𝑆1 × 𝜀1(𝑡) , if 𝜀 ≥ 0,

𝑎− tanh 𝑆1 × 𝜀1(𝑡) , otherwise,
 (1)

where

𝜀1 𝑡 =
∆𝑣1 𝑡 × 𝑥2 𝑡 − 𝑥1 𝑡 − 𝑙1 − 𝑣1 𝑡 × 𝑡1 𝑟𝑒𝑎𝑐𝑡 +

 𝑣1 𝑡 −𝑣2 𝑡
2

2𝑎1−
 , if ∆dist12 < 0,

∆𝑣1 𝑡 × 𝑥2 𝑡 − 𝑥1 𝑡 − 𝑙1 − 𝑣1 𝑡 × 𝑡1 𝑟𝑒𝑎𝑐𝑡 +
 𝑣1 𝑡 −𝑣2 𝑡

2

2𝑎1+
 , otherwise.

(2)

dist12 represents the tendency of inter-vehicles distance variation, directly observed by driver 1.

It takes into account the current time step (t) and the previous one (t – t), having negative

values when v1 > v2 or non-negative values otherwise:

∆𝑑𝑖𝑠𝑡12 = 𝑥2 𝑡 − 𝑥1 𝑡 − 𝑥2 𝑡 − ∆𝑡 − 𝑥1 𝑡 − ∆𝑡 . (3)

v1(t) is the relative deviation between current vehicle 1 speed and its maximum allowed speed,

vmax, calculated as

∆𝑣1 𝑡 = 𝑣𝑚𝑎𝑥 − 𝑣1 𝑡 𝑣𝑚𝑎𝑥 . (4)

Equation (1) establishes a direct dependency between acceleration a and which defines the

deviation between ideal traffic conditions (free road, no maximum speed limit) and real ones.

The author of this work propose a modified definition (in comparison with other classical

approaches in the open literature – [2, 3]), which now simultaneously takes into account both

restrictions (obstacles presence and speed limitations).

As shown in [3], for an independent traffic actor, the fixed obstacles (traffic lights, stopped cars)

or mobile ones (moving vehicles on the same pathway) need a permanent state evaluation. But,

regardless the obstacles type, the general safety arrival distance rule applies; it correlates the

driver’s actions (changes in a) with current traffic conditions, in a way allowing obstacles

approaching, but never touching them. Considering vehicle 2 as the only (mobile) obstacle, the

term 𝑥2 𝑡 − 𝑥1 𝑡 − 𝑙1 − 𝑣1 𝑡 × 𝑡1 𝑟𝑒𝑎𝑐𝑡 + 𝑣1 𝑡 − 𝑣2 𝑡
2

2𝑎1− in equation (2)

estimates, at each time step, if car 1 can be safely slowed down when dist12 < 0 and a1

hypothetically becomes a1–. Greater this term is, safer its current situation becomes, while a

An Adjusted Mathematical Model for Realistic Road Traffic Simulation

95

negative value indicates the crashing danger; zero represents the critical limit when car 1

touches vehicle 2 exactly when v1 becomes v2 (so there will be no true collision after).

Of course, the same principle may be considered when evaluating the safety arrival distance rule

for any fixed obstacle, v2(t) being replaced with zero in the term above, as shown in [3]. On the

other hand, in equation (2) – after many experimental studies – the author of this work proposes

a symmetric term in expression when dist12 ≥ 0, finally leading to a true realistic vehicle

behavior.

The speed limits, imposed by local traffic rules, road state and direction changes for instance,

are taken into account by the term v1(t) in definition. Considering another simplifying

assumption (v1(0) ≤ vmax, which is in fact absolutely normal), v1(t) is always positive and only

slightly adjust the value when v1 is close to vmax, until a1 becomes zero. As time as the vehicle

1 speed value for the next step may be calculated with

𝑣1 𝑡 + ∆𝑡 = 𝑚𝑎𝑥 0, 𝑣1 𝑡 + 𝑎1 𝑡 × ∆𝑡 , (5)

it is easy to demonstrate that, after several number of time steps t, v1 will equal vmax whenever

there is a safe distance between considered vehicles, proving a good adapting feature for the

model (when new limitations – shown by changes in vmax – happen to occur). This approach can

also be successfully applied to all dynamic changes in traffic regime, like traffic lights color

switches and concurrence with vehicles having higher priority (when an additional decision

structure completes the so-called gap acceptance algorithm) [2, 3].

Regarding the car 1 position, it is given by

𝑥1 𝑡 + ∆𝑡 = 𝑚𝑎𝑥 𝑥1 𝑡 , 𝑥1 𝑡 + 𝑣1 𝑡 × ∆𝑡 +
𝑎1 𝑡 ×(∆𝑡)2

2
 . (6)

One can observe that equations (5) and (6) do not allow any negative values for v, respectively

any x1 decreasing tendency (meaning no turning back for the considered vehicle 1).

As remark, the positive or negative value of a is directly influenced only by , as all other terms

in equation (1) are strictly greater than zero. Then, it can be observed that (1) brings a realistic

representation of a depending on value by using the hyperbolic tangent operator, denoting a

stronger driver’s reaction on the gas pedal as the deviation (positive or negative) has a bigger

absolute value [2].

Simulation results

For this paper, four simulation scenarios were selected, in order to prove the modified model

adequacy in describing a two-vehicle traffic situation, where the car in front (2) is freely

controlled (by directly specifying its acceleration a2(t) value(s) during simulation horizon, initial

speed v2(0) and position x2(0)), while the following car (1) behavior is modeled by the cinematic

laws above presented. In all cases, vehicle 2 is characterized by x2(0) = 100m,

v2(0) = vmax = 19.46m/s (70 km/h) and the same acceleration profile. Both vehicles have

a1+ = a2+ = 1.7m/s
2
 and a1– = a2– = –5m/s

2
.

Scenario 1: v1(0) = 0m/s, sensitivity factor S = 2.5 (normal driving style)

Figure 2 presents how vehicle 1 reacts when starting with zero speed (at t = 0). The sensitivity

factor value may be considered as medium/normal for this traffic case. First, the driver pushes

completely the gas pedal (a1 = a+ = 1.7m/s
2
) during the first 9 seconds. As consequence, v1

rapidly increases from 0 to 16m/s, close to the maximum allowed speed vmax until (at t 10s),

the brake is seriously hit (a1 –3.2m/s
2
) for a short time in order to prevent an imminent

Gabriel Rădulescu

96

collision with vehicle 2. For the next 15s a1 moderately increases, reaching again its maximum

allowed value (1.7m/s
2
) because there is no collision risk anymore. Since at t = 16s v1 = v2 =

3m/s, during the next time interval (t > 18s) it is expected that driver 1 will try to adapt its

actions in order to keep v1 as close as possible to v2, maintaining this way an approximately

constant safety gap (x2 – x1). One can see in figure 2 that the proposed algorithm successfully

satisfies the car following principle above mentioned, for the chosen sensitivity value (2.5), the

collision state being constantly kept at “0” (meaning car 1 never touches car 2, even when at t =

60s both vehicles are stopped).

Fig. 2. Simulation results for scenario 1.

Scenario 2: v1(0) = 0m/s, sensitivity factor S = 0.1 (“lazy” driving style)

This new scenario differs from the first one only by intentionally considering a (very) low

sensitivity factor value. As the good sense tells and figure 3 shows, the effect of a calmer action

on the gas and brake pedals consists in a much slower speed variation, with lower amplitude (on

corresponding time values) than in previous case. But, by analyzing the collision state

evolution, it can be seen that vehicle 1 hits the car in front in two situations, at t 16s and t

51s (when collision state becomes “1”). In this case, the driver cannot keep a safe distance as it

reacts too slowly when vehicle 1 suddenly stops (in about 4 seconds), because a2 = a– = –5m/s
2

at t = 0s and t = 45s. One can see in figure 3 how the v1 profile is right-shifted from the previous

case, meaning v1 is adapted to v2 with a serious delay, leading to this unwanted crashing

situations.

Scenario 3: v1(0) = 0m/s, sensitivity factor S = 20.0 (“aggressive” driving style)

The third scenario illustrates the effect of a high sensitivity factor value, characterizing a sporty

or nervous driver, on the controlled car (2) behavior. Such a driver over-estimates as potential

dangers what all other drivers call “normal traffic situations” (i.e. a car in front quick speed

decreasing, but still in the safe limits). On the other hand, the sporty/nervous driver usually hits

the gas pedal shortly after he sees the distance to followed vehicle increases.

The proposed model successfully addresses this aggressive driving style simulation. As figure 4

depicts, by keeping the same behavior for vehicle 2, as well as other parameters for car 1

controlling algorithm (except the sensitivity factor), two false-critical time intervals can be

identified (at t = 15s, for one second, and at t = 52s, for about 8 seconds), when vehicle 1

seriously approaches car 2. During these periods, driver 1 seems to nervously hit the brake, until

An Adjusted Mathematical Model for Realistic Road Traffic Simulation

97

it appreciates the “critical” situation ended. As remark, figure 4 presents only the acceleration

evolution (with a zoomed vicinity of t = 16s), because all other diagrams look identical.

Fig. 3. Simulation results for scenario 2.

Fig. 4. Simulation results for scenario 3.

Scenario 4: v1(0) = 19.46m/s, sensitivity factor S = 10.0 (increased sensitivity)

Last chosen scenario represents another traffic situation, when vehicle 1 initial speed (v1(0)) has

the maximum allowed value, 19.46m/s, being the same as v2(0).

Fig. 5. Simulation results for scenario 4.

Gabriel Rădulescu

98

Although the results are not presented here, a sensitivity factor of 2.5 (like in scenario 1) proved

not to be adequate anymore, as the high initial value of v1 combined with a stiff situation

(a2(0) = a– = –3.2m/s
2
) imposes a different driver 1 attitude in order to slow down the vehicle

within a safe time interval (meaning x2 – x1 ≥ l1 when v1 = v2). A test sensitivity value of 10.0

was used instead, the results depicted by figure 5 showing no collision for the entire simulation

horizon.

Conclusions

This paper offers a more complex image on the mathematical model as the core-engine of a

modern software framework (previously announced in [3]) allowing an easy traffic simulators

design and implementation. Two changes in the model (introducing driver’s sensitivity factor

and fine acceleration tuning when approaching the maximum legal speed) were tested through

simulation, with extremely promising results. In future research, the sensitivity must not have a

constant value (as it is now), because traffic conditions are subject to serious variations from

one scenario to another. The author will try to find an adaptive variation law for the sensitivity

factor, where the main idea is to increase/decrease it until car in the back approaches the front

car, and then revert it to a standard value (i.e. something between 2.5 and 10.0). As starting

example, scenario 4 has to be considered: when t > 16s, sensitivity may be decreased because

both vehicles start again with v1 = v2 = 0, somewhere at about 140m from the x-axis origin.

References

1 . R o ş , O . , G y e n g e C s . , F r ă ţ i l ă , D . – Sustainable Product Development by Considering

the Environmental Consequences. Proceedings of the 18
th

 International DAAAM Symposium "Intelligent

Manufacturing & Automation: Focus on Creativity, Responsibility and Ethics of Engineers", Zadar,

Croatia, 24-27
th

 of October, 2007.

2 . Q u e l o z , P . - A . – Modèle de trafic routier et simulateur massivement parallèle, Master

dissertation. University of Geneva, 1995.

3. R ă d u l e s c u , G . , C r u c e r u , M . – A Modern Framework for Road Traffic Modelling and

Dynamic Simulation. Buletinul Universității Petrol-Gaze din Ploiești, Vol LIX, Seria Tehnică, No.

3/2008.

4 . Y u k a w a , S . , K i k u c h i , M . , T a d a k i , S . – Dynamical Phase Transition in One

Dimensional Traffic Flow Model with Blockage. Journal of the Physical Society of Japan, 63, 1994.

5. * * * – Traffic Modeling – Phantom Traffic Jams and Traveling Jamitons. Massachusetts Institute of

Technology (http://math.mit.edu/projects/traffic/), 2009.

Un model matematic adaptat

pentru simularea fidelă a traficului auto

Rezumat

Modelarea și simularea, ca instrumente puternice asociate studiului sistemelor complexe, sunt aplicate

cu succes în investigarea dinamicii traficului auto. Așa cum literatura menționează, un astfel de proces

este caracterizat de puternice interacțiuni între entitățile participante, infrastructura rutieră și regulile de

gestiune a circulației, având și un deosebit impact asupra mediului (ce poate depăși depășind chiar pe cel

al industriilor productive [1]). Această lucrare prezintă o abordare modernă și originală a modelării

matematice a traficului, ce se constituie în motorul platformei de simulare descrisă în lucrarea [3].

	01_CURS_2016_AMST_Course
	02_CURS_SCAN_Introducere
	03_CURS_SCAN_Modelare_analitica_1
	04_CURS_SCAN_Modelare_analitica_2
	05_CURS_Simulink
	A_CURS_LAB_Bouncing_Ball
	Simulation of a Bouncing Ball
	Overview
	Using Two Integrator Blocks to Model a Bouncing Ball
	Using a Second-Order Integrator Block to Model a Bouncing Ball
	Second-Order Integrator Model Is the Preferable Approach to Modeling Bouncing Ball

	B_CURS_LAB_Transport_Delay
	Simulating Systems with Variable Transport Delay Phenomena
	Vertical Wheel Displacement on a One-Dimensional Car
	Incompressible Flow Through a Fixed Length Pipe

	C_CURS_LAB_Single_Cylinder
	Single Hydraulic Cylinder Simulation
	Analysis and Physics of the Model
	Modeling
	Opening the Model and Running the Simulation
	'Pump' Subsystem
	'Valve/Cylinder/Piston/Spring Assembly' Subsystem
	Results
	Closing the Model

	D_CURS_LAB_Thermal_Model_House
	Thermal Model of a House
	Opening the Model
	Model Initialization
	Model Components
	Running the Simulation and Visualizing the Results
	Remarks

	E_CURS_LAB_Modeling_Braking
	Modeling an Anti-Lock Braking System
	Analysis and Physics
	Modeling
	Creating a Temporary Directory for the Example
	Opening the Model
	Running the Simulation in ABS Mode
	Running the Simulation Without ABS
	Braking With ABS Versus Braking Without ABS
	Closing the Model
	Conclusions

	F_CURS_LAB_Traffic

	B:

