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Abstract. In the last few years, the model based process control (MBPC) methodology was mainly 

situated at the upper control level (optimization level, product level or economical level), which requires 

more advanced control techniques. Many laboratories and industrial applications have demonstrated that 

MBPC has a well performance/cost ratio and it is not difficult to be implemented by means of digital 

equipment. Moreover, even non-specialists in control field easily understand the basic principles of MBPC. 

As compared to the classical PID strategy, the MBPC strategy uses an explicit process model to predict the 

controlled process output. However, due to the computational complexity and the requirement to own a 

suitable process model, the PID type algorithms continue to remain the most widely used in lower level 

control loops.  

 In this paper, we will try to prove that it is possible to obtain well control performances using 

some standard unconstrained predictive algorithms (like those PID), characterized by fewer calculus and 

robustness relating to the process model accuracy. In our control strategy, we propose for process model a 

second order continuous-time transfer function with dead time and having the time constants allocation  

coefficient in the range 0.6 - 1.0. At first, the user must specify three process parameters: the proportional 

constant, the main time constant, and the dead time. During the operation, the user may modify, like in PID 

strategy, three tuning parameters: steady state gain adjustment parameter, time constant adjustment 

parameter, and dead time adjustment parameter. We show how each of these parameters modifies the 

system dynamic performances. The increasing of the steady state gain adjustment parameter leads usually 

to a stable system. In order to ensure the stability and good performances of the system, the prediction 

horizon should completely overlap the transient time and the number of the sampling periods on the 

prediction horizon should be limited at maximum 20.                          

Key words: MBPC, predictive control, robust control, standard control algorithm, real time 

execution, sampling time.   

1. Introduction 

Model Based Predictive Control represents 

a receding horizon control strategy based 

on the explicit on-line use of a suitable 

process model to predict the effect of 

potential control action upon the plant 

future state over a long-range time horizon 

[1]. At each sampling instant, the updated 

plant information is used to solve an open-

loop optimal control problem, but only the 

first element of the optimal control vector 

is actually applied to the real process. All 

other elements of the optimal control 

vector can be either not calculated or 

forgotten because at the next sampling 

instant all calculus-sequences are 

performed again based on the new      

output measurement (“receding horizon”

principle). The control vector or only its 

first element are calculated in order to 



minimize a specified cost function [8], 

depending on the future postulated values 

of the control variable and the predicted 

control errors. 

The availability of a suitable process 

model and the necessity to optimize the 

control objective in real time (at each 

sampling instant) are the most stringent 

requirements for the use of MBPC policy. 

Due to the mathematical convenience, in 

this paper we use the optimization 

quadratic criterion, which presents the 

advantages of an intuitive and reliable 

analytical solution. Instead of an accurate 

but less robust optimal algorithm, we will 

use an algorithm based on analytical 

solution [2], which allows the quick 

computation of suboptimal control actions.

2. The proposed MBPC algorithm 

The proposed algorithm consists of two 

parts: one off-line computation part and 

other on-line computation part. 

Off-line computation 

In the proposed control strategy, we consider 

the process dynamic model as a second order 

continuous-time transfer function with dead 

time 
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This off-line computation part consists in 

finding the following elements: the process 

model coefficients, the sampling period, 

the prediction horizon, and the unit step 

response of the process. The initial data

are the following: K – process steady    

state gain (proportionality constant),        

T0 – process dominant time constant,         

 – process dead time,  - time constants 

allocation  coefficient, T – sampling 

period. The time constant T0 can be 

approximated by the process time 

constants sum or by the ratio (Ttr )/3,

where Ttr is the process transient time (for 

step response and 5 percent limits). 

The sampling time is chosen so that the 

integer value of the ratio ( +3T0)/T should 

be in the range 15 … 20. This integer 

represents the prediction horizon and it is 

denoted by N.

The time constants of the process model 

are given by the relations: 

T1=(1 0.5 )XtT0 , T2=0.5 XtT0 .        (2) 

In these relations, Xt is the adjustment 

coefficient of T0 (default value equal to 1).  

We define the integer dead time m as being 

equal to the integer value of the ratio 

][
X d , where Xd is the adjustment 

coefficient of  (default value equal to 1). 

When the user modifies  he must observe 

if the integer m is also modified. 

Introducing the coefficients 
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c , a1= (c1+c2) ,

  a2= c1c2, b = XkK(1+a1+a2) ,            (3)

the process discrete model has the form  

        yt + a1yt 1+ a2yt 2 = but m .                 (4)

In (3), the parameter Xk is the adjustment 

coefficient of K and, in order to ensure the 

system stability, it must be greater than 1 

(default value equal to 1.5).  

The unit step response g of the process can 

be computed by the recursive equations: 
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The last off-line computation is the 

expression
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When the operator changes one of these 

three adjustment parameters, again the off-

line computation set must be done.   

On-line computation 

One linear form of the predictive control 

law is the following 

N

mi

iti

p

tt eguu
E

X

1            (7) 

where t is the current discrete time, Xp - the 

control weighting coefficient, E - the 

expression (6), g - the process unit step 

response, and e - the predicted error  

 et+i = wt+i  yt+i    .                                    (8)

In (8), w denotes the setpoint and y denotes 

the predicted free response of the process  

(fig. 1). The free response y(t) represents                               

the effect of the past control [8], because 

the input remains constant for the future 

time, i.e. Ut =Ut 1, Ut 1= Ut 1, …  

The prediction can be achieved by means 

of the process model (4), using the 

previous measured values Yt, Yt 1 and Yt 2 ,

as well as the previous values of the input 

Ut 1, Ut 2 , …, Ut m . 

The free response can be calculated by the 

recursive equations: 

    yt 2 = Yt 2 , yt 1 = Yt 1 ,     yt = Yt

    yt+k = yt+k 1 a1(yt+k 1 yt+k 2

a2(yt+k 2 yt+k 3 + bzt+k ,   k 1

where
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Figure 1. The predicted free response yt+i = f(Yt 2,Yt 1,Yt ; Ut 1, t 2 , …, Ut m)

The weighting coefficient Xp must be less 

than 1 (its default value is 0.6) and it is 

used to filter the control variable u.

The control law (7) can be obtained by 

minimizing the quadratic objective 

function
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where y  represents the predicted response 

of the system to the input u having a single 

postulated value U over all prediction 

horizon N (fig. 2). If there are two 

postulated values for u, one 1U  for the first 

interval [t, t+1] and the other one 2U  for 

the interval [t+1, t+N], then the predictive 

control law has the following form: 



N

mi
itii

p

tt eagguu
E

X
)( 11

1

     (12) 

where  

          E1=E aF1 ,
N
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Furthermore, considering that u has the 

value '
1
U  for the interval [t, t+2] and the 

value '
2

U for the remaining interval         

[t+2, t+N], then the predictive control law 

becomes 
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where

         E2=E aF2 ,
N
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2

22

N

mi

ii ggF ,
22

1

2

NN gg
a

E

F
.  (17) 

     
   Figure 2. The predicted response y  to the input having one or two future values  

3. The simulation results 

The previous predictive algorithms have 

been implemented in a real time 

multitasking application. We have 

considered that the process has the model 
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We have chosen the starting data:

  K =1.2; T0 =200 s; =90 s; =0.6; T=40 s

and

Xk =1.5; Xt =1.0; Xd =1.0; Xp =0.6 .    

From these data, we obtain 

][
X dm =2 ,   17

3 0

T

T
N .

In figures 3…10, the simulation results for 

the minimum phase process (T4=0) and the 

control law (7)  are shown. 

Because the system model does not 

describe exactly the real system dynamics, 

the controlled system can be unstable for 

small values of Xk . Increasing Xk , the 

system becomes usually stable, but slower 

(fig. 3 and fig. 4). The introduction of the 

reference trajectory has not an important 

impact on the loop dynamics (fig. 5). The 

system may become unstable for both large 

and small values of the Xd and Xt

respectively (figures 6, 7, 8). The change 

of the time constants allocation  coefficient 

 does not reveal major effects upon the 

system response form (fig. 9). However, it 



can be observed that the best response is 

obtained for maximum value of . In fig. 

10 is presented the effect of the control 

weighting constant Xp upon the system 

response. For a small Xp , the response is 

too slow; it becomes faster as Xp increases 

to 1. In consequence, for many processes 

Xp can be fixed in advance at a value in the 

range  0.5 - 0.8.

In the figure 11 is shown that for T4=60 s      

(non-minimum phase process), the 

predictive control system may be stabilized 

using a large value of  Xk (fig. 11) .  

4. Conclusions 

In this paper, we have proved that it            

is possible to obtain well control 

performances using some standard 

unconstrained predictive algorithms (like 

those PID), characterized by fewer 

calculus and robustness relating to the 

process model accuracy. 

We have shown that a second order 

transfer function with dead time and 

having the time constants allocation  

coefficient  in the range 0.6 – 1.0 can be 

successfully used to describe the process 

dynamics.  

The user must firstly specify three process

parameters: K T0 , .

In order to get the right performances, the 

user may modify during the operation time 

only three tuning parameters: Xk Xt , Xd

(which are initialized at the values 1.5, 1.0, 

1.0 respectively). Usually, the control 

weighting constant Xp (initialized at a 

value in the range 0.5-0.8) is not necessary 

to be adjusted during the operation time. 

For both large and small values of the 

tuning parameters Xd and Xt respectively, 

the system may become unstable. But the 

system may be usually stabilized by 

increasing the steady state gain adjustment   

parameter Xk.

In order to ensure good performances it is 

necessary that the prediction horizon 

should completely overlap the transient 

time and the number of the sampling 

periods on the prediction horizon should 

be chosen in the range 15 - 20. 
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