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Chapter 1

Half Convex Function Method

1.1 Theoretical Basis

Let I be a real interval, s an interior point of I and

I≥s = {u|u ∈ I, u ≥ s}, I≤s = {u|u ∈ I, u ≤ s}.

The following statement is known as the Right Half Convex Function Theorem (RHCF-
Theorem).

Right Half Convex Function Theorem (Vasile Cı̂rtoaje, 2004). Let f be a real function
defined on an interval I and convex on I≥S, where S ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
(1)

holds for all a1, a2, . . . , an ∈ I satisfying
a1 + a2 + · · ·+ an

n
= S if and only if it holds for all

a1, a2, . . . , an ∈ I such that
a1 ≤ a2 = a3 = · · · = an.

Proof. Since the necessity is obvious, we will prove further the sufficiency. Assume that

a1 ≤ a2 ≤ · · · ≤ an, a1 < an.

If a1 ≥ S, then the required inequality is just Jensen’s inequality for convex functions. Otherwise,
if a1 < S, then there exists

k ∈ {1, 2, . . . , n− 1}

so that
a1 ≤ · · · ≤ ak < S ≤ ak+1 ≤ · · · ≤ an.

Since f is convex on I≥S, we may apply Jensen’s inequality to get

f(ak+1) + · · ·+ f(an) ≥ (n− k)f(z),

where

z =
ak+1 + · · ·+ an

n− k
, z ∈ I.

1
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Thus, it suffices to show that

f(a1) + · · ·+ f(ak) + (n− k)f(z) ≥ nf(S). (2)

Let b1, . . . , bk be defined by

ai + (n− 1)bi = nS, i = 1, . . . , k.

We claim that
z ≥ b1 ≥ · · · ≥ bk > S,

which involves
b1, . . . , bk ∈ I>S.

Indeed, we have
b1 ≥ · · · ≥ bk,

bk − S =
S − ak
n− 1

> 0,

and
z ≥ b1

because

(n− 1)b1 = nS − a1 = (a2 + · · ·+ ak) + ak+1 + · · ·+ an

≤ (k − 1)S + ak+1 + · · ·+ an

= (k − 1)S + (n− k)z ≤ (n− 1)z.

Since b1, . . . , bk ∈ I, ai−bi =
n(ai − S)

n− 1
< 0 for i ≤ k, and (1) is true for a1 ≤ a2 = a3 = · · · = an,

we have
f(a1) + (n− 1)f(b1) ≥ nf(S),

· · ·

f(ak) + (n− 1)f(bk) ≥ nf(S),

hence
f(a1) + · · ·+ f(ak) + (n− 1)[f(b1) + · · ·+ f(bk)] ≥ knf(S),

f(a1) + · · ·+ f(ak) ≥ knf(S)− (n− 1)[f(b1) + · · ·+ f(bk)].

According to this result, the inequality (2) is true if

knf(S)− (n− 1)[f(b1) + · · ·+ f(bk)] + (n− k)f(z) ≥ nf(S),

which is equivalent to

pf(z) + (k − p)f(S) ≥ f(b1) + · · ·+ f(bk), p =
n− k
n− 1

≤ 1.

For k = 1, this inequality is an equality. For k > 1, by Jensen’s inequality, we have

pf(z) + (1− p)f(S) ≥ f(w), w = pz + (1− p)S.
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Thus, we only need to show that

f(w) + (k − 1)f(S) ≥ f(b1) + f(b2) + · · ·+ f(bk).

From w + (k − 1)S = b1 + b2 + · · ·+ bk, we obtain

w − b1 = (b2 − S) + · · ·+ (bk − S) > 0.

Since the decreasingly ordered vector ~Ak = (w, S, . . . , S) majorizes the decreasingly ordered vec-

tor ~Bk = (b1, b2, . . . , bk), this inequality follows from Karamata’s inequality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem (LHCF-Theorem).

Left Half Convex Function Theorem. Let f be a real function defined on an interval I and
convex on I≤S, where S ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
(3)

holds for all a1, a2, . . . , an ∈ I satisfying
a1 + a2 + · · ·+ an

n
= S if and only if it holds for all

a1, a2, . . . , an ∈ I such that
a1 = a2 = · · · = an−1 ≤ an.

From the RHCF-Theorem and the LHCF-Theorem, we find the HCF-Theorem (Half Convex
Function Theorem).

Half Convex Function Theorem. Let f be a real function defined on an interval I and
convex on I≥S or I≤S, where S ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an
n

= S if and only if it holds for the

case when n− 1 of the numbers a1, a2, . . . , an are equal.

Note 1. When n − 1 of the numbers a1, a2, . . . , an are equal, the inequality (1) in RHCF-
Theorem and the inequality (3) in LHCF-Theorem can be written as

f(x) + (n− 1)f(y) ≥ nf(S),

where x, y ∈ int(I) such that x+ (n− 1)y = nS. Let us denote

g(u) =
f(u)− f(s)

u− s
, h(x, y) =

g(x)− g(y)

x− y
.

In many applications, it is useful to replace the hypothesis

f(x) + (n− 1)f(y) ≥ nf(S)
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by the equivalent condition

h(x, y) ≥ 0 for all x, y ∈ I so that x+ (n− 1)y = nS.

This equivalence is true because

f(x) + (n− 1)f(y)− nf(S) = [f(x)− f(S)] + (n− 1)[f(y)− f(S)]

= (x− S)g(x) + (n− 1)(y − S)g(y)

=
n− 1

n
(x− y)[g(x)− g(y)]

=
n− 1

n
(x− y)2h(x, y).

Note 2. Assume that f is differentiable on I, and let

H(x, y) =
f ′(x)− f ′(y)

x− y
.

In some applications with HCF-Theorem, it is useful to replace the hypothesis

f(x) + (n− 1)f(y) ≥ nf(S)

with the more restrictive condition

H(x, y) ≥ 0 for all x, y ∈ I so that x+ (n− 1)y = nS.

To prove this, we will show that the new condition H(x, y) ≥ 0 implies

f(x) + (n− 1)f(y) ≥ nf(S)

for all x, y ∈ I so that x+ (n− 1)y = nS. Write this inequality as

f1(x) ≥ nf(S),

where

f1(x) = f(x) + (n− 1)f(y) = f(x) + (n− 1)f

(
nS − x
n− 1

)
.

From

f ′1(x) = f ′(x)− f ′
(
nS − x
n− 1

)
= f ′(x)− f ′(y)

=
n

n− 1
(x− S)H(x, y),

it follows that f1 is decreasing on I≤S and increasing on I≥S; therefore,

f1(x) ≥ f1(S) = nf(S).

Note 3. From the proof of the RHCF-Theorem, it follows that the RHCF-Theorem, the
LHCF-Theorem and the HCF-Theorem are also valid in the case when f is defined on I \ {u0},
where u0 ∈ I<s for the RHCF-Theorem, and u0 ∈ I>s for the LHCF-Theorem.
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Note 4. The inequalities in the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem
become equalities for

a1 = a2 = · · · = an = s.

In addition, if there exist x, y ∈ I so that

x+ (n− 1)y = ns, f(x) + (n− 1)f(y) = nf(s), x 6= y,

then the equality holds also for

a1 = x, a2 = · · · = an = y

(or any cyclic permutation). Notice that these equality conditions are equivalent to

x+ (n− 1)y = ns, h(x, y) = 0

(x < y for the RHCF-Theorem, and x > y for the LHCF-Theorem).

Note 5. Similarly, we can extend the weighted Jensen’s inequality to right and left half convex
functions establishing the WRHCF-Theorem, the WLHCF-Theorem and the WHCF-Theorem
(Vasile Cı̂rtoaje, 2008).

WHCF-Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1, p = min{p1, p2, . . . , pn},

and let f be a real function defined on an interval I and convex on I≥s or I≤s, where s ∈ int(I).
The inequality

p1f(a1) + p2f(a2) + · · ·+ pnf(an) ≥ f(p1a1 + p2a2 + · · ·+ pnan)

holds for all a1, a2, . . . , an ∈ I so that

p1a1 + p2a2 + · · ·+ pnan = s,

if and only if
pf(x) + (1− p)f(y) ≥ f(s)

for all x, y ∈ I satisfying
px+ (1− p)y = s.

************************************

The following LCRCF-Theorem is also useful to prove some symmetric inequalities.

Left Convex-Right Concave Function Theorem (Vasile Cı̂rtoaje, 2004). Let a < c be real
numbers, let f(x) be a continuous function defined on I = [a,∞), strictly convex for x ≤ c and
strictly concave for x ≥ c, and let

E(a1, a2, . . . , an) = f(a1) + f(a2) + · · ·+ f(an).
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If a1, a2, . . . , an ∈ I so that

a1 + a2 + · · ·+ an = S = constant,

then
(a) E is minimum for a1 = a2 = · · · = an−1 ≤ an;
(b) E is maximum for either a1 = a or a < a1 ≤ a2 = · · · = an.

Proof. Without loss of generality, assume that a1 ≤ a2 ≤ · · · ≤ an. Since the sumE(a1, a2, . . . , an)
is a continuous function on the compact set

A = {(a1, a2, . . . , an) : a1 + a2 + · · ·+ an = S, a1, a2, . . . , an ∈ I},
E attains its minimum and maximum.

(a) For the sake of contradiction, suppose that E is minimum at (b1, b2, . . . , bn) with

b1 ≤ b2 ≤ · · · ≤ bn, b1 < bn−1.

For bn−1 ≤ c, by Jensen’s inequality for strictly convex functions we have

f(b1) + f(bn−1) > 2f

(
b1 + bn−1

2

)
,

while for bn−1 > c, by Karamata’s inequality for strictly concave functions we have

f(bn−1) + f(bn) > f(c) + f(bn−1 + bn − c).
The both results contradict the assumption that E is minimum at (b1, b2, . . . , bn).

(b) For the sake of contradiction, suppose that E is maximum at (b1, b2, . . . , bn) with

a < b1 ≤ b2 ≤ · · · ≤ bn, b2 < bn.

There are three cases to consider.

Case 1: b2 ≥ c. By Jensen’s inequality for strictly concave functions, we have

f(b2) + f(bn) < 2f

(
b2 + bn

2

)
.

Case 2: b2 < c and b1 + b2 − a ≤ c. By Karamata’s inequality for strictly convex functions, we
have

f(b1) + f(b2) < f(a) + f(b1 + b2 − a).

Case 3: b2 < c and b1 + b2 − c ≥ a. By Karamata’s inequality for strictly convex functions, we
have

f(b1) + f(b2) < f(b1 + b2 − c) + f(c).

Clearly, all these results contradict the assumption that E is maximum at (b1, b2, . . . , bn).

Note 6. The point (a) of LCRCF-Theorem is also true when I = (a,∞) and f(a+) =∞.

Note 7. If I = [a, d] and a < c < d, then E is minimum for either an = d or a1 = a2 =
· · · = an−1 ≤ an.

Note 8. From the point (b) of LCRCF-Theorem, we can prove (by the induction way) that
E is maximum for

a = a1 = · · · = aj−1 ≤ aj ≤ aj+1 = · · · = an,

where j ∈ {1, 2, . . . , n− 1}.
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1.2 Applications

1.1. If a, b, c are real numbers so that a+ b+ c = 3, then

3(a4 + b4 + c4) + a2 + b2 + c2 + 6 ≥ 6(a3 + b3 + c3).

1.2. If a1, a2, . . . , an ≥
1− 2n

n− 2
so that a1 + a2 + · · ·+ an = n, then

a31 + a32 + · · ·+ a3n ≥ n.

1.3. If a1, a2, . . . , an ≥
−n
n− 2

so that a1 + a2 + · · ·+ an = n, then

a31 + a32 + · · ·+ a3n ≥ a21 + a22 + · · ·+ a2n.

1.4. If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

(n2 − 3n+ 3)(a41 + a42 + · · ·+ a4n − n) ≥ 2(n2 − n+ 1)(a21 + a22 + · · ·+ a2n − n).

1.5. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(n2 + n+ 1)(a31 + a32 + · · ·+ a3n − n) ≥ (n+ 1)(a41 + a42 + · · ·+ a4n − n).

1.6. If a, b, c are real numbers so that a+ b+ c = 3, then

(a) a4 + b4 + c4 − 3 + 2(7 + 3
√

7)(a3 + b3 + c3 − 3) ≥ 0;

(b) a4 + b4 + c4 − 3 + 2(7− 3
√

7)(a3 + b3 + c3 − 3) ≥ 0.

1.7. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If k is a
positive integer satisfying 3 ≤ k ≤ n+ 1, then

ak1 + ak2 + · · ·+ akn − n
a21 + a22 + · · ·+ a2n − n

≥ (n− 1)

[(
n

n− 1

)k−1

− 1

]
.

1.8. Let k ≥ 3 be an integer number. If a1, a2, . . . , an are nonnegative real numbers so that
a1 + a2 + · · ·+ an = n, then

ak1 + ak2 + · · ·+ akn − n
a21 + a22 + · · ·+ a2n − n

≤ nk−1 − 1

n− 1
.
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1.9. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

n2

(
1

a1
+

1

a2
+ · · ·+ 1

an
− n

)
≥ 4(n− 1)(a21 + a22 + · · ·+ a2n − n).

1.10. If a1, a2, . . . , a8 are positive real numbers so that a1 + a2 + · · ·+ a8 = 8, then

1

a21
+

1

a22
+ · · ·+ 1

a28
≥ a21 + a22 + · · ·+ a28.

1.11. If a1, a2, . . . , an are positive real numbers so that
1

a1
+

1

a2
+ · · ·+ 1

an
= n, then

a21 + a22 + · · ·+ a2n − n ≥ 2

(
1 +

√
n− 1

n

)
(a1 + a2 + · · ·+ an − n).

1.12. If a, b, c, d, e are positive real numbers so that a2 + b2 + c2 + d2 + e2 = 5, then

1

a
+

1

b
+

1

c
+

1

d
+

1

e
− 5 +

4(1 +
√

5)

5
(a+ b+ c+ d+ e− 5) ≥ 0.

1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

3a+ b+ c
+

1

3b+ c+ a
+

1

3c+ a+ b
≤ 2

5

(
1

b+ c
+

1

c+ a
+

1

a+ b

)
.

1.14. If a, b, c, d ≥ 3−
√

7 so that a+ b+ c+ d = 4, then

1

2 + a2
+

1

2 + b2
+

1

2 + c2
+

1

2 + d2
≥ 4

3
.

1.15. If a1, a2, . . . , an ∈ [−
√
n, n− 2] so that a1 + a2 + · · ·+ an = n, then

1

n+ a21
+

1

n+ a22
+ · · ·+ 1

n+ a2n
≤ n

n+ 1
.

1.16. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

3− a
9 + a2

+
3− b
9 + b2

+
3− c
9 + c2

≥ 3

5
.
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1.17. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1

1− a+ 2a2
+

1

1− b+ 2b2
+

1

1− c+ 2c2
≥ 3

2
.

1.18. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1

5 + a+ a2
+

1

5 + b+ b2
+

1

5 + c+ c2
≥ 3

7
.

1.19. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ 1− 1

n
,

then
1

1 + ka21
+

1

1 + ka22
+ · · ·+ 1

1 + ka2n
≥ n

1 + k
.

1.20. Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If p ≥ 2

n− 2
and q = (p+ 1)(p+ n), then

1

a21 + pa1 + q
+

1

a22 + pa2 + q
+ · · ·+ 1

a2n + pan + q
≤ n

1 + p+ q
.

1.21. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ n2 − n+ 1

n− 1
,

then
1

a21 + k
+

1

a22 + k
+ · · ·+ 1

a2n + k
≤ n

1 + k
.

1.22. Let a1, a2, . . . , an be nonnegative numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ n2

4(n− 1)
,

then
a1(a1 − 1)

a21 + k
+
a2(a2 − 1)

a22 + k
+ · · ·+ an(an − 1)

a2n + k
≥ 0.
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1.23. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

a1 − 1

(n− 2a1)2
+

a2 − 1

(n− 2a2)2
+ · · ·+ an − 1

(n− 2an)2
≥ 0.

1.24. If a1, a2, . . . , an are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n, a1, a2, . . . , an > −k, k ≥ 1 +
n√
n− 1

,

then
a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a2n − 1

(an + k)2
≥ 0.

1.25. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If 0 < k ≤

1 +

√
2n− 1

n− 1
, then

a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a2n − 1

(an + k)2
≤ 0.

1.26. If a1, a2, . . . , an ≥ n− 1−
√
n2 − n+ 1 so that a1 + a2 + · · ·+ an = n, then

a21 − 1

(a1 + 2)2
+

a22 − 1

(a2 + 2)2
+ · · ·+ a2n − 1

(an + 2)2
≤ 0.

1.27. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If k ≥
(n− 1)(2n− 1)

n2
, then

1

1 + ka31
+

1

1 + ka32
+ · · ·+ 1

1 + ka3n
≥ n

1 + k
.

1.28. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If 0 < k ≤
n− 1

n2 − 2n+ 2
, then

1

1 + ka31
+

1

1 + ka32
+ · · ·+ 1

1 + ka3n
≤ n

1 + k
.

1.29. Let a1, a2, . . . , an be nonnegative real numbers so that a1 +a2 + · · ·+an = n. If k ≥ n2

n− 1
,

then √
a1

k − a1
+

√
a2

k − a2
+ · · ·+

√
an

k − an
≤ n√

k − 1
.
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1.30. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

n−a
2
1 + n−a

2
2 + · · ·+ n−a

2
n ≥ 1.

1.31. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(3a2 + 1)(3b2 + 1)(3c2 + 1)(3d2 + 1) ≤ 256.

1.32. If a, b, c, d, e ≥ −1 so that a+ b+ c+ d+ e = 5, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)(e2 + 1) ≥ (a+ 1)(b+ 1)(c+ 1)(d+ 1)(e+ 1).

1.33. Let a1, a2, . . . , an be positive numbers so that a1 + a2 + · · ·+ an = n. If

k ≤ 2
√
n− 1

n
+ 2

√
2
√
n− 1

n
, k ≤ 3,

then

k(
√
a1 +

√
a2 + · · ·+

√
an) +

1
√
a1

+
1
√
a2

+ · · ·+ 1
√
an
≥ (k + 1)n.

1.34. If a1, a2, . . . , an (n ≥ 3) are positive numbers so that a1 + a2 + · · ·+ an = 1, then(
1
√
a1
−
√
a1

)(
1
√
a2
−
√
a2

)
· · ·
(

1
√
an
−
√
an

)
≥
(√

n− 1√
n

)n

.

1.35. Let a1, a2, . . . , an be positive real numbers so that a1 + a2 + · · ·+ an = n. If

k ≤
(

1 +
2
√
n− 1

n

)2

,

then (
ka1 +

1

a1

)(
ka2 +

1

a2

)
· · ·
(
kan +

1

an

)
≥ (k + 1)n.

1.36. If a, b, c, d are nonzero real numbers so that

a, b, c, d ≥ −1

2
, a+ b+ c+ d = 4,

then

3

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
+

1

a
+

1

b
+

1

c
+

1

d
≥ 16.
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1.37. If a1, a2, . . . , an are nonnegative real numbers so that a21 + a22 + · · ·+ a2n = n, then

a31 + a32 + · · ·+ a3n − n+

√
n

n− 1
(a1 + a2 + · · ·+ an − n) ≥ 0.

1.38. If a, b, c, d, e are nonnegative real numbers so that a2 + b2 + c2 + d2 + e2 = 5, then

1

7− 2a
+

1

7− 2b
+

1

7− 2c
+

1

7− 2d
+

1

7− 2e
≤ 1.

1.39. Let 0 ≤ a1, a2, . . . , an < k so that a21 + a22 + · · ·+ a2n = n. If

1 < k ≤ 1 +

√
n

n− 1
,

then
1

k − a1
+

1

k − a2
+ · · ·+ 1

k − an
≥ n

k − 1
.

1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then√
1 +

48a

b+ c
+

√
1 +

48b

c+ a
+

√
1 +

48c

a+ b
≥ 15.

1.41. If a, b, c are nonnegative real numbers, then√
3a2

7a2 + 5(b+ c)2
+

√
3b2

7b2 + 5(c+ a)2
+

√
3c2

7c2 + 5(a+ b)2
≤ 1.

1.42. If a, b, c are nonnegative real numbers, then√
a2

a2 + 2(b+ c)2
+

√
b2

b2 + 2(c+ a)2
+

√
c2

c2 + 2(a+ b)2
≥ 1.

1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

k ≥ k0, k0 =
ln 3

ln 2
− 1 ≈ 0.585,

then (
2a

b+ c

)k

+

(
2b

c+ a

)k

+

(
2c

a+ b

)k

≥ 3.
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1.44. If a, b, c ∈ [1, 7 + 4
√

3], then√
2a

b+ c
+

√
2b

c+ a
+

√
2c

a+ b
≥ 3.

1.45. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

0 < k ≤ k0, k0 =
ln 2

ln 3− ln 2
≈ 1.71,

then
ak(b+ c) + bk(c+ a) + ck(a+ b) ≤ 6.

1.46. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
a+
√
b+
√
c− 3 ≥ 13

(√
a+ b

2
+

√
b+ c

2
+

√
c+ a

2
− 3

)
.

1.47. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k > 2, then

ak + bk + ck + 3 ≥ 2

(
a+ b

2

)k

+ 2

(
b+ c

2

)k

+ 2

(
c+ a

2

)k

.

1.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

√
a1 +

√
a2 + · · ·+

√
an + n(k − 1) ≤ k

(√
n− a1
n− 1

+

√
n− a2
n− 1

+ · · ·+
√
n− an
n− 1

)
,

where
k = (

√
n− 1)(

√
n+
√
n− 1).

1.49. If a, b, c are the lengths of the sides of a triangle so that a+ b+ c = 3, then

1

a+ b− c
+

1

b+ c− a
+

1

c+ a− b
− 3 ≥ 4(2 +

√
3)

(
2

a+ b
+

2

b+ c
+

2

c+ a
− 3

)
.

1.50. Let a1, a2, . . . , a5 be nonnegative numbers so that a1 + a2 + a3 + a4 + a5 ≤ 5. If

k ≥ k0, k0 =
29 +

√
761

10
≈ 5.66,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≥ 5

k + 4
.
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1.51. Let a1, a2, . . . , a5 be nonnegative numbers so that a1 + a2 + a3 + a4 + a5 ≤ 5. If

0 < k ≤ k0, k0 =
11−

√
101

10
≈ 0.095,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≥ 5

k + 4
.

1.52. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n. If

0 < k ≤ 1

n+ 1
,

then

a1
ka21 + a2 + · · ·+ an

+
a2

a1 + ka22 + · · ·+ an
+ · · ·+ an

a1 + a2 + · · ·+ ka2n
≥ n

k + n− 1
.

1.53. If a1, a2, a3, a4, a5 ≤
7

2
so that a1 + a2 + a3 + a4 + a5 = 5, then

a1
a21 − a1 + 5

+
a2

a22 − a2 + 5
+

a3
a23 − a3 + 5

+
a4

a24 − a4 + 5
+

a5
a25 − a5 + 5

≤ 1.

1.54. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≥ n. If

0 < k ≤ 1

1 + 1
4(n−1)2

,

then

a21
ka21 + a2 + · · ·+ an

+
a22

a1 + ka22 + · · ·+ an
+ · · ·+ a2n

a1 + a2 + · · ·+ ka2n
≥ n

k + n− 1
.

1.55. Let a1, a2, . . . , an be nonnegative real numbers so that a1 +a2 + · · ·+an ≤ n. If k ≥ n− 1,
then

a21
ka21 + a2 + · · ·+ an

+
a22

a1 + ka22 + · · ·+ an
+ · · ·+ a2n

a1 + a2 + · · ·+ ka2n
≤ n

k + n− 1
.

1.56. Let a1, a2, . . . , an ∈ [0, n] so that a1 + a2 + · · ·+ an ≥ n. If 0 < k ≤ 1

n
, then

a1 − 1

ka21 + a2 + · · ·+ an
+

a2 − 1

a1 + ka22 + · · ·+ an
+ · · ·+ an − 1

a1 + a2 + · · ·+ ka2n
≥ 0.
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1.57. If a, b, c are positive real numbers so that abc = 1, then

√
a2 − a+ 1 +

√
b2 − b+ 1 +

√
c2 − c+ 1 ≥ a+ b+ c.

1.58. If a, b, c, d ≥ 1

1 +
√

6
so that abcd = 1, then

1

a+ 2
+

1

b+ 2
+

1

c+ 2
+

1

d+ 2
≤ 4

3
.

1.59. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3 ≥ 2(ab+ bc+ ca− a− b− c).

1.60. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3 ≥ 18(a+ b+ c− ab− bc− ca).

1.61. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

a21 + a22 + · · ·+ a2n − n ≥ 6
√

3

(
a1 + a2 + · · ·+ an −

1

a1
− 1

a2
− · · · − 1

an

)
.

1.62. If a1, a2, . . . , an (n ≥ 4) are positive real numbers so that a1a2 · · · an = 1, then

(n− 1)(a21 + a22 + · · ·+ a2n) + n(n+ 3) ≥ (2n+ 2)(a1 + a2 + · · ·+ an).

1.63. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If p and q are
nonnegative real numbers so that p+ q ≥ n− 1, then

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≥ n

1 + p+ q
.

1.64. Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are nonnegative real
numbers so that p+ q = 3, then

1

1 + pa+ qa3
+

1

1 + pb+ qb3
+

1

1 + pc+ qc3
+

1

1 + pd+ qd3
≥ 1.
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1.65. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1

1 + a1 + · · ·+ an−11

+
1

1 + a2 + · · ·+ an−12

+ · · ·+ 1

1 + an + · · ·+ an−1n

≥ 1.

1.66. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

k ≥ n2 − 1,

then
1√

1 + ka1
+

1√
1 + ka2

+ · · ·+ 1√
1 + kan

≥ n√
1 + k

.

1.67. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If p, q ≥ 0 so that

0 < p+ q ≤ 1

n− 1
, then

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≤ n

1 + p+ q
.

1.68. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If

0 < k ≤ 2n− 1

(n− 1)2
,

then
1√

1 + ka1
+

1√
1 + ka2

+ · · ·+ 1√
1 + kan

≤ n√
1 + k

.

1.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then√
a41 +

2n− 1

(n− 1)2
+

√
a42 +

2n− 1

(n− 1)2
+ · · ·+

√
a4n +

2n− 1

(n− 1)2
≥ 1

n− 1
(a1 + a2 + · · ·+ an)2.

1.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−11 + an−12 + · · ·+ an−1n + n(n− 2) ≥ (n− 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

1.71. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If k ≥ n, then

ak1 + ak2 + · · ·+ akn + kn ≥ (k + 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.
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1.72. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then(
1− 1

n

)a1

+

(
1− 1

n

)a2

+ · · ·+
(

1− 1

n

)an

≤ n− 1.

1.73. If a, b, c are positive real numbers so that abc = 1, then

1

1 +
√

1 + 3a
+

1

1 +
√

1 + 3b
+

1

1 +
√

1 + 3c
≤ 1.

1.74. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1

1 +
√

1 + 4n(n− 1)a1
+

1

1 +
√

1 + 4n(n− 1)a2
+ · · ·+ 1

1 +
√

1 + 4n(n− 1)an
≥ 1

2
.

1.75. If a, b, c are positive real numbers so that abc = 1, then

a6

1 + 2a5
+

b6

1 + 2b5
+

c6

1 + 2c5
≥ 1.

1.76. If a, b, c are positive real numbers so that abc = 1, then

√
25a2 + 144 +

√
25b2 + 144 +

√
25c2 + 144 ≤ 5(a+ b+ c) + 24.

1.77. If a, b, c are positive real numbers so that abc = 1, then

√
16a2 + 9 +

√
16b2 + 9 +

√
16c2 + 9 ≥ 4(a+ b+ c) + 3.

1.78. If ABC is a triangle, then

sinA

(
2 sin

A

2
− 1

)
+ sinB

(
2 sin

B

2
− 1

)
+ sinC

(
2 sin

C

2
− 1

)
≥ 0.

1.79. If ABC is an acute or right triangle, then

sin 2A

(
1− 2 sin

A

2

)
+ sin 2B

(
1− 2 sin

B

2

)
+ sin 2C

(
1− 2 sin

C

2

)
≥ 0.
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1.80. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

a

a2 − a+ 4
+

b

b2 − b+ 4
+

c

c2 − c+ 4
+

d

d2 − d+ 4
≤ 1.

1.81. Let a, b, c be nonnegative real numbers so that a+ b+ c = 2. If

k0 ≤ k ≤ 3, k0 =
ln 2

ln 3− ln 2
≈ 1.71,

then
ak(b+ c) + bk(c+ a) + ck(a+ b) ≤ 2.

1.82. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

(n+ 1)2
(

1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ 4(n+ 2)(a21 + a22 + · · ·+ a2n) + n(n2 − 3n− 6).

1.83. If a, b, c, d, e are positive real numbers such that a+ b+ c+ d+ e = 5, then

27(
1

a
+

1

b
+

1

c
+

1

d
+

1

e
) ≥ 4(a3 + b3 + c3 + d3 + e3) + 115.

1.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 12, then

(a2 + 10)(b2 + 10)(c2 + 10) ≥ 13310.

1.85. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(a21 + 1)(a22 + 1) · · · (a2n + 1) ≥ (n2 − 2n+ 2)n

(n− 1)2n−2
.

1.86. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 2)(b2 + 2)(c2 + 2) ≤ 44.

1.87. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 1)(b2 + 1)(c2 + 1) ≤ 169

16
.
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1.88. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(2a2 + 1)(2b2 + 1)(2c2 + 1) ≤ 121

4
.

1.89. If a, b, c are nonnegative real numbers so that a+ b+ c ≥ k0, where

k0 =
3

8

√
66 + 10

√
105 ≈ 4.867,

then

3
√

(a2 + 1)(b2 + 1)(c2 + 1) ≤
(
a+ b+ c

3

)2

+ 1.

1.90. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(a2 + 3)(b2 + 3)(c2 + 3)(d2 + 3) ≤ 513.

1.91. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(a2 + 2)(b2 + 2)(c2 + 2)(d2 + 2) ≤ 144.

1.92. If a, b, c, d are nonnegative real numbers such that

a+ b+ c+ d = 4,

then
a

3a3 + 2
+

b

3b3 + 2
+

c

3c3 + 2
+

d

3d3 + 2
≤ 4

5
.

1.93. If a, b, c, d are positive real numbers such that

1

9a+ 2
+

1

9b+ 2
+

1

9c+ 2
+

1

9d+ 2
=

4

11
,

then

3(a+ b+ c+ d) + 20 ≥ 8

(
1

a
+

1

b
+

1

c
+

1

d

)
.

1.94. If a1, a2, ..., an are nonnegative real numbers such that a1 + a2 + · · ·+ an = 1, then

a31 + a32 + · · ·+ a3n ≤
1

8
+ a41 + a42 + · · ·+ a4n.
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1.95. If a1, a2, . . . , an (n ≥ 4) are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then

n(n− 1)(2n− 1)
n∑

i=1

1

ai + n− 1
≥ a21 + a22 + · · ·+ a2n + n2(2n− 3).

1.96. If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then

n(n2 − n+ 1)
n∑

i=1

1

ai + n− 1
≤ a21 + a22 + · · ·+ a2n + n2(n− 1).

1.97. If a1, a2, . . . , an (n ≥ 4) are nonnegative real numbers such that

1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
≥ 1,

then

a21 + a22 + · · ·+ a2n − n ≥
n2 − n− 1

n− 2
(a1 + a2 + · · ·+ an − n).

1.98. Let a, b, c be nonnegative real numbers, no two of which are zero, and

x =
2a

b+ c
, y =

2b

c+ a
, z =

2c

a+ b
.

Prove that
1√

5x+ 4
+

1√
5y + 4

+
1√

5z + 4
≥ 1.

1.99. If a, b, c, d are positive real numbers such that abcd = 1, then

a3 + b3 + c3 + d3 + 4 ≥ 2(a2 + b2 + c2 + d2).

1.100. If a, b, c, d ∈ [−1, 1] such that a+ b+ c+ d = 1, then

−1

9
≤ a3 + b3 + c3 + d3 ≤ 7

4
.

1.101. Prove that
19

4
is the minimum positive value of the constant k such that

3

√
b+ c

ka+ b+ c
+ 3

√
c+ a

kb+ c+ a
+

3

√
a+ b

kc+ a+ b
≥ 3 3

√
2

k + 2

holds for any nonnegative real numbers a, b, c with a+ b+ c > 0.
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1.3 Solutions

P 1.1. If a, b, c are real numbers so that a+ b+ c = 3, then

3(a4 + b4 + c4) + a2 + b2 + c2 + 6 ≥ 6(a3 + b3 + c3).

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where
f(u) = 3u4 − 6u3 + u2, u ∈ R.

From
f ′′(u) = 2(18u2 − 18u+ 1),

it follows that f ′′(u) > 0 for u ≥ 1, hence f is convex on [s,∞). By the RHCF-Theorem, it
suffices to show that f(x) + 2f(y) ≥ 3f(1) for all real x, y so that x+ 2y = 3. Let

E = f(x) + 2f(y)− 3f(1).

We have

E = [f(x)− f(1)] + 2[f(y)− f(1)]

= (3x4 − 6x3 + x2 + 2) + 2(3y4 − 6y3 + y2 + 2)

= (x− 1)(3x3 − 3x2 − 2x− 2) + 2(y − 1)(3y3 − 3y2 − 2y − 2)

= (x− 1)[(3x3 − 3x2 − 2x− 2)− (3y3 − 3y2 − 2y − 2)]

= (x− 1)[3(x3 − y3)− 3(x2 − y2)− 2(x− y)]

= (x− 1)(x− y)[3(x2 + xy + y2)− 3(x+ y)− 2]

=
(x− 1)2[27(x2 + xy + y2)− 9(x+ y)(x+ 2y)− 2(x+ 2y)2]

6

=
(x− 1)2(4x− y)2

6
≥ 0.

The equality holds for a = b = c = 1, and also for a =
1

3
and b = c =

4

3
(or any cyclic

permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

(a21 − a1)2 + (a22 − a2)2 + · · ·+ (a2n − an)2 ≥ n− 1

n2 − 3n+ 3
(a21 + a22 + · · ·+ a2n − n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
1

n2 − 3n+ 3
, a2 = a3 = · · · = an = 1 +

n− 2

n2 − 3n+ 3

(or any cyclic permutation).
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P 1.2. If a1, a2, . . . , an ≥
1− 2n

n− 2
so that a1 + a2 + · · ·+ an = n, then

a31 + a32 + · · ·+ a3n ≥ n.

(Vasile C., 2000)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = u3, u ≥ 1− 2n

n− 2
.

From f ′′(u) = 6u, it follows that f is convex on [s,∞). By the RHCF-Theorem and Note 1, it

suffices to show that h(x, y) ≥ 0 for all x, y ≥ 1− 2n

n− 2
so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
= u2 + u+ 1,

h(x, y) =
g(x)− g(y)

x− y
= x+ y + 1 =

(n− 2)x+ 2n− 1

n− 1
≥ 0.

From x+ (n− 1)y = n and h(x, y) = 0, we get

x =
1− 2n

n− 2
, y =

n+ 1

n− 2
.

Therefore, according to Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
1− 2n

n− 2
, a2 = a3 = · · · = an =

n+ 1

n− 2

(or any cyclic permutation).

P 1.3. If a1, a2, . . . , an ≥
−n
n− 2

so that a1 + a2 + · · ·+ an = n, then

a31 + a32 + · · ·+ a3n ≥ a21 + a22 + · · ·+ a2n.

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = u3 − u2, u ≥ −n
n− 2

.
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From f ′′(u) = 6u − 2, it follows that f is convex on [s,∞). According to the RHCF-Theorem

and Note 1, it suffices to show that h(x, y) ≥ 0 for x, y ≥ −n
n− 2

so that x + (n − 1)y = n. We

have

g(u) =
f(u)− f(1)

u− 1
= u2,

h(x, y) =
g(x)− g(y)

x− y
= x+ y =

(n− 2)x+ n

n− 1
≥ 0.

From x+ (n− 1)y = n and h(x, y) = 0, we get

x =
−n
n− 2

, y =
n

n− 2
.

Therefore, in accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
−n
n− 2

, a2 = a3 = · · · = an =
n

n− 2

(or any cyclic permutation).

P 1.4. If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

(n2 − 3n+ 3)(a41 + a42 + · · ·+ a4n − n) ≥ 2(n2 − n+ 1)(a21 + a22 + · · ·+ a2n − n).

(Vasile C., 2009)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = (n2 − 3n+ 3)u4 − 2(n2 − n+ 1)u2, u ∈ I = R.

For u ≥ s = 1, we have

1

4
f ′′(u) = 3(n2 − 3n+ 3)u2 − (n2 − n+ 1)

≥ 3(n2 − 3n+ 3)− (n2 − n+ 1) = 2(n− 2)2 ≥ 0;

therefore, f is convex on I≥s. By the RHCF-Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for x, y ∈ R so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have
g(u) = (n2 − 3n+ 3)(u3 + u2 + u+ 1)− 2(n2 − n+ 1)(u+ 1)
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and

h(x, y) = (n2 − 3n+ 3)(x2 + xy + y2 + x+ y + 1)− 2(n2 − n+ 1)

= [(n2 − 3n+ 3)y − n2 + n+ 1]2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = −1 +
2

n2 − 3n+ 3
, a2 = a3 = · · · = an = 1 +

2n− 4

n2 − 3n+ 3

(or any cyclic permutation).

P 1.5. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(n2 + n+ 1)(a31 + a32 + · · ·+ a3n − n) ≥ (n+ 1)(a41 + a42 + · · ·+ a4n − n).

(Vasile C., 2009)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = (n2 + n+ 1)u3 − (n+ 1)u4, u ∈ I = [0, n].

The function f is convex on I≤s because

f ′′(u) = 6u[n2 + n+ 1− 2(n+ 1)u] ≥ 6u[n2 + n+ 1− 2(n+ 1)]

= 6(n2 − n− 1)u ≥ 0.

By the LHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0 for x, y ≥ 0 so that
x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) = (n2 + n+ 1)(u2 + u+ 1)− (n+ 1)(u3 + u2 + u+ 1)

= −(n+ 1)u3 + n2(u2 + u+ 1)

and

h(x, y) = −(n+ 1)(x2 + xy + y2) + n2(x+ y + 1)

= −(n+ 1)(x2 + xy + y2) + n(x+ y)[x+ (n− 1)y] + [x+ (n− 1)y]2

= (n2 + n− 3)xy + 2n(n− 2)y2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n, a2 = a3 = · · · = an = 0

(or any cyclic permutation).
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P 1.6. Let a, b, c be real numbers so that a+ b+ c = 3. If

−14− 6
√

7 ≤ k ≤ −14 + 6
√

7,

then
a4 + b4 + c4 − 3 ≥ k(a3 + b3 + c3 − 3).

(Vasile C., 2009)

Solution. Write the desired inequalities as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where
f(u) = u4 − ku3, u ∈ R.

From
f ′′(u) = 6u(2u2 − k),

it follows that f ′′(u) > 0 for u ≥ 1, hence f is convex on [s,∞). By the RHCF-Theorem, it
suffices to show that f(x) + 2f(y) ≥ 3f(1) for all real x, y so that x+ 2y = 3. Using Note 1, we
only need to show that h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) = u3 + u2 + u+ 1− k(u2 + u+ 1) + u+ 1 = u3 + (1− k)(u2 + u+ 1),

h(x, y) = x2 + xy + y2 + (1− k)(x+ y + 1) = 3y2 − (10− k)y + 13− 4k

= 3

(
y − 10− k

6

)2

+
(6
√

7 + 14 + k)(6
√

7− 14− k)

12
≥ 0.

The equality holds for a = b = c = 1. If k = −14− 6
√

7, then the equality holds also for

a = −5− 2
√

7, b = c = 4 +
√

7

(or any cyclic permutation). If k = −14 + 6
√

7, then the equality holds also for

a = −5 + 2
√

7, b = c = 4−
√

7

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If k1 ≤ k ≤ k2, where

k1 =
−2(n2 − n+ 1)− 2

√
3(n2 − n+ 1)(n2 − 3n+ 3)

(n− 2)2
,



26 Vasile Ĉırtoaje

k2 =
−2(n2 − n+ 1) + 2

√
3(n2 − n+ 1)(n2 − 3n+ 3)

(n− 2)2
,

then
a41 + a42 + · · ·+ a4n − n ≥ k(a31 + a32 + · · ·+ a3n − n).

The equality holds for a1 = a2 = · · · = an = 1. If k ∈ {k1, k2}, then the equality holds also for

a1 =
−2(n2 − 3n+ 1) + (n− 1)(n− 2)k

2(n2 − 3n+ 3)
,

a2 = a3 = · · · = an =
2(n2 − n− 1)− (n− 2)k

2(n2 − 3n+ 3)

(or any cyclic permutation).

P 1.7. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If k is a
positive integer satisfying 3 ≤ k ≤ n+ 1, then

ak1 + ak2 + · · ·+ akn − n
a21 + a22 + · · ·+ a2n − n

≥ (n− 1)

[(
n

n− 1

)k−1

− 1

]
.

(Vasile C., 2012)

Solution. Denote

m = (n− 1)

[(
n

n− 1

)k−1

− 1

]
=

(
n

n− 1

)k−2

+

(
n

n− 1

)k−3

+ · · ·+ 1,

and write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = uk −mu2, u ∈ [0, n].

We will show that f is convex on [1, n]. Since

f ′′(u) = k(k − 1)uk−2 − 2m ≥ k(k − 1)− 2m,

we need to show that

k(k − 1)

2
≥
(

n

n− 1

)k−2

+

(
n

n− 1

)k−3

+ · · ·+ 1.

Since n ≥ k − 1, this inequality is true if

k(k − 1)

2
≥
(
k − 1

k − 2

)k−2

+

(
k − 1

k − 2

)k−3

+ · · ·+ 1.
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By Bernoulli’s inequality, we have(
k − 1

k − 2

)j

=
1(

1− 1
k−1

)j ≤ 1

1− j
k−1

=
k − 1

k − j − 1
, j = 0, 1, . . . , k − 2.

Therefore, it suffices to show that

k(k − 1)

2
≥ (k − 1)

(
1 +

1

2
+ · · ·+ 1

k − 1

)
.

This is true if
k

2
≥ 1 +

1

2
+ · · ·+ 1

k − 1
,

which can be easily proved by induction. According to the RHCF-Theorem and Note 1, we only
need to show that h(x, y) ≥ 0 for x, y ≥ 0 so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
(uk − 1)−m(u2 − 1)

u− 1
= (uk−1 + uk−2 + · · ·+ 1)−m(u+ 1),

h(x, y) =

(
xk−1 − yk−1

x− y
+
xk−2 − yk−1

x− y
+ · · ·+ 1

)
−m

=
k−2∑
j=1

[
xj+1 − yj+1

x− y
−
(

n

n− 1

)j
]
.

It suffices to show that fj(y) ≥ 0 for y ∈
[
0,

n

n− 1

]
and j = 1, 2, . . . , k − 2, where

fj(y) = xj + xj−1y + · · ·+ xyj−1 + yj −
(

n

n− 1

)j

, x = n− (n− 1)y.

For j = 1, we have

f1(y) = x+ y − n

n− 1
=

(n− 2)x

n− 1
≥ 0.

For j ≥ 2, from x′ = −(n− 1) and n− 1 ≥ k − 2 ≥ j, we get

f ′j(y) = −(n− 1)[jxj−1 + (j − 1)xj−2y + · · ·+ yj−1] + xj−1 + 2xj−2y + · · ·+ jyj−1

≤ −j[jxj−1 + (j − 1)xj−2y + · · ·+ yj−1] + xj−1 + 2xj−2y + · · ·+ jyj−1

= −(j · j − 1)xj−1 − [j · (j − 1)− 2]xj−2y − · · · − (j · 2− j + 1)xyj−2 ≤ 0.

As a consequence, fj is decreasing, hence it is minimum for y =
n

n− 1
(when x = 0):

fj(y) ≥ fj

(
n

n− 1

)
= 0.
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From x+ (n− 1)y = n and h(x, y) = 0, we get

x = 0, y =
n

n− 1
.

Therefore, the equality holds for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

• If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(n− 1)(a31 + a32 + · · ·+ a3n − n) ≥ (2n− 1)(a21 + a22 + · · ·+ a2n − n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

• If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n,

then
(n− 1)2(a41 + a42 + · · ·+ a4n − n) ≥ (3n2 − 3n+ 1)(a21 + a22 + · · ·+ a2n − n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 1.8. Let k ≥ 3 be an integer number. If a1, a2, . . . , an are nonnegative real numbers so that
a1 + a2 + · · ·+ an = n, then

ak1 + ak2 + · · ·+ akn − n
a21 + a22 + · · ·+ a2n − n

≤ nk−1 − 1

n− 1
.

(Vasile C., 2012)

Solution. Denote

m =
nk−1 − 1

n− 1
= nk−2 + nk−3 + · · ·+ 1,

and write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,
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where
f(u) = mu2 − uk, u ∈ [0, n].

We will show that f is convex on [0, 1]. Since

f ′′(u) = 2m− k(k − 1)uk−2 ≥ 2m− k(k − 1),

we need to show that

nk−2 + nk−3 + · · ·+ 1 ≥ k(k − 1)

2
.

This is true if

2k−2 + 2k−3 + · · ·+ 1 ≥ k(k − 1)

2
,

which is equivalent to

2k−1 − 1 ≥ k(k − 1)

2
,

2k ≥ k2 − k + 2.

Since

2k = (1 + 1)k ≥ 1 +

(
k

1

)
+

(
k

2

)
+

(
k

3

)
= 1 + k +

k(k − 1)

2
+
k(k − 1)(k − 2)

6
,

it suffices to show that

1 + k +
k(k − 1)

2
+
k(k − 1)(k − 2)

6
≥ k2 − k + 2,

which reduces to
(k − 1)(k − 2)(k − 3) ≥ 0.

According to the LHCF-Theorem and Note 1, we only need to show that h(x, y) ≥ 0 for x, y ≥ 0
so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
m(u2 − 1)− (uk − 1)

u− 1
= m(u+ 1)− (uk−1 + uk−2 + · · ·+ 1)

and

h(x, y) = m− xk−1 − yk−1

x− y
− xk−2 − yk−1

x− y
− · · · − 1

=

(
nk−2 − xk−1 − yk−1

x− y

)
+

(
nk−3 − xk−2 − yk−2

x− y

)
+ · · ·+

(
n− x2 − y2

x− y

)
.

It suffices to show that

nj ≥ xj+1 − yj+1

x− y
, j = 1, 2, . . . , k − 2.
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We will show that

nj ≥ (x+ y)j ≥ xj+1 − yj+1

x− y
.

The left inequality is true since

n− (x+ y) = x+ (n− 1)y − (x+ y) = (n− 2)y ≥ 0.

The right inequality is also true since

(x+ y)j = xj +

(
j

1

)
xj−1y + · · ·+

(
j

j − 1

)
xyj−1 + yj

and
xj+1 − yj+1

x− y
= xj + xj−1y + · · ·+ xyj−1 + yj.

The equality holds for a1 = n and a2 = a3 = · · · = an = 0 (or any cyclic permutation).

Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

• If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

a31 + a32 + · · ·+ a3n − n ≤ (n+ 1)(a21 + a22 + · · ·+ a2n − n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = n, a2 = a3 = · · · = an = 0

(or any cyclic permutation).

• If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

a41 + a42 + · · ·+ a4n − n ≤ (n2 + n+ 1)(a21 + a22 + · · ·+ a2n − n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = n, a2 = a3 = · · · = an = 0

(or any cyclic permutation).

P 1.9. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

n2

(
1

a1
+

1

a2
+ · · ·+ 1

an
− n

)
≥ 4(n− 1)(a21 + a22 + · · ·+ a2n − n).

(Vasile C., 2004)



Half Convex Function Method 31

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
n2

u
− 4(n− 1)u2, u ∈ I = (0, n).

For u ∈ (0, 1], we have

f ′′(u) =
2n2

u3
− 8(n− 1) ≥ 2n2 − 8(n− 1) = 2(n− 2)2 ≥ 0.

Thus, f is convex on I≤s. By the LHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y > 0 so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
−n2

u
− 4(n− 1)(u+ 1)

and

h(x, y) =
n2

xy
− 4(n− 1) =

[x+ (n− 1)y]2

xy
− 4(n− 1 =

[x− (n− 1)y]2

xy
.

In accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
n

2
, a2 = a3 = · · · = an =

n

2(n− 1)

(or any cyclic permutation).

Remark. The inequality is equivalent to

n

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
+ 8

(
1− 1

n

) ∑
1≤i<j≤n

aiaj ≥ 5n2 − 8n+ 4.

P 1.10. If a1, a2, . . . , a8 are positive real numbers so that a1 + a2 + · · ·+ a8 = 8, then

1

a21
+

1

a22
+ · · ·+ 1

a28
≥ a21 + a22 + · · ·+ a28.

(Vasile C., 2007)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(a8) ≥ 8f(s), s =
a1 + a2 + · · ·+ a8

8
= 1,

where

f(u) =
1

u2
− u2, u ∈ (0, 8).

For u ∈ (0, 1], we have

f ′′(u) =
6

u4
− 2 ≥ 6− 2 > 0.

Thus, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y > 0 so that x+ 7y = 8, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) = −u− 1− 1

u
− 1

u2

and

h(x, y) = −1 +
1

xy
+
x+ y

x2y2
.

From 8 = x+ 7y ≥ 2
√

7xy, we get xy ≤ 16/7. Therefore,

h(x, y) ≥ −1 +
1

xy
+

7(x+ y)

16xy
=

112y2 − 170y + 72

16xy

>
112y2 − 176y + 72

16xy
=

14y2 − 22y + 9

2xy
> 0.

The equality holds for a1 = a2 = · · · = a8 = 1.

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an (n ≥ 4) are positive real numbers so that a1 + a2 + · · ·+ an = n, then

1

a21
+

1

a22
+ · · ·+ 1

a2n
+ 8− n ≥ 8

n

(
a21 + a22 + · · ·+ a2n

)
.

P 1.11. If a1, a2, . . . , an are positive real numbers so that
1

a1
+

1

a2
+ · · ·+ 1

an
= n, then

a21 + a22 + · · ·+ a2n − n ≥ 2

(
1 +

√
n− 1

n

)
(a1 + a2 + · · ·+ an − n).

(Vasile C., 2006)
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Solution. Replacing each ai by 1/ai, we need to prove that

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1

u2
− 2k

u
, k = 1 +

√
n− 1

n
, u ∈ (0, n).

For u ∈ (0, 1], we have

f ′′(u) =
6− 4ku

u4
≥ 6− 4k

u4
=

2(
√
n− 1− 1)2

nu4
≥ 0.

Thus, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y > 0 so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
−1

u2
+

2k − 1

u
and

h(x, y) =
1

xy

(
1

x
+

1

y
+ 1− 2k

)
.

We only need to show that
1

x
+

1

y
≥ 2k − 1.

Indeed, using the Cauchy-Schwarz inequality, we get

1

x
+

1

y
≥ (1 +

√
n− 1)2

x+ (n− 1)y
=

(1 +
√
n− 1)2

n
= 2k − 1,

with equality for x =
√
n− 1y. From x+ (n− 1)y = n and h(x, y) = 0, we get

x =
n

1 +
√
n− 1

, y =
n

n− 1 +
√
n− 1

.

In accordance with Note 4, the original equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
1 +
√
n− 1

n
, a2 = a3 = · · · = an =

n− 1 +
√
n− 1

n

(or any cyclic permutation).

P 1.12. If a, b, c, d, e are positive real numbers so that a2 + b2 + c2 + d2 + e2 = 5, then

1

a
+

1

b
+

1

c
+

1

d
+

1

e
− 5 +

4(1 +
√

5)

5
(a+ b+ c+ d+ e− 5) ≥ 0.

(Vasile C., 2006)
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Solution. Replacing a, b, c, d, e by
√
a,
√
b,
√
c,
√
d,
√
e, respectively, we need to prove that

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where

f(u) =
1√
u

+ k
√
u, k =

4(1 +
√

5)

5
≈ 2.59, u ∈ (0, 5).

For u ∈ (0, 1], we have

f ′′(u) =
3− ku
4u2
√
u
> 0;

therefore, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for x, y > 0 so that x+ 4y = 5. We have

g(u) =
f(u)− f(1)

u− 1
=
k
√
u− 1

u+
√
u

and

h(x, y) =
g(x)− g(y)

x− y
=

√
x+
√
y + 1− k√xy

√
xy(
√
x+
√
y)(
√
x+ 1)(

√
y + 1)

.

Thus, we only need to show that
√
x+
√
y + 1− k√xy ≥ 0,

which is true if
2 4
√
xy + 1− k√xy ≥ 0.

Let
t = 4
√
xy.

From
5 = x+ 4y ≥ 4

√
xy = 4t2,

we get

t ≤
√

5

2
.

Thus,

2 4
√
xy + 1− k√xy = 2t+ 1− kt2

=

(
1− 2√

5
t

)[
1 + 2

(
1 +

1√
5

)
t

]
≥ 0.

The equality holds for a = b = c = d = e = 1.

P 1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

3a+ b+ c
+

1

3b+ c+ a
+

1

3c+ a+ b
≤ 2

5

(
1

b+ c
+

1

c+ a
+

1

a+ b

)
.

(Vasile C., 2006)
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Solution. Due to homogeneity, we may assume that a+ b+ c = 3. So, we need to show that

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
2

3− u
− 5

2u+ 3
, u ∈ [0, 3).

For u ∈ [1, 3), we have

f ′′(u) =
4

(3− u)3
− 40

(2u+ 3)3
=

36[2u3 + 3u2 + 9(u− 1)(3− u)]

(3− u)3(2u+ 3)3
> 0;

therefore, f is convex on [s, 3). By the RHCF-Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for x, y ≥ 0 so that x+ 2y = 3, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
1

3− u
+

2

2u+ 3

and

h(x, y) =
1

(3− x)(3− y)
− 4

(2x+ 3)(2y + 3)

=
9(2x+ 2y − 3)

(3− x)(3− y)(2x+ 3)(2y + 3)

=
9x

(3− x)(3− y)(2x+ 3)(2y + 3)
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic permutation).

P 1.14. If a, b, c, d ≥ 3−
√

7 so that a+ b+ c+ d = 4, then

1

2 + a2
+

1

2 + b2
+

1

2 + c2
+

1

2 + d2
≥ 4

3
.

(Vasile C., 2008)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
1

2 + u2
, u ≥ 3−

√
7.



36 Vasile Ĉırtoaje

For u ≥ s = 1, f(u) is convex because

f ′′(u) =
3(3u2 − 2)

(2 + u2)3
> 0.

By the RHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0 for x, y ≥ 3−
√

7 so that
x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
=
−1− u

3(2 + u2)

and

h(x, y) =
g(x)− g(y)

x− y
=

xy + x+ y − 2

3(2 + x2)(2 + y2)
,

where

xy + x+ y − 2 =
−x2 + 6x− 2

3
=

(3 +
√

7− x)(x− 3 +
√

7)

3

=
(−1 +

√
7 + 3y)(x− 3 +

√
7)

3
≥ 0.

In accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

a = 3−
√

7, b = c = d =
1 +
√

7

3

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an ≥ n− 1−
√
n2 − 3n+ 3 so that a1 + a2 + · · ·+ an = n, then

1

2 + a21
+

1

2 + a22
+ · · ·+ 1

2 + a2n
≥ n

3
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = n− 1−
√
n2 − 3n+ 3, a2 = a3 = · · · = an =

1 +
√
n2 − 3n+ 3

n− 1

(or any cyclic permutation).

P 1.15. If a1, a2, . . . , an ∈ [−
√
n, n− 2] so that a1 + a2 + · · ·+ an = n, then

1

n+ a21
+

1

n+ a22
+ · · ·+ 1

n+ a2n
≤ n

n+ 1
.

(Vasile C., 2008)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−1

n+ u2
, n ≥ 3, u ∈ [−

√
n, n− 2].

For u ∈ [−
√
n, 1], we have

f ′′(u) =
2(n− u2)
(n+ u2)3

≥ 0,

hence f is convex on [−
√
n, s]. By the LHCF-Theorem and Note 1, it suffices to show that

h(x, y) ≥ 0 for x, y ∈ [−
√
n, n− 2] so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1

(n+ 1)(n+ u2)

and

h(x, y) =
g(x)− g(y)

x− y
=

n− x− y − xy
(n+ 1)(n+ x2)(n+ y2)

=
(n− x)(n− 2− x)

(n2 − 1)(n+ x2)(n+ y2)
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n− 2, a2 = a3 = · · · = an =
2

n− 1

(or any cyclic permutation).

P 1.16. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

3− a
9 + a2

+
3− b
9 + b2

+
3− c
9 + c2

≥ 3

5
.

(Vasile C., 2013)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
3− u
9 + u2

, u ∈ [0, 3].

For u ∈ [1, 3], we have
1

2
f ′′(u) =

u2(9− u) + 27(u− 1)

(9 + u2)3
> 0.
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Thus, f is convex on [s, 3]. By the RHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ 2y = 3, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
−(6 + u)

5(9 + u2)

and

h(x, y) =
xy + 6x+ 6y − 9

5(9 + x2)(9 + y2)
=

x(9− x)

10(9 + x2)(9 + y2)
≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
3

2
(or any cyclic

permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

n− a1
n2 + (n2 − 3n+ 1)a21

+
n− a2

n2 + (n2 − 3n+ 1)a22
+ · · ·+ n− an

n2 + (n2 − 3n+ 1)a2n
≥ n

2n− 1
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 1.17. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1

1− a+ 2a2
+

1

1− b+ 2b2
+

1

1− c+ 2c2
≥ 3

2
.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
1

1− u+ 2u2
, u ∈ [0, 3].

For u ∈ [1, 3], we have
1

2
f ′′(u) =

12u2 − 6u− 1

(1− u+ 2u2)3
> 0.
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Thus, f is convex on [s, 3]. By the RHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ 2y = 3, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
−(1 + 2u)

2(1− u+ 2u2)

and

h(x, y) =
4xy + 2x+ 2y − 3

2(1− x+ 2x2)(1− y + 2y2)
=

x(1 + 4y)

2(1− x+ 2x2)(1− y + 2y2)
≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
3

2
(or any cyclic

permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ k1, k1 =
3n− 2 +

√
5n2 − 8n+ 4

2n
,

then
1

1− a1 + ka21
+

1

1− a2 + ka22
+ · · ·+ 1

1− an + ka2n
≥ n

k
,

with equality for a1 = a2 = · · · = an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 1.18. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1

5 + a+ a2
+

1

5 + b+ b2
+

1

5 + c+ c2
≥ 3

7
.

(Vasile C., 2008)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
1

5 + u+ u2
, u ∈ [0, 3].
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For u ≥ 1, from

f ′′(u) =
2(3u2 + 3u− 4)

(5 + u+ u2)3
> 0,

it follows that f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for x, y ≥ 0 so that x+ 2y = 3. We have

g(u) =
f(u)− f(1)

u− 1
=

−2− u
7(5 + u+ u2)

and

h(x, y) =
g(x)− g(y)

x− y
=

xy + 2(x+ y)− 3

7(5 + x+ x2)(5 + y + y2)

=
x(5− x)

14(5 + x+ x2)(5 + y + y2)
≥ 0.

According to Note 4, the equality holds for a = b = c = 1, and also for a = 0 and b = c =
3

2
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

0 < k ≤ k1, k1 =
2(2n− 1)

n− 1
,

then
1

k + a1 + a21
+

1

k + a2 + a22
+ · · ·+ 1

k + an + a2n
≥ n

k + 2
,

with equality for a1 = a2 = · · · = an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 1.19. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ 1− 1

n
,

then
1

1 + ka21
+

1

1 + ka22
+ · · ·+ 1

1 + ka2n
≥ n

1 + k
.

(Vasile C., 2005)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1

1 + ku2
, u ∈ [0, n].

For u ∈ [1, n], we have

f ′′(u) =
2k(3ku2 − 1)

(1 + ku2)3
≥ 2k(3k − 1)

(1 + ku2)3
> 0.

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

−k(u+ 1)

(1 + k)(1 + ku2)

and

h(x, y) =
g(x)− g(y)

x− y
=

k2(x+ y + xy)− k
(1 + k)(1 + kx2)(1 + ky2)

.

We need to show that
k(x+ y + xy)− 1 ≥ 0.

Indeed, we have

k(x+ y + xy)− 1 ≥
(

1− 1

n

)
(x+ y + xy)− 1 =

x(2n− 2− x)

n
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1− 1

n
, then the equality holds also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 1.20. Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If p ≥ 2

n− 2
and q ≥ q0 = (p+ 1)(p+ n), then

1

a21 + pa1 + q
+

1

a22 + pa2 + q
+ · · ·+ 1

a2n + pan + q
≤ n

1 + p+ q
.

(Vasile C., 2023)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−1

u2 + u+ 2n+ 2
, u ∈ [0, n].

We have

f ′′(u) =
2A(u)

(u2 + pu+ q)3
,

where

A(u) = q − p2 − 3pu− 3u2.

For u ∈ [0, 1], we have

A(u) = q − p2 − 3pu− 3u2 ≥ A(1) = q − p2 − 3p− 3 ≥ q0 − p2 − 3p− 3 = (n− 2)p+ n− 3 > 0.

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x ≥ 1 ≥ y ≥ 0 so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1 + p

(1 + p+ q)(u2 + pu+ q)
,

h(x, y) =
g(x)− g(y)

x− y
=

B(x, y)

(1 + p+ q)(x2 + px+ q)(y2 + py + q)
,

where

B(x, y) = q − p(p+ 1)− (p+ 1)(x+ y)− xy.

For x+ (n− 1)y = n, we get

B ≥ q0 − p2 − 3p− 3 = (n− 1)y2 + [(n− 2)p− 2]y ≥ 0,

hence h(x, y) ≥ 0. The equality occurs for a1 = a2 = · · · = an = 1. If q = q0, then the equality
also occurs for a1 = n and a2 = a3 = · · · = an = 0 (or any cyclic permutation).

P 1.21. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ k0 =
n2 − n+ 1

n− 1
,

then
1

a21 + k
+

1

a22 + k
+ · · ·+ 1

a2n + k
≤ n

1 + k
.

(Vasile C., 2005)
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Solution. Write this inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−1

u2 + k
, u ∈ [0, n].

For u ∈ [0, 1], we have

f ′′(u) =
2(k − 3u2)

(u2 + k)3
≥ 0,

since

k − 3u2 ≥ k0 − 3 =
n2 − n+ 1

n− 1
− 3 =

(n− 2)2

n− 1
≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1

(1 + k)(u2 + k)

and

h(x, y) =
g(x)− g(y)

x− y
=

k − x− y − xy
(1 + k)(x2 + k)(y2 + k)

.

It suffices to show that
k − x− y − xy ≥ 0.

Indeed, we have

k − x− y − xy ≥ k0 − x− y − xy =
[(n− 1)y − 1]2

n− 1
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = k0, then the equality holds also for

a1 = n− 1, a2 = a3 = · · · = an =
1

n− 1

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If −1 ≤ p ≤ 2

n− 2
and q ≥ q0 =

n2p2 + 4(n2 − n+ 1)(p+ 1)

4(n− 1)
, then

1

a21 + pa1 + q
+

1

a22 + pa2 + q
+ · · ·+ 1

a2n + pan + q
≤ n

1 + p+ q
.

with equality for a1 = a2 = · · · = an = 1. In addition, if q = q0, the equality also occurs for

a1 = n− 1 +
(n− 2)p

2
and a2 = a3 = · · · = an =

2− (n− 2)p

2(n− 1)
(or any cyclic permutation).
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The proof is similar to the one of the preceding P 1.20. So, it suffices to show that A(u) ≥ 0
for u ∈ [0, 1], and B(x, y) ≥ 0 for x ≥ 1 ≥ y ≥ 0 such that x+ (n− 1)y = n, where

A(u) = q − p2 − 3pu− 3u2,

B(x, y) = q − p(p+ 1)− (p+ 1)(x+ y)− xy.

Since A(u) is concave, we have A(u) ≥ 0 for u ∈ [0, 1] if A(0) ≥ 0 and A(1) ≥ 0. Indeed,

A(0) = q − p2 ≥ q0 − p2 =
(n− 2)2p2 + 4(n2 − n+ 1)(p+ 1)

4(n− 1)
> 0,

A(1) = q − p2 − 3p− 3 ≥ q0 − p2 − 3p− 3 =
(n− 2)2(p+ 2)2

4(n− 1)
> 0.

Also, we have

B = (n−1)y2+[(n−2)p−2]y+q−(p+1)(p+n) ≥ (n−1)y2+[(n−2)p−2]y+q0−(p+1)(p+n)

= (n− 1)y2 + [(n− 2)p− 2]y +
[(n− 2)p− 2]2

4(n− 1)
=

[2(n− 1)y + (n− 2)p− 2]2

4(n− 1)
≥ 0.

P 1.22. Let a1, a2, . . . , an be nonnegative numbers so that a1+a2+ · · ·+an = n. If k ≥ n2

4(n− 1)
,

then
a1(a1 − 1)

a21 + k
+
a2(a2 − 1)

a22 + k
+ · · ·+ an(an − 1)

a2n + k
≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
u(u− 1)

u2 + k
, u ∈ [0, n].

From

f ′(u) =
u2 + 2ku− k

(u2 + k)2
, f ′′(u) =

2(k2 − u3) + 6ku(1− u)

(u2 + k)3
,

it follows that f is convex on [0, 1]. By the LHCF-Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for x, y ≥ 0 so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have
g(u) =

u

u2 + k
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and

h(x, y) =
k − xy

(x2 + k)(y2 + k)
≥ n2 − 4(n− 1)xy

4(n− 1)(x2 + k)(y2 + k)

=
[x+ (n− 1)y]2 − 4(n− 1)xy

4(n− 1)(x2 + k)(y2 + k)
=

[x− (n− 1)y]2

4(n− 1)(x2 + k)(y2 + k)
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n/2, a2 = a3 = · · · = an = n/(2n− 2)

(or any cyclic permutation).

P 1.23. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

a1 − 1

(n− 2a1)2
+

a2 − 1

(n− 2a2)2
+ · · ·+ an − 1

(n− 2an)2
≥ 0.

(Vasile C., 2012)

Solution. For n = 2, the inequality is an identity. Consider further n ≥ 3 and write the
inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
u− 1

(n− 2u)2
, u ∈ I = [0, n] \ {n/2}.

From

f ′(u) =
2u+ n− 4

(n− 2u)3
, f ′′(u) =

8(u+ n− 3)

(n− 2u)4
,

it follows that f is convex on I≤s. By the LHCF-Theorem, Note 1 and Note 3, it suffices to show
that h(x, y) ≥ 0 for x, y ∈ I so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

1

(n− 2u)2

and

h(x, y) =
g(x)− g(y)

x− y
=

4(n− x− y)

(n− 2x)2(n− 2y)2
=

4(n− 2)y

(n− 2x)2(n− 2y)2
≥ 0.

In accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n, a2 = a3 = · · · = an = 0

(or any cyclic permutation).
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P 1.24. If a1, a2, . . . , an are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n, a1, a2, . . . , an > −k, k ≥ 1 +
n√
n− 1

,

then
a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a2n − 1

(an + k)2
≥ 0.

(Vasile C., 2008)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
u2 − 1

(u+ k)2
, u > −k.

For u ∈ (−k, 1], we have

f ′′(u) =
2(k2 − 3− 2ku)

(u+ k)4
≥ 2(k2 − 2k − 3)

(u+ k)4
=

2(k + 1)(k − 3)

(u+ k)4
≥ 0.

Thus, f is convex on (−k, s]. By the LHCF-Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for x, y > −k so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1

(u+ k)2

and

h(x, y) =
g(x)− g(y)

x− y
=

(k − 1)2 − (1 + x)(1 + y)

(x+ k)2(y + k)2
.

Since

(k − 1)2 ≥ n2

n− 1
,

we need to show that
n2 ≥ (n− 1)(1 + x)(1 + y).

Indeed,

n2 − (n− 1)(1 + x)(1 + y) = n2 − (1 + x)(2n− 1− x) = (x− n+ 1)2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1 +
n√
n− 1

, then the equality holds

also for

a1 = n− 1, a2 = a3 = · · · = an =
1

n− 1

(or any cyclic permutation).
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P 1.25. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If

0 < k ≤ 1 +

√
2n− 1

n− 1
, then

a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a2n − 1

(an + k)2
≤ 0.

(Vasile C., 2008)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1− u2

(u+ k)2
, u ∈ [0, n].

For u ≥ 1, we have

f ′′(u) =
2(2ku− k2 + 3)

(u+ k)4
≥ 2(2k − k2 + 3)

(u+ k)4
=

2(1 + k)(3− k)

(u+ k)4
> 0.

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=
−u− 1

(u+ k)2

and

h(x, y) =
g(x)− g(y)

x− y
=

2k − k2 + x+ y + xy

(x+ k)2(y + k)2
≥ 2k − k2 + x+ y

(x+ k)2(y + k)2
.

Since

x+ y ≥ x+ (n− 1)y

n− 1
=

n

n− 1
,

we get

2k − k2 + x+ y ≥ 2k − k2 +
n

n− 1
= −(k − 1)2 +

2n− 1

n− 1
≥ 0,

hence h(x, y) ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1 +

√
2n− 1

n− 1
, then the equality holds

also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).
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P 1.26. If a1, a2, . . . , an ≥ n− 1−
√
n2 − n+ 1 so that a1 + a2 + · · ·+ an = n, then

a21 − 1

(a1 + 2)2
+

a22 − 1

(a2 + 2)2
+ · · ·+ a2n − 1

(an + 2)2
≤ 0.

(Vasile C., 2008)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1− u2

(u+ 2)2
, u ≥ n− 1−

√
n2 − n+ 1.

For u ≥ 1, we have

f ′′(u) =
2(4u− 1)

(u+ 2)4
> 0.

Thus, f(u) is convex for u ≥ s. By the RHCF-Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for

n− 1−
√
n2 − n+ 1 ≤ x ≤ 1 ≤ y, x+ (n− 1)y = n.

Since

g(u) =
f(u)− f(1)

u− 1
=
−u− 1

(u+ 2)2
,

h(x, y) =
g(x)− g(y)

x− y
=

x+ y + xy

(x+ 2)2(y + 2)2
=
−x2 + 2(n− 1)x+ n

(n− 1)(x+ 2)2(y + 2)2
,

we need to show that

n− 1−
√
n2 − n+ 1 ≤ x ≤ n− 1 +

√
n2 − n+ 1.

This is true because

n− 1−
√
n2 − n+ 1 ≤ x ≤ 1 < n− 1 +

√
n2 − n+ 1.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n− 1−
√
n2 − n+ 1, a2 = a3 = · · · = an =

1 +
√
n2 − n+ 1

n− 1

(or any cyclic permutation).

P 1.27. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If

k ≥ (n− 1)(2n− 1)

n2
, then

1

1 + ka31
+

1

1 + ka32
+ · · ·+ 1

1 + ka3n
≥ n

1 + k
.

(Vasile C., 2008)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1

1 + ku3
, u ∈ [0, n].

For u ∈ [1, n], we have

f ′′(u) =
6ku(2ku3 − 1)

(1 + ku3)3
≥ 6ku(2k − 1)

(1 + ku3)3
> 0.

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
−k(u2 + u+ 1)

(1 + k)(1 + ku3)

and
h(x, y)

k2
=
x2y2 + xy(x+ y − 1) + (x+ y)2 − (x+ y + 1)/k

(1 + k)(1 + kx3)(1 + ky3)
.

Since

x+ y ≥ x+ (n− 1)y

n− 1
=

n

n− 1
> 1,

it suffices to show that

(x+ y)2 ≥ x+ y + 1

k
.

From x+ y ≥ n

n− 1
, we get

k(x+ y) ≥ 2n− 1

n
,

hence

k(x+ y)2 − x− y = (x+ y)[k(x+ y)− 1] ≥ n

n− 1

(
2n− 1

n
− 1

)
= 1.

The equality holds for a1 = a2 = · · · = an = 1. If k =
(n− 1)(2n− 1)

n2
, then the equality holds

also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).



50 Vasile Ĉırtoaje

P 1.28. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If

0 < k ≤ n− 1

n2 − 2n+ 2
, then

1

1 + ka31
+

1

1 + ka32
+ · · ·+ 1

1 + ka3n
≤ n

1 + k
.

(Vasile C., 2008)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−1

1 + ku3
, u ∈ [0, n].

For u ∈ [0, 1], we have

f ′′(u) =
6ku(1− 2ku3)

(1 + ku3)3
≥ 6ku(1− 2k)

(1 + ku3)3
≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
k(u2 + u+ 1)

(1 + k)(1 + ku3)

and
h(x, y)

k2
=

(x+ y + 1)/k − x2y2 − xy(x+ y − 1)− (x+ y)2

(1 + k)(1 + kx3)(1 + ky3)
.

It suffices to show that

(n2 − 2n+ 2)(x+ y + 1)

n− 1
− x2y2 − xy(x+ y − 1)− (x+ y)2 ≥ 0,

which is equivalent to
[2 + ny − (n− 1)y2][1− (n− 1)y]2 ≥ 0.

This is true because

2 + ny − (n− 1)y2 = 2 + y[n− (n− 1)y] = 2 + xy > 0.

The equality holds for a1 = a2 = · · · = an = 1. If k =
n− 1

n2 − 2n+ 2
, then the equality holds

also for

a1 = n− 1, a2 = a3 = · · · = an =
1

n− 1

(or any cyclic permutation).
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P 1.29. Let a1, a2, . . . , an be nonnegative real numbers so that a1+a2+· · ·+an = n. If k ≥ n2

n− 1
,

then √
a1

k − a1
+

√
a2

k − a2
+ · · ·+

√
an

k − an
≤ n√

k − 1
.

(Vasile C., 2008)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = −
√

u

k − u
, u ∈ [0, n].

For u ∈ [0, 1], we have

f ′′(u) =
k(k − 4u)

4u3/2(k − u)5/2
≥ k(k − 4)

4u3/2(k − u)5/2
≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem, it suffices to prove that

f(x) + (n− 1)f(y) ≥ nf(1)

for x ≥ 1 ≥ y ≥ 0 so that x+ (n− 1)y = n. We write the inequality as√
(k − 1)x

k − x
+ (n− 1)

√
(k − 1)y

k − y
≤ n,

√
1 +

(n− 1)k(1− y)

(n− 1)y + k − n
≤ 1 + (n− 1)

[
1−

√
(k − 1)y

k − y

]
.

Let

z =

√
(k − 1)y

k − y
, z ≤ 1,

which yields

y =
kz2

z2 + k − 1
,

1− y =
(k − 1)(1− z2)
z2 + k − 1

, (n− 1)y + k − n =
(k − 1)(nz2 + k − n)

z2 + k − 1
.

Since

k(1− y)

(n− 1)y + k − n
=

k(1− z2)
k − n(1− z2)

=
1− z2

1− n(1− z2)/k

≤ 1− z2

1− (1− z2)(n− 1)/n
=

n(1− z2)
(n− 1)z2 + 1

,
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it suffices to show that √
1 +

n(n− 1)(1− z2)
(n− 1)z2 + 1

≤ 1 + (n− 1)(1− z).

By squaring, we get the obvious inequality

(z − 1)2[(n− 1)z − 1]2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k =
n2

n− 1
, then the equality holds also for

a1 =
n(n− 1)2

n2 − 2n+ 2
, a2 = a3 = · · · = an =

n

(n− 1)(n2 − 2n+ 2)

(or any cyclic permutation).

P 1.30. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

n−a
2
1 + n−a

2
2 + · · ·+ n−a

2
n ≥ 1.

(Vasile C., 2006)

Solution. Let k = lnn. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = n−u

2

, u ∈ [0, n].

For u ≥ 1, we have

f ′′(u) = 2kn−u
2

(2ku2 − 1) ≥ 2kn−u
2

(2k − 1) ≥ 2kn−u
2

(2 ln 2− 1) > 0;

therefore, f is convex on [s, n]. By the RHCF-Theorem, it suffices to show that

f(x) + (n− 1)f(y) ≥ nf(1)

for 0 ≤ x ≤ 1 ≤ y and x+ (n− 1)y = n. The desired inequality is equivalent to g(x) ≥ 0, where

g(x) = n−x
2

+ (n− 1)n−y
2 − 1, y =

n− x
n− 1

, 0 ≤ x ≤ 1.

Since y′ = −1/(n− 1), we get

g′(x) = −2xkn−x
2 − 2(n− 1)kyy′n−y

2

= 2k(yn−y
2 − xn−x2

).

The derivative g′(x) has the same sign as g1(x), where

g1(x) = ln(yn−y
2

)− ln(xn−x
2

) = ln y − lnx+ k(x2 − y2),
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g′1(x) =
y′

y
− 1

x
+ 2k(x− yy′) = n

[
−1

x(n− x)
+

2k(1 + nx− 2x)

(n− 1)2

]
.

For 0 < x ≤ 1, g′1(x) has the same sign as

h(x) =
−(n− 1)2

2k
+ x(n− x)(1 + nx− 2x).

Since

h′(x) = n+ 2(n2 − 2n− 1)x− 3(n− 2)x2

≥ nx+ 2(n2 − 2n− 1)x− 3(n− 2)x

= 2(n− 1)(n− 2)x ≥ 0,

h is strictly increasing on [0, 1]. From

h(0) =
−(n− 1)2

2k
< 0, h(1) = (n− 1)2

(
1− 1

2k

)
> 0,

it follows that there is x1 ∈ (0, 1) so that h(x1) = 0, h(x) < 0 for x ∈ [0, x1) and h(x) > 0 for
x ∈ (x1, 1]. Therefore, g1 is strictly decreasing on (0, x1] and strictly increasing on [x1, 1]. Since
g1(0+) =∞ and g1(1) = 0, there is x2 ∈ (0, x1) so that g1(x2) = 0, g1(x) > 0 for x ∈ (0, x2) and
g1(x) < 0 for x ∈ (x2, 1). Consequently, g is strictly increasing on [0, x2] and strictly decreasing
on [x2, 1]. Because g(0) > 0 and g(1) = 0, it follows that g(x) ≥ 0 for x ∈ [0, 1]. The proof is
completed.

The equality holds for a1 = a2 = · · · = an = 1.

P 1.31. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(3a2 + 1)(3b2 + 1)(3c2 + 1)(3d2 + 1) ≤ 256.

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where
f(u) = − ln(3u2 + 1), u ∈ [0, 4].

For u ∈ [1, 4], we have

f ′′(u) =
6(3u2 − 1)

(3u2 + 1)2
> 0.

Therefore, f is convex on [s, 4]. By the RHCF-Theorem, we only need to show that

f(x) + 3f(y) ≥ 4f(1)



54 Vasile Ĉırtoaje

for 0 ≤ x ≤ 1 ≤ y so that x+ 3y = 4; that is, to show that g(x) ≥ 0 for x ∈ [0, 1], where

g(x) = f(x) + 3f(y)− 4f(1), y =
4− x

3
.

Since y′(x) = −1/3, we have

g′(x) = f ′(x) + 3y′f ′(y) =
−6x

3x2 + 1
+

6y

3y2 + 1

=
6(x− y)(3xy − 1)

(3x2 + 1)(3y2 + 1)
=

8(1− x)(x2 − 4x+ 1)

(3x2 + 1)(3y2 + 1)
≥ 0.

Since g is increasing on [0, 2−
√

3] and decreasing on [2−
√

3, 1], it suffices to show that g(0) ≥ 0
and g(1) ≥ 0. The inequality g(0) ≥ 0 is true if the original inequality holds for a = 0 and
b = c = d = 4/3. This reduces to 193 ≤ 27 · 256, which is true because 27 · 256− 193 = 53 > 0.
The inequality g(1) ≥ 0 is also true because g(1) = 0.

The equality holds for a = b = c = d = 1.

P 1.32. If a, b, c, d, e ≥ −1 so that a+ b+ c+ d+ e = 5, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)(e2 + 1) ≥ (a+ 1)(b+ 1)(c+ 1)(d+ 1)(e+ 1).

(Vasile C., 2007)

Solution. Consider the nontrivial case a, b, c, d, e > −1, and write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ nf(s), s =
a+ b+ c+ d+ e

5
= 1,

where
f(u) = ln(u2 + 1)− ln(u+ 1), u > −1.

For u ∈ (−1, 1], we have

f ′′(u) =
2(1− u2)
(u2 + 1)2

+
1

(u+ 1)2
> 0.

Therefore, f is convex on (−1, s]. By the LHCF-Theorem and Note 2, it suffices to show that
H(x, y) ≥ 0 for x, y > −1 so that x+ 4y = 5, where

H(x, y) =
f ′(x)− f ′(y)

x− y
=

2(1− xy)

(x2 + 1)(y2 + 1)
+

1

(x+ 1)(y + 1)
;

thus, we need to show that

2(1− xy) +
(x2 + 1)(y2 + 1)

(x+ 1)(y + 1)
≥ 0.

Since
x2 + 1

x+ 1
≥ x+ 1

2
,

y2 + 1

y + 1
≥ y + 1

2
,
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it suffices to prove that

2(1− xy) +
(x+ 1)(y + 1)

4
≥ 0,

which is equivalent to
x+ y + 9− 7xy ≥ 0,

28x2 − 38x+ 14 ≥ 0,

(28x− 19)2 + 31 ≥ 0.

The equality holds for a = b = c = d = e = 1.

P 1.33. Let a1, a2, . . . , an be positive numbers so that a1 + a2 + · · ·+ an = n. If

k ≤ 2
√
n− 1

n
+ 2

√
2
√
n− 1

n
, k ≤ 3,

then

k(
√
a1 +

√
a2 + · · ·+

√
an) +

1
√
a1

+
1
√
a2

+ · · ·+ 1
√
an
≥ (k + 1)n.

(Vasile C., 2006)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
k√
u

+
√
u, u ∈ (0, n).

From

f ′′(u) =
3− ku
4u5/2

,

it follows that f is convex on (0, 1]. Thus, according to the LHCF-Theorem and Note 1, it suffices
to show that h(x, y) ≥ 0 for x ≥ 1 ≥ y > 0 such that x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
k√
u+ 1

− 1

u+
√
u

and

(
√
x+
√
y)(
√
x+ 1)(

√
y + 1)h(x, y) = −k +

√
x+
√
y + 1

√
xy

.

So, we need to show that √
x+
√
y + 1

√
xy

≥ k.
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Since √
x+
√
y ≥ 2 4

√
xy,

it suffices to show that
2 4
√
xy + 1
√
xy

≥ k,

which is equivalent to
1
√
xy

+
2

4
√
xy
≥ k.

From

n = x+ (n− 1)y ≥ 2
√

(n− 1)xy,

we get
1
√
xy
≥ 2
√
n− 1

n
,

hence

1
√
xy

+
2

4
√
xy
≥ 2
√
n− 1

n
+ 2

√
2
√
n− 1

n
≥ k.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1.

Remark. Since

1 <
2
√
n− 1

n
+ 2

√
2
√
n− 1

n

for n ≤ 134, the following inequality holds for a1, a2, . . . , a134 > 0 such that a1 +a2 + · · ·+a134 =
134:

√
a1 +

√
a2 + · · ·+

√
a134 +

1
√
a1

+
1
√
a2

+ · · ·+ 1
√
a134
≥ 268.

Since

2 <
2
√
n− 1

n
+ 2

√
2
√
n− 1

n

for n ≤ 12, the following inequality holds for a1, a2, . . . , a12 > 0 such that a1 +a2 + · · ·+a12 = 12:

2(
√
a1 +

√
a2 + · · ·+

√
a12) +

1
√
a1

+
1
√
a2

+ · · ·+ 1
√
a12
≥ 36.

P 1.34. If a1, a2, . . . , an (n ≥ 3) are positive numbers so that a1 + a2 + · · ·+ an = 1, then(
1
√
a1
−
√
a1

)(
1
√
a2
−
√
a2

)
· · ·
(

1
√
an
−
√
an

)
≥
(√

n− 1√
n

)n

.

(Vasile C., 2006)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
=

1

n
,

where

f(u) = ln

(
1√
u
−
√
u

)
= ln(1− u)− 1

2
lnu, u ∈ (0, 1).

From

f ′(u) =
−1

1− u
− 1

2u
, f ′′(u) =

1− 2u− u2

2u2(1− u)2
,

it follows that f ′′(u) ≥ 0 for u ∈ (0,
√

2− 1]. Since

s =
1

n
≤ 1

3
<
√

2− 1,

f is convex on (0, s]. Thus, we can apply the LHCF-Theorem.

First Solution. By the LHCF-Theorem, it suffices to show that

f(x) + (n− 1)f(y) ≥ nf

(
1

n

)
for all x, y > 0 so that x+ (n− 1)y = 1; that is, to show that(

1√
x
−
√
x

)(
1
√
y
−√y

)n−1

≥
(√

n− 1√
n

)n

.

Write this inequality as

nn/2(1− y)n−1 ≥ (n− 1)n−1x1/2y(n−3)/2.

By squaring, this inequality becomes as follows:

nn(1− y)2n−2 ≥ (n− 1)2n−2xyn−3,

(2− 2y)2n−2 ≥ (2n− 2)2n−2

nn
xyn−3,[

n · 1

n
+ x+ (n− 3)y

]2n−2
≥ [n+ 1 + (n− 3)]n+1+(n−3) · 1

nn
· x · yn−3.

The last inequality follows from the AM-GM inequality. The proof is completed. The equality
holds for a1 = a2 = · · · = an = 1/n.

Second Solution. By the LHCF-Theorem and Note 2, it suffices to prove that H(x, y) ≥ 0 for
x, y > 0 so that x+ (n− 1)y = 1, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.
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We have

H(x, y) =
1− x− y − xy

2xy(1− x)(1− y)
=
n(y + 1)− y − 3

2x(1− x)(1− y)

≥ 3(y + 1)− y − 3

2x(1− x)(1− y)
=

y

x(1− x)(1− y)
> 0.

Remark 1. We may write the inequality in P 1.34 in the form

n∏
i=1

(
1
√
ai
− 1

)
·

n∏
i=1

(1 +
√
ai ) ≥

(√
n− 1√

n

)n

.

On the other hand, by the AM-GM inequality and the Cauchy-Schwarz inequality, we have

n∏
i=1

(1 +
√
ai) ≤

(
1 +

1

n

n∑
i=1

√
ai

)n

≤

1 +

√√√√ 1

n

n∑
i=1

ai

n

=

(
1 +

1√
n

)n

.

Thus, the following statement follows:

• If a1, a2, . . . , an (n ≥ 3) are positive real numbers so that a1 + a2 + · · ·+ an = 1, then(
1
√
a1
− 1

)(
1
√
a2
− 1

)
· · ·
(

1
√
an
− 1

)
≥ (
√
n− 1)n,

with equality for a1 = a2 = · · · = an = 1/n.

Remark 2. By squaring, the inequality in P 1.34 becomes

n∏
i=1

(1− ai)2

ai
≥ (n− 1)2n

nn
.

On the other hand, since the function f(x) = ln
1 + x

1− x
is convex on (0, 1), by Jensen’s inequality

we have

n∏
i=1

(
1 + ai
1− ai

)
≥

1 +
a1 + a2 + · · ·+ an

n

1− a1 + a2 + · · ·+ an
n


n

=

(
n+ 1

n− 1

)n

.

Multiplying these inequalities yields the following result (Kee-Wai Lau, 2000):

• If a1, a2, . . . , an (n ≥ 3) are positive real numbers so that a1 + a2 + · · ·+ an = 1, then(
1

a1
− a1

)(
1

a2
− a2

)
· · ·
(

1

an
− an

)
≥
(
n− 1

n

)n

,

with equality for a1 = a2 = · · · = an = 1/n.
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P 1.35. Let a1, a2, . . . , an be positive real numbers so that a1 + a2 + · · ·+ an = n. If

0 < k ≤
(

1 +
2
√
n− 1

n

)2

,

then (
ka1 +

1

a1

)(
ka2 +

1

a2

)
· · ·
(
kan +

1

an

)
≥ (k + 1)n.

(Vasile C., 2006)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = ln

(
ku+

1

u

)
, u ∈ (0, n).

We have

f ′(u) =
ku2 − 1

u(ku2 + 1)
, f ′′(u) =

1 + 4ku2 − k2u4

u2(ku2 + 1)2
.

For u ∈ (0, 1], we get f ′′(u) > 0 since

1 + 4ku2 − k2u4 > ku2(4− ku2) ≥ ku2(4− k) ≥ 0.

Therefore, f is convex on (0, s]. By the LHCF-Theorem and Note 2, it suffices to prove that
H(x, y) ≥ 0 for x, y > 0 so that x+ (n− 1)y = n, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.

Since

H(x, y) =
1 + k(x+ y)2 − k2x2y2

xy(kx2 + 1)(ky2 + 1)
>

k[(x+ y)2 − kx2y2]
xy(kx2 + 1)(ky2 + 1)

,

it suffices to show that

x+ y ≥
√
k xy.

Indeed, by the Cauchy-Schwarz inequality, we have

(x+ y)[(n− 1)y + x] ≥ (
√
n− 1 + 1)2xy,

hence

x+ y ≥ 1

n
(
√
n− 1 + 1)2xy =

(
1 +

2
√
n− 1

n

)
xy ≥

√
k xy.

The equality holds for a1 = a2 = · · · = an = 1.
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P 1.36. If a, b, c, d are nonzero real numbers so that

a, b, c, d ≥ −1

2
, a+ b+ c+ d = 4,

then

3

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
+

1

a
+

1

b
+

1

c
+

1

d
≥ 16.

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
3

u2
+

1

u
, u ∈ I =

[
−1

2
,
11

2

]
\ {0},

is convex on I≥s (because 3/u2 and 1/u are convex). By the RHCF-Theorem, Note 1 and Note
3, it suffices to prove that h(x, y) ≥ 0 for x, y ∈ I so that

x+ 3y = 4,

where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

Indeed, we have

g(u) = −4

u
− 3

u2
,

h(x, y) =
4xy + 3x+ 3y

x2y2
=

2(1 + 2x)(6− x)

3x2y2
≥ 0.

In accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

a =
−1

2
, b = c = d =

3

2

(or any cyclic permutation).

P 1.37. If a1, a2, . . . , an are nonnegative real numbers so that a21 + a22 + · · ·+ a2n = n, then

a31 + a32 + · · ·+ a3n − n+

√
n

n− 1
(a1 + a2 + · · ·+ an − n) ≥ 0.

(Vasile C., 2007)
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Solution. Replacing each ai by
√
ai, we have to prove that

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s),

where

s =
a1 + a2 + · · ·+ an

n
= 1

and

f(u) = u
√
u+ k

√
u, k =

√
n

n− 1
, u ∈ [0, n].

For u ≥ 1, we have

f ′′(u) =
3u− k
4u
√
u
≥ 3− k

4u
√
u
> 0.

Therefore, f is convex on [s, n]. According to the RHCF-Theorem and Note 1, it suffices to show
that h(x, y) ≥ 0 for x, y ≥ 0 so that x+ (n− 1)y = n. Since

g(u) =
f(u)− f(1)

u− 1
= 1 +

u+ k√
u+ 1

and

h(x, y) =
g(x)− g(y)

x− y
=

√
x+
√
y +
√
xy − k

(
√
x+
√
y)(
√
x+ 1)(

√
y + 1)

,

we need to show that √
x+
√
y +
√
xy ≥ k.

Since √
x+
√
y +
√
xy ≥

√
x+
√
y ≥
√
x+ y,

it suffices to show that
x+ y ≥ k2.

Indeed, we have

x+ y ≥ x

n− 1
+ y =

n

n− 1
= k2.

In accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = an =

√
n

n− 1

(or any cyclic permutation).

P 1.38. If a, b, c, d, e are nonnegative real numbers so that a2 + b2 + c2 + d2 + e2 = 5, then

1

7− 2a
+

1

7− 2b
+

1

7− 2c
+

1

7− 2d
+

1

7− 2e
≤ 1.

(Vasile C., 2010)
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Solution. Replacing a, b, c, d, e by
√
a,
√
b,
√
c,
√
d,
√
e, we have to prove that

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s),

where

s =
a+ b+ c+ d+ e

5
= 1

and

f(u) =
1

2
√
u− 7

, u ∈ [0, 5].

For u ∈ [0, 1], we have

f ′′(u) =
7− 6

√
u

2u
√
u(7− 2

√
u)3

> 0.

Therefore, f is convex on [0, s]. According to the LHCF-Theorem and Note 1, it suffices to show
that h(x, y) ≥ 0 for x, y ≥ 0 so that x+ 4y = 5. Since

g(u) =
f(u)− f(1)

u− 1
=

−2

5(7− 2
√
u)(1 +

√
u)

and

h(x, y) =
g(x)− g(y)

x− y
=

2(5− 2
√
x− 2

√
y)

(
√
x+
√
y)(1 +

√
x)(1 +

√
y)(7− 2

√
x)(7− 2

√
y)
,

we need to show that √
x+
√
y ≤ 5

2
.

Indeed, by the Cauchy-Schwarz inequality, we have

(
√
x+
√
y)2 ≤

(
1 +

1

4

)
(x+ 4y) =

25

4
.

The proof is completed. The equality holds for a = b = c = d = e = 1, and also for

a = 2, b = c = d = e =
1

2

(or any cyclic permutation).

Remark In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a21+a
2
2+· · ·+a2n = n. If k ≥ 1+

n√
n− 1

,

then
1

k − a1
+

1

k − a2
+ · · ·+ 1

k − an
≤ n

k − 1
,

with equality for a1 = a2 = · · · = an = 1. If k = 1 +
n√
n− 1

, then the equality holds also for

a1 =
√
n− 1, a2 = · · · = an =

1√
n− 1

(or any cyclic permutation).
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P 1.39. Let 0 ≤ a1, a2, . . . , an < k so that a21 + a22 + · · ·+ a2n = n. If

1 < k ≤ 1 +

√
n

n− 1
,

then
1

k − a1
+

1

k − a2
+ · · ·+ 1

k − an
≥ n

k − 1
.

(Vasile C., 2010)

Solution. Replacing a1, a2, . . . , an by
√
a1,
√
a2, . . . ,

√
an, we have to prove that

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s),

where

s =
a1 + a2 + · · ·+ an

n
= 1

and

f(u) =
1

k −
√
u
, u ∈ [0, k2).

From

f ′′(u) =
3
√
u− k

4u
√
u(k −

√
u)3

,

it follows that f is convex on [s, k2). According to the RHCF-Theorem and Note 1, it suffices to
show that h(x, y) ≥ 0 for all x, y ∈ [0, k2) so that x+ (n− 1)y = n. Since

g(u) =
f(u)− f(1)

u− 1
=

1

(k − 1)(k −
√
u)(1 +

√
u)

and

h(x, y) =
g(x)− g(y)

x− y
=

√
x+
√
y + 1− k

(k − 1)(
√
x+
√
y)(1 +

√
x)(1 +

√
y)(k −

√
x)(k −√y)

,

we need to show that √
x+
√
y ≥ k − 1.

Indeed,
√
x+
√
y ≥
√
x+ y ≥

√
x

n− 1
+ y =

√
n

n− 1
≥ k − 1.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = an =

√
n

n− 1

(or any cyclic permutation).
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P 1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then√
1 +

48a

b+ c
+

√
1 +

48b

c+ a
+

√
1 +

48c

a+ b
≥ 15.

(Vasile C., 2005)

Solution. Due to homogeneity, we may assume that a+ b+ c = 1. Thus, we need to show that

f(a) + f(b) + f(c) ≥ 3f(s),

where

s =
a+ b+ c

3
=

1

3

and

f(u) =

√
1 + 47u

1− u
, u ∈ [0, 1).

From

f ′′(u) =
48(47u− 11)√

(1− u)5(1 + 47u)3
,

it follows that f is convex on [s, 1). By the RHCF-Theorem, it suffices to show that

f(x) + 2f(y) ≥ 3f

(
1

3

)
for x, y ≥ 0 so that x+ 2y = 1; that is,√

1 + 47x

1− x
+ 2

√
49− 47x

1 + x
≥ 15.

Setting

t =

√
49− 47x

1 + x
, 1 < t ≤ 7,

the inequality turns into √
1175− 23t2

t2 − 1
≥ 15− 2t.

By squaring, this inequality becomes

350− 15t− 61t2 + 15t3 − t4 ≥ 0,

(5− t)2(2 + t)(7− t) ≥ 0.

The original inequality is an equality for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).
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P 1.41. If a, b, c are nonnegative real numbers, then√
3a2

7a2 + 5(b+ c)2
+

√
3b2

7b2 + 5(c+ a)2
+

√
3c2

7c2 + 5(a+ b)2
≤ 1.

(Vasile C., 2008)

Solution. Due to homogeneity, we may assume that a+ b+ c = 3. Thus, we need to show that

f(a) + f(b) + f(c) ≥ 3f(s),

where

s =
a+ b+ c

3
= 1

and

f(u) = −

√
3u2

7u2 + 5(3− u)2
=

−u√
4u2 − 10u+ 15

, u ∈ [0, 3].

From

f ′′(u) =
5(−8u2 + 41u− 30)

(4u2 − 10u+ 15)5/2
≥ 5(−8u2 + 38u− 30)

(4u2 − 10u+ 15)5/2
=

10(u− 1)(15− 4u)

(4u2 − 10u+ 15)5/2
,

it follows that f is convex on [s, 3]. By the RHCF-Theorem, it suffices to prove the original
homogeneous inequality for b = c = 0 and b = c = 1. For the nontrivial case b = c = 1, we need
to show that √

3a2

7a2 + 20
+ 2

√
3

5a2 + 10a+ 12
≤ 1.

By squaring two times, the inequality becomes

a(5a3 + 10a2 + 16a+ 50) ≥ 3a
√

(7a2 + 20)(5a2 + 10a+ 12),

a2(5a6 + 20a5 − 11a4 + 38a3 − 80a2 − 40a+ 68) ≥ 0,

a2(a− 1)2(5a4 + 30a3 + 44a2 + 96a+ 68) ≥ 0.

The last inequality is clearly true.
The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic permutation).

P 1.42. If a, b, c are nonnegative real numbers, then√
a2

a2 + 2(b+ c)2
+

√
b2

b2 + 2(c+ a)2
+

√
c2

c2 + 2(a+ b)2
≥ 1.

(Vasile C., 2008)
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Solution. Due to homogeneity, we may assume that a+ b+ c = 3. Thus, we need to show that

f(a) + f(b) + f(c) ≥ 3f(s),

where

s =
a+ b+ c

3
= 1

and

f(u) =

√
3u2

u2 + 2(3− u)2
=

u√
u2 − 4u+ 6

, u ∈ [0, 3].

From

f ′′(u) =
2(2u2 − 11u+ 12)

(u2 − 4u+ 6)5/2
≥ 2(−11u+ 12)

(u2 − 4u+ 6)5/2
,

it follows that f is convex on [0, s]. By the LHCF-Theorem, it suffices to prove the original
homogeneous inequality for b = c = 0 and b = c = 1. For the nontrivial case b = c = 1, the
inequality has the form

a√
a2 + 8

+
2√

2a2 + 4a+ 3
≥ 1.

By squaring, the inequality becomes

a
√

(a2 + 8)(2a2 + 4a+ 3) ≥ 3a2 + 8a− 2.

For the nontrivial case 3a2 + 8a− 2 > 0, by squaring both sides we get

a6 + 2a5 + 5a4 − 8a3 − 14a2 + 16a− 2 ≥ 0,

(a− 1)2[a4 + 4a3 + 9a2 + 4a+ (3a2 + 8a− 2)] ≥ 0.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

P 1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

k ≥ k0, k0 =
ln 3

ln 2
− 1 ≈ 0.585,

then (
2a

b+ c

)k

+

(
2b

c+ a

)k

+

(
2c

a+ b

)k

≥ 3.

(Vasile C., 2005)

Solution. For k = 1, the inequality is just the well known Nesbitt’s inequality

2a

b+ c
+

2b

c+ a
+

2c

a+ b
≥ 3.
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For k ≥ 1, the inequality follows from Nesbitt’s inequality and Jensens’s inequality applied to
the convex function f(u) = uk:(

2a

b+ c

)k

+

(
2b

c+ a

)k

+

(
2c

a+ b

)k

≥ 3

(
2a
b+c

+ 2b
c+a

+ 2c
a+b

3

)k

≥ 3.

Consider now that
k0 ≤ k < 1.

Due to homogeneity, we may assume that a+ b+ c = 1. Thus, we need to show that

f(a) + f(b) + f(c) ≥ 3f(s),

where

s =
a+ b+ c

3
=

1

3

and

f(u) =

(
2u

1− u

)k

, u ∈ [0, 1).

From

f ′′(u) =
4k

(1− u)4

(
2u

1− u

)k−2

(2u+ k − 1),

it follows that f is convex on [s, 1) (because u ≥ s = 1/3 involves 2u + k − 1 ≥ 2/3 + k − 1 =
k − 1/3 > 0). By the RHCF-Theorem, it suffices to prove the original homogeneous inequality
for b = c = 1 and a ∈ [0, 1]; that is, to show that h(a) ≥ 3, where

h(a) = ak + 2

(
2

a+ 1

)k

, a ∈ [0, 1].

For a ∈ (0, 1], the derivative

h′(a) = kak−1 − k
(

2

a+ 1

)k+1

has the same sign as

g(a) = (k − 1) ln a− (k + 1) ln
2

a+ 1
.

From

g′(a) =
2ka+ k − 1

a(a+ 1)
,

it follows that g′(a0) = 0 for a0 = (1 − k)/(2k) < 1, g′(a) < 0 for a ∈ (0, a0) and g′(a) > 0
for a ∈ (a0, 1]. Consequently, g is strictly decreasing on (0, a0] and strictly increasing on (a0, 1].
Since g(0+) =∞ and g(1) = 0, there exists a1 ∈ (0, a0) so that g(a1) = 0, g(a) > 0 for a ∈ (0, a1)
and g(a) < 0 for a ∈ (a1, 1); therefore, h(a) is strictly increasing on [0, a1] and strictly decreasing
on [a1, 1]. As a result,

h(a) ≥ min{h(0), h(1)}.
Since h(0) = 2k+1 ≥ 3 and h(1) = 3, we get h(a) ≥ 3. The proof is completed. The equality
holds for a = b = c. If k = k0, then the equality holds also for a = 0 and b = c (or any cyclic
permutation).
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Remark. For k = 2/3, we can give the following solution (based on the AM-GM inequality):∑(
2a

b+ c

)2/3

=
∑ 2a

3
√

2a · (b+ c) · (b+ c)

≥
∑ 6a

2a+ (b+ c) + (b+ c)
= 3.

P 1.44. If a, b, c ∈ [1, 7 + 4
√

3], then√
2a

b+ c
+

√
2b

c+ a
+

√
2c

a+ b
≥ 3.

(Vasile C., 2007)

Solution. Denoting

s =
a+ b+ c

3
, 1 ≤ s ≤ 7 + 4

√
3,

we need to show that
f(a) + f(b) + f(c) ≥ 3f(s),

where

f(u) =

√
2u

3s− u
, 1 ≤ u < 3s.

For u ≥ s, we have

f ′′(u) = 3s

(
3s− u

2u

)3/2
4u− 3s

(3s− u)4
> 0.

Therefore, f(u) is convex for u ≥ s. By the RHCF-Theorem, it suffices to prove the original
inequality for b = c; that is, √

a

b
+ 2

√
2b

a+ b
≥ 3.

Putting t =

√
b

a
, the condition a, b ∈ [1, 7 + 4

√
3] involves

2−
√

3 ≤ t ≤ 2 +
√

3.

We need to show that

2

√
2t2

t2 + 1
≥ 3− 1

t
.

This is true if
8t2

t2 + 1
≥
(

3− 1

t

)2

,

which is equivalent to the obvious inequality

(t− 1)2(t− 2 +
√

3 )(t− 2−
√

3 ) ≤ 0.

The equality holds for a = b = c, and also for a = 1, and b = c = 7 + 4
√

3 (or any cyclic
permutation).
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P 1.45. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

0 < k ≤ k0, k0 =
ln 2

ln 3− ln 2
≈ 1.71,

then
ak(b+ c) + bk(c+ a) + ck(a+ b) ≤ 6.

Solution. For 0 < k ≤ 1, the inequality follows from Jensens’s inequality applied to the convex
function f(u) = −uk:

(b+ c)ak + (c+ a)bk + (a+ b)ck ≤ 2(a+ b+ c)

[
(b+ c)a+ (c+ a)b+ (a+ b)c

2(a+ b+ c)

]k
= 6

(
ab+ bc+ ca

3

)k

≤ 6

(
a+ b+ c

3

)2k

= 6.

Consider now that
1 < k ≤ k0,

and write the inequality as
f(a) + f(b) + f(c) ≥ 3f(s),

where

s =
a+ b+ c

3
= 1

and
f(u) = uk(u− 3), u ∈ [0, 3].

For u ≥ 1, we have

f ′′(u) = kuk−2[(k + 1)u− 3k + 3] ≥ kuk−2[(k + 1)− 3k + 3] = 2k(2− k)uk−2 > 0;

therefore, f is convex on [1, s]. By the RHCF-Theorem, it suffices to consider the case a ≤ b = c.
So, we only need to prove the homogeneous inequality

ak(b+ c) + bk(c+ a) + ck(a+ b) ≤ 6

(
a+ b+ c

3

)k+1

for b = c = 1 and a ∈ [0, 1]; that is, to show that g(a) ≥ 0 for a ≥ 0, where

g(a) = 3

(
a+ 2

3

)k+1

− ak − a− 1.

We have

g′(a) = (k + 1)

(
a+ 2

3

)k

− kak−1 − 1,
1

k
g′′(a) =

k + 1

3

(
a+ 2

3

)k−1

− k − 1

a2−k
.

Since g′′ is strictly increasing, g′′(0+) = −∞ and g′′(1) = 2k(2−k)/3 > 0, there exists a1 ∈ (0, 1)
so that g′′(a1) = 0, g′′(a) < 0 for a ∈ (0, a1), g

′′(a) > 0 for a ∈ (a1, 1]. Therefore, g′ is strictly
decreasing on [0, a1] and strictly increasing on [a1, 1]. Since

g′(0) = (k + 1)(2/3)k − 1 ≥ (k + 1)(2/3)k0 − 1 =
k + 1

2
− 1 =

k − 1

2
> 0,
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g′(1) = 0,

there exists a2 ∈ (0, a1) so that g′(a2) = 0, g′(a) > 0 for a ∈ [0, a2), g
′(a) < 0 for a ∈ (a2, 1].

Thus, g is strictly increasing on [0, a2] and strictly decreasing on [a2, 1]; consequently,

g(a) ≥ min{g(0), g(1)}.

From
g(0) = 3(2/3)k+1 − 1 ≥ 3(2/3)k0+1 − 1 = 1− 1 = 0, g(1) = 0,

we get g(a) ≥ 0. This completes the proof. The equality holds for a = b = c = 1. If k = k0, then
the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

Remark 1. Using the Cauchy-Schwarz inequality and the inequality in P 1.45, we get∑ a

bk + ck
≥ (a+ b+ c)2∑

a(bk + ck)
=

9∑
ak(b+ c)

≥ 3

2
.

Thus, the following statement holds.

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

0 < k ≤ k0, k0 =
ln 2

ln 3− ln 2
≈ 1.71,

then
a

bk + ck
+

b

ck + ak
+

c

ak + bk
≥ 3

2
,

with equality for a = b = c = 1. If k = k0, then the equality holds also for a = 0 and b = c = 3/2
(or any cyclic permutation).

Remark 2. Also, the following statement holds:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

k ≥ k1, k1 =
ln 9− ln 8

ln 3− ln 2
≈ 0.2905,

then
ak

b+ c
+

bk

c+ a
+

ck

a+ b
≥ 3

2
,

with equality for a = b = c = 1. If k = k1, then the equality holds also for a = 0 and b = c = 3/2
(or any cyclic permutation).

For k1 ≤ k ≤ 2, the inequality can be proved using the Cauchy-Schwarz inequality and the
inequality in P 1.45, as follows:∑ ak

b+ c
≥ (a+ b+ c)2∑

a2−k(b+ c)
=

9∑
a2−k(b+ c)

≥ 3

2
.
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For k ≥ 2, the inequality can be deduced from the Cauchy-Schwarz inequality and Bernoulli’s
inequality, as follows: ∑ ak

b+ c
≥
(∑

ak/2
)2∑

(b+ c)
=

(∑
ak/2

)2
6

,

∑
ak/2 ≥

∑[
1 +

k

2
(a− 1)

]
= 3.

P 1.46. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
a+
√
b+
√
c− 3 ≥ 13

(√
a+ b

2
+

√
b+ c

2
+

√
c+ a

2
− 3

)
.

(Vasile C., 2008)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
√
u− 13

√
3− u

2
, u ∈ [0, 3].

For u ∈ [1, 3), we have

4f ′′(u) = −u−3/2 +
13

4

(
3− u

2

)−3/2
≥ −1 +

13

4
> 0.

Therefore, f is convex on [s, 3]. By the RHCF-Theorem, it suffices to consider only the case
a ≤ b = c. Write the original inequality in the homogeneous form

√
a+
√
b+
√
c− 3

√
a+ b+ c

3
≥ 13

(√
a+ b

2
+

√
b+ c

2
+

√
c+ a

2
− 3

√
a+ b+ c

3

)
.

Due to homogeneity, we may assume that b = c = 1. Moreover, it is convenient to use the
notation

√
a = x. Thus, we need to show that g(x) ≥ 0 for x ∈ [0, 1], where

g(x) = x− 11 + 36

√
x2 + 2

3
− 26

√
x2 + 1

2
.

We have

g′(x) = 1 + 12x

√
3

x2 + 2
− 13x

√
2

x2 + 1
,

g′′(x) =
13

2

(
2

x2 + 1

)3/2
[(

m · x
2 + 1

x2 + 2

)3/2

− 1

]
,
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where

m =
6 3
√

52

13
≈ 1.72.

Clearly, g′′(x) has the same sign as h(x), where

h(x) = m · x
2 + 1

x2 + 2
− 1.

Since h is strictly increasing,

h(0) =
m

2
− 1 < 0, h(1) =

2m

3
− 1 > 0,

there is x1 ∈ (0, 1) so that h(x1) = 0, h(x) < 0 for x ∈ [0, x1) and h(x) > 0 for x ∈ (x1, 1].
Therefore, g′ is strictly decreasing on [0, x1] and strictly increasing on [x1, 1]. Since g′(0) = 1
and g′(1) = 0, there is x2 ∈ (0, x1) so that g′(x2) = 0, g′(x) > 0 for x ∈ (0, x2) and g′(x) < 0 for
x ∈ (x2, 1). Thus, g(x) is strictly increasing on [0, x2] and strictly decreasing on [x2, 1]. From

g(0) = −11 + 12
√

6− 13
√

2 > 0

and g(1) = 0, it follows that g(x) ≥ 0 for x ∈ [0, 1]. This completes the proof. The equality
holds for a = b = c = 1.

Remark. Similarly, we can prove the following generalizations:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k ≥ k0, where

k0 =

√
6− 2√

6−
√

2− 1
= (2 +

√
2)(2 +

√
3) ≈ 12.74 ,

then
√
a+
√
b+
√
c− 3 ≥ k

(√
a+ b

2
+

√
b+ c

2
+

√
c+ a

2
− 3

)
,

with equality for a = b = c = 1. If k = k0, then the equality holds also for a = 0 and b = c = 3/2
(or any cyclic permutation).

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If k ≥ k0,
where

k0 =

√
n−
√
n− 1

√
n−
√
n− 2− 1√

n−1

,

then

√
a1 +

√
a2 + · · ·+

√
an − n ≥ k

(√
n− a1
n− 1

+

√
n− a2
n− 1

+ · · ·+
√
n− an
n− 1

− n
)
,

with equality for a1 = a2 = · · · = an = 1. If k = k0, then the equality holds also for a1 = 0 and

a2 = a3 = · · · = an =
n

n− 1
(or any cyclic permutation).
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P 1.47. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k > 2, then

ak + bk + ck + 3 ≥ 2

(
a+ b

2

)k

+ 2

(
b+ c

2

)k

+ 2

(
c+ a

2

)k

.

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) = uk − 2

(
3− u

2

)k

, u ∈ [0, 3].

For u ≥ 1, we have
f ′′(u)

k(k − 1)
= uk−2 − 1

2

(
3− u

2

)k−2

≥ 1− 1

2
> 0.

Therefore, f is convex on [s, 3]. By the RHCF-Theorem, it suffices to consider only the case
a ≤ b = c. Write the original inequality in the homogeneous form

ak + bk + ck + 3

(
a+ b+ c

3

)k

≥ 2

(
a+ b

2

)k

+ 2

(
b+ c

2

)k

+ 2

(
c+ a

2

)k

.

Due to homogeneity, we may assume that b = c = 1. Thus, we need to prove that

ak + 3

(
a+ 2

3

)k

≥ 4

(
a+ 1

2

)k

for a ∈ [0, 1]. Substituting
ak = t, t ∈ [0, 1],

we need to show that g(t) ≥ 0, where

g(t) = t+ 3

(
t1/k + 2

3

)k

− 4

(
t1/k + 1

2

)k

.

We have

g′(t) = 1 + t1/k−1
(
t1/k + 2

3

)k−1

− 2t1/k−1
(
t1/k + 1

2

)k−1

,

kt2−1/k

k − 1
g′′(t) =

(
t1/k + 1

2

)k−2

− 2

3

(
t1/k + 2

3

)k−2

.

Setting

m =

(
2

3

) 1
k−2

, 0 < m < 1,

we see that g′′(t) has the same sign as h(t), where

h(t) = 6

(
t1/k + 1

2
−mt1/k + 2

3

)
= (3− 2m)t1/k + 3− 4m
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is strictly increasing. There are two cases to consider: 0 < m ≤ 3/4 and 3/4 < m < 1.

Case 1: 0 < m ≤ 3/4. Since h(0) = 3 − 4m ≥ 0, we have h(t) > 0 for t ∈ (0, 1], hence g′ is
strictly increasing on (0, 1]. From g′(1) = 0, it follows that g′(t) < 0 for t ∈ (0, 1), hence g is
strictly decreasing on [0, 1]. Since g(1) = 0, we get g(t) > 0 for t ∈ [0, 1).

Case 2: 3/4 < m < 1. From m > 3/4, we get

22k−3 > 3k−1.

Since h(0) = 3− 4m < 0 and h(1) = 3(1−m) > 0, there is t1 ∈ (0, 1) so that h(t1) = 0, h(t) < 0
for t ∈ [0, t1) and h(t) > 0 for t ∈ (t1, 1]. Thus, g′(t) is strictly decreasing on (0, t1] and strictly
increasing on [t1, 1]. Since g′(0+) = +∞ and g′(1) = 0, there exists t2 ∈ (0, t1) so that g′(t2) = 0,
g′(t) > 0 for t ∈ (0, t2) and g′(t) < 0 for t ∈ (t2, 1). Therefore, g(t) is strictly increasing on [0, t2]
and strictly decreasing on [t2, 1]. Since

g(0) =
22k−2 − 3k−1

2k3k−1 > 0

and g(1) = 0, we have g(t) ≥ 0 for t ∈ [0, 1].

The equality holds for a = b = c = 1.

Remark 1. The inequality in P 1.47 is Popoviciu’s inequality

f(a) + f(b) + f(c) + 3f

(
a+ b+ c

3

)
≥ 2f

(
a+ b

2

)
+ 2f

(
b+ c

2

)
+ 2f

(
c+ a

2

)
applied to the convex function f(x) = xk defined on [0,∞).

Remark 2. In the same manner, we can prove the following refinements (Vasile C., 2008):

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k > 2 and m ≤ m0, where

m0 =
2k(3k−1 − 2k−1)

6k−1 + 3k−1 − 22k−1 > 2,

then

ak + bk + ck − 3 ≥ m

[(
a+ b

2

)k

+

(
b+ c

2

)k

+

(
c+ a

2

)k

− 3

]
,

with equality for a = b = c = 1. If m = m0, then the equality holds also for a = 0 and b = c = 3/2
(or any cyclic permutation).

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If k > 2 and
m ≤ m1, where

m1 =

1
(n−1)k−1 − 1

nk−1

1
(n−1)k + (n−2)k

(n−1)2k−1 − 1
nk−1

> n− 1,

then

ak1 + ak2 + · · ·+ akn − n ≥ m

[(
n− a1
n− 1

)k

+

(
n− a2
n− 1

)k

+ · · ·+
(
n− an
n− 1

)k

− n

]
,

with equality for a1 = a2 = · · · = an = 1. If m = m1, then the equality holds also for a1 = 0 and

a2 = a3 = · · · = an =
n

n− 1
(or any cyclic permutation).
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P 1.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

√
a1 +

√
a2 + · · ·+

√
an + n(k − 1) ≤ k

(√
n− a1
n− 1

+

√
n− a2
n− 1

+ · · ·+
√
n− an
n− 1

)
,

where
k = (

√
n− 1)(

√
n+
√
n− 1).

(Vasile C., 2008)

Solution. For n = 2, the inequality is an identity. Consider further that n ≥ 3. We will show
first that

n− 1 < k < 2(n− 1).

The left inequality reduces to
(
√
n− 1)(

√
n− 1− 1) > 0,

while the right inequality is equivalent to

(
√
n− 1)(

√
n−
√
n− 1 + 2) > 0.

Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = −
√
u+ k

√
n− u
n− 1

, u ∈ [0, n].

For u ≤ 1, we have

4f ′′(u) = u−3/2 − k√
n− 1

(n− u)−3/2 ≥ 1− k√
n− 1

(n− 1)−3/2

= 1− k

(n− 1)2
≥ 1− k

2(n− 1)
> 0.

Therefore, f is convex on [0, s]. By the LHCF-Theorem, it suffices to consider the case

a1 ≥ a2 = · · · = an.

Write the original inequality in the homogeneous form∑√
a1 + n(k − 1)

√
a1 + a2 + · · ·+ an

n
≤ k

∑√
a2 + · · ·+ an

n− 1
.

Do to homogeneity, we need to prove this inequality for a2 = · · · = an = 1 and
√
a1 = x ≥ 1;

that is, to show that g(x) ≤ 0 for x ≥ 1, where

g(x) = x+ n− 1− k + (k − 1)
√
n(x2 + n− 1)− k

√
(n− 1)(x2 + n− 2).

We have

g′(x) = 1 + (k − 1)

√
nx2

x2 + n− 1
− k
√

(n− 1)x2

x2 + n− 2
,
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g′′(x) =
k(n− 2)

√
n− 1

(x2 + n− 2)3/2

[(
m · x

2 + n− 2

x2 + n− 1

)3/2

− 1

]
,

where

m = 3

√
(k − 1)2n(n− 1)

k2(n− 2)2
.

Clearly, g′′(x) has the same sign as h(x), where

h(x) =
m(x2 + n− 2)

x2 + n− 1
− 1 = m

(
1− 1

x2 + n− 1

)
− 1.

We have

h(1) =
m(n− 1)

n
− 1, lim

x→∞
h(x) = m− 1.

We will show that h(1) < 0 and limx→∞ h(x) > 0; that is, to show that

1 < m <
n

n− 1
.

The inequality m > 1 is equivalent to

1− 1

k
>

n− 2√
n(n− 1)

,

which is true since

1− 1

k
> 1− 1

n− 1
=
n− 2

n− 1
>

n− 2√
n(n− 1)

.

The inequality m <
n

n− 1
is equivalent to

1− 1

k
<
n(n− 2)

(n− 1)2
,

which is also true because

1− 1

k
< 1− 1

2(n− 1)
=

2n− 3

2(n− 1)
≤ n(n− 2)

(n− 1)2
.

Since h is strictly increasing on [1,∞), h(1) < 0 and limx→∞ h(x) > 0, there is x1 ∈ (1,∞) so
that h(x1) = 0, h(x) < 0 for x ∈ [1, x1) and h(x) > 0 for x ∈ (x1,∞). Therefore, g′ is strictly
decreasing on [1, x1] and strictly increasing on [x1,∞). Since g′(1) = 0 and limx→∞ g

′(x) = 0,
it follows that g′(x) < 0 for x ∈ (1,∞). Thus, g(x) is strictly decreasing on [1,∞), hence
g(x) ≤ g(1) = 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n, a2 = a3 = · · · = an = 0

(or any cyclic permutation).

Remark. Since k > n − 1 for n ≥ 3, the inequality in P 1.48 is sharper than Popoviciu’s
inequality applied to the convex function f(x) = −

√
x, x ≥ 0:

√
a1 +

√
a2 + · · ·+

√
an + n(n− 2) ≤ (n− 1)

(√
n− a1
n− 1

+

√
n− a2
n− 1

+ · · ·+
√
n− an
n− 1

)
.
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P 1.49. If a, b, c are the lengths of the sides of a triangle so that a+ b+ c = 3, then

1

a+ b− c
+

1

b+ c− a
+

1

c+ a− b
− 3 ≥ 4(2 +

√
3)

(
2

a+ b
+

2

b+ c
+

2

c+ a
− 3

)
.

(Vasile C., 2008)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
1

3− 2u
− 4k

3− u
, k = 2(2 +

√
3) ≈ 7.464, u ∈ [0, 3/2).

For u ≥ 1, we have

f ′′(u) =
8

(3− 2u)3
− 8k

(3− u)3
> 8

[(
1

3− 2u

)3

−
(

2

3− u

)3
]
.

Since
1

3− 2u
≥ 2

3− u
, u ∈ [1, 3/2),

it follows that f is convex on [s,3/2). By the RHCF-Theorem and Note 1, it suffices to show
that h(x, y) ≥ 0 for x, y ∈ [0, 3/2) so that x+ 2y = 3. We have

g(u) =
f(u)− f(1)

u− 1
=

2

3− 2u
− 2k

3− u

and

h(x, y) =
g(x)− g(y)

x− y
=

2

(3− 2x)(3− 2y)
− k

(3− x)(3− y)

=
2

(2y − x)x
− k

2y(x+ y)

=
kx2 − 2(k − 2)xy + 4y2

2xy(x+ y)(2y − x)

=
[(
√

3 + 1)x− 2y]2

2xy(x+ y)(2y − x)
≥ 0.

According to Note 4, the equality holds for a = b = c = 1, and also for

a = 3(2−
√

3), b = c =
3(
√

3− 1)

2

(or anu cyclic permutation).
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P 1.50. Let a1, a2, . . . , a5 be nonnegative numbers so that a1 + a2 + a3 + a4 + a5 ≤ 5. If

k ≥ k0, k0 =
29 +

√
761

10
≈ 5.66,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≥ 5

k + 4
.

(Vasile C., 2006)

Solution. Since each term of the left hand side of the inequality decreases by increasing any
number ai, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5,

when the desired inequality can be written as

f(a1) + f(a2) + f(a3) + f(a4) + f(a4) ≥ 5f(s),

where

s =
a1 + a2 + a3 + a4 + a5

5
= 1

and

f(u) =
1

ku2 − u+ 5
, u ∈ [0, 5].

For u ≥ 1, we have

f ′′(u) =
2[3ku(ku− 1)− 5k + 1]

(ku2 − u+ 5)3

≥ 2[3k(k − 1)− 5k + 1]

(ku2 − u+ 5)3

=
2[k(3k − 8) + 1]

(ku2 − u+ 5)3
> 0;

therefore, f is convex on [s, 5]. By the RHCF-Theorem, it suffices to show that

1

kx2 − x+ 5
+

4

ky2 − y + 5
≥ 5

k + 4

for
0 ≤ x ≤ 1 ≤ y, x+ 4y = 5.

Write this inequality as follows:

1

kx2 − x+ 5
− 1

k + 4
+ 4

[
1

ky2 − y + 5
− 1

k + 4

]
≥ 0,

(x− 1)(1− k − kx)

kx2 − x+ 5
+

4(y − 1)(1− k − ky)

ky2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x,
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the inequality is equivalent to

(x− 1)

(
1− k − kx
kx2 − x+ 5

− 1− k − ky
ky2 − y + 5

)
≥ 0,

5(x− 1)2g(x, y, k)

4(kx2 − x+ 5)(ky2 − y + 5)
≥ 0,

where
g(x, y, k) = k2xy + k(k − 1)(x+ y)− 6k + 1.

For fixed x and y, let h(k) = g(x, y, k). Since

h′(k) = 2kxy + (2k − 1)(x+ y)− 6 ≥ (2k − 1)(x+ y)− 6

≥ (2k − 1)
(
x+

y

4

)
− 6 =

10k − 29

4
> 0,

it suffices to show that g(x, y, k0) ≥ 0. We have

g(x, y, k0) = k20xy + k0(k0 − 1)(x+ y)− 6k0 + 1

= −4k20y
2 + k0(2k0 + 3)y + 5k20 − 11k0 + 1.

Since
5k20 − 29k0 + 4 = 0,

we get

g(x, y, k0) = (5− 4y)

(
k20y + k20 −

11k0 − 1

5

)
= x

(
k20y + k20 −

11k0 − 1

5

)
.

It suffices to show that

k20 −
11k0 − 1

5
≥ 0.

Indeed,

k20 −
11k0 − 1

5
=
k0(5k0 − 11) + 1

5
> 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k = k0, then the equality holds also for

a1 = 0, a2 = a3 = a4 = a5 =
5

4

(or any cyclic permutation).

Remark. In the same manner, we can prove the following statement:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n. If

k ≥ k0, k0 =
n2 + n− 1 +

√
n4 + 2n3 − 5n2 + 2n+ 1

2n
,

then ∑ 1

ka21 + a2 + · · ·+ an
≥ n

k + n− 1
,
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with equality for a1 = a2 = · · · = an = 1. If k = k0, then the equality holds also for

a1 = 0, a2 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 1.51. Let a1, a2, . . . , a5 be nonnegative numbers so that a1 + a2 + a3 + a4 + a5 ≤ 5. If

0 < k ≤ k0, k0 =
11−

√
101

10
≈ 0.095,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≥ 5

k + 4
.

(Vasile C., 2006)

Solution. As shown at the preceding P 1.50, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5,

when the desired inequality can be written as

f(a1) + f(a2) + f(a3) + f(a4) + f(a4) ≥ 5f(s),

where

s =
a1 + a2 + a3 + a4 + a5

5
= 1,

and

f(u) =
1

ku2 − u+ 5
, u ∈ [0, 5].

For u ∈ [0, 1], we have

u(ku− 1)− (k − 1) = (1− u)(1− ku) ≥ 0,

hence

f ′′(u) =
2[3ku(ku− 1)− 5k + 1]

(ku2 − u+ 5)3

≥ 2[3k(k − 1)− 5k + 1]

(ku2 − u+ 5)3

=
2[(1− 8k) + 3k2]

(ku2 − u+ 5)3
> 0;

therefore, f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that

1

kx2 − x+ 5
+

4

ky2 − y + 5
≥ 5

k + 4
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for
x ≥ 1 ≥ y ≥ 0, x+ 4y = 5.

Write this inequality as follows:

1

kx2 − x+ 5
− 1

k + 4
+ 4

[
1

ky2 − y + 5
− 1

k + 4

]
≥ 0,

(x− 1)(1− k − kx)

kx2 − x+ 5
+

4(y − 1)(1− k − ky)

ky2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x,

the inequality is equivalent to

(x− 1)

(
1− k − kx
kx2 − x+ 5

− 1− k − ky
ky2 − y + 5

)
≥ 0,

5(x− 1)2g(x, y, k)

4(kx2 − x+ 5)(ky2 − y + 5)
≥ 0,

where
g(x, y, k) = k2xy − k(1− k)(x+ y)− 6k + 1.

For fixed x and y, let h(k) = g(x, y, k). Since

h′(k) = 2kxy − (1− 2k)(x+ y)− 6 ≤ 2kxy − 6

≤ k(x+ 4y)2

8
− 6 =

25k

8
− 6 < 0,

it suffices to show that g(x, y, k0) ≥ 0. We have

g(x, y, k0) = k20xy + k0(k0 − 1)(x+ y)− 6k + 1

= −4k20y
2 + k0(2k0 + 3)y + 5k20 − 11k0 + 1.

Since
5k20 − 11k0 + 1 = 0,

we get

g(x, y, k0) = k0y(−4k0y + 2k0 + 3) ≥ k0y(−4k0 + 2k0 + 3) = k0(3− 2k0)y ≥ 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k = k0, then the equality holds also for

a1 = 5, a2 = a3 = a4 = a5 = 0

(or any cyclic permutation).

Remark. Similarly, we can prove the following statement:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n. If

0 ≤ k ≤ k0, k0 =
2n+ 1−

√
4n2 + 1

2n
,
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then ∑ 1

ka21 + a2 + · · ·+ an
≥ n

k + n− 1
,

with equality for a1 = a2 = · · · = an = 1. If k = k0, then the equality holds also for

a1 = n, a2 = · · · = an = 0

(or any cyclic permutation).

P 1.52. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n. If

0 < k ≤ 1

n+ 1
,

then

a1
ka21 + a2 + · · ·+ an

+
a2

a1 + ka22 + · · ·+ an
+ · · ·+ an

a1 + a2 + · · ·+ ka2n
≥ n

k + n− 1
.

(Vasile C., 2006)

Solution. Using the notation

x1 =
a1
s
, x2 =

a2
s
, . . . , xn =

an
s
,

where

s =
a1 + a2 + · · ·+ an

n
≤ 1,

we need to show that x1 + x2 + · · ·+ xn = n involves

x1
ksx21 + x2 + · · ·+ xn

+ · · ·+ xn
x1 + x2 + · · ·+ ksx2n

≥ n

k + n− 1
.

Since s ≤ 1, it suffices to prove the inequality for s = 1; that is, to show that

a1
ka21 − a1 + n

+
a2

ka22 − a2 + n
+ · · ·+ an

ka2n − an + n
≥ n

k + n− 1

for
a1 + a2 + · · ·+ an = n.

Write the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s),

where

s =
a1 + a2 + · · ·+ an

n
= 1

and
f(u) =

u

u2 − u+ n
, u ∈ [0, n].
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We have

f ′(u) =
n− ku2

(ku2 − u+ n)2
, f ′′(u) =

f1(u)

(u2 − u+ n)3
,

where
f1(u) = k2u3 − 3knu+ n.

For u ∈ [0, 1], we have

f1(u) ≥ −3knu+ n ≥ −3kn+ n

≥ − 3n

n+ 1
+ n =

n(n− 2)

n+ 1
≥ 0.

Since f ′′(u) > 0, it follows that f is convex on [0, s]. By the LHCF-Theorem, we only need to
show that

x

kx2 − x+ n
+

(n− 1)y

ky2 − y + n
≥ n

k + n− 1

for all nonnegative x, y which satisfy x+ (n− 1)y = n. Write this inequality as follows:

x

kx2 − x+ n
− 1

k + n− 1
+ (n− 1)

[
y

ky2 − y + n
− 1

k + n− 1

]
≥ 0,

(x− 1)

(
n− kx

kx2 − x+ n
− n− ky
ky2 − y + n

)
≥ 0,

(x− 1)2h(x, y)

(kx2 − x+ n)(ky2 − y + n)
≥ 0,

where
h(x, y) = k2xy − kn(x+ y) + n− nk.

We need to show that h(x, y) ≥ 0. Indeed,

h(x, y) = ky[n(k + n− 2)− k(n− 1)y] + n[1− k(n+ 1)]

= ky[n(n− 2) + kx] + n[1− k(n+ 1)] ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k =
1

n+ 1
, then the equality holds also for

a1 = n, a2 = a3 = · · · = an = 0

(or any cyclic permutation).

P 1.53. If a1, a2, a3, a4, a5 ≤
7

2
so that a1 + a2 + a3 + a4 + a5 = 5, then

a1
a21 − a1 + 5

+
a2

a22 − a2 + 5
+

a3
a23 − a3 + 5

+
a4

a24 − a4 + 5
+

a5
a25 − a5 + 5

≤ 1.

(Vasile C., 2006)
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Solution. Write the desired inequality as

f(a1) + f(a2) + f(a3) + f(a4) + f(a5) ≥ 5f(s),

where

s =
a1 + a2 + a3 + a4 + a5

5
= 1

and

f(u) =
−u

u2 − u+ 5
, u ≤ 7

2
.

For u ∈
[
1,

7

2

]
, we have

f ′′(u) =
−u3 + 15u− 5

(u2 − u+ 5)3

=
(2u+ 9)(u− 1)(7− 2u) + 43− 7u

4(u2 − u+ 5)3
> 0.

Thus, f is convex on

[
s,

7

2

]
. By the RHCF-Theorem, it suffices to show that

x

x2 − x+ 5
+

4y

y2 − y + 5
≤ 1

for all nonnegative x, y ≤ 7

2
which satisfy x+ 4y = 5. Write this inequality as follows:

x

x2 − x+ 5
− 1

5
+ 4

(
y

y2 − y + 5
− 1

5

)
] ≤ 0,

(x− 1)

(
5− x

x2 − x+ 5
− 5− y
y2 − y + 5

)
≤ 0,

(x− 1)2[5(x+ y)− xy]

(x2 − x+ 5)(y2 − y + 5)
≥ 0,

(x− 1)2[(x+ 4y)(x+ y)− xy]

(x2 − x+ 5)(y2 − y + 5)
≥ 0,

(x− 1)2(x+ 2y)2

(x2 − x+ 5)(y2 − y + 5)
≥ 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1, and also for

a1 = −5, a2 = a3 = a4 = a5 =
5

2

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:
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• Let a1, a2, . . . , an ≤
√

3 so that a1 + a2 + · · ·+ an ≤ n. If

k =
n2 + 2n− 2− 2

√
(n− 1)(2n2 − 1)

n
,

then
a1

ka21 − a1 + n
+

a2
ka22 − a2 + n

+ · · ·+ an
ka2n − an + n

≤ n

k − 1 + n
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
n(k − n+ 2)

2k
, a2 = · · · = an =

n(k + n− 2)

2k(n− 1)

(or any cyclic permutation).

P 1.54. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≥ n. If

0 < k ≤ 1

1 + 1
4(n−1)2

,

then

a21
ka21 + a2 + · · ·+ an

+
a22

a1 + ka22 + · · ·+ an
+ · · ·+ a2n

a1 + a2 + · · ·+ ka2n
≥ n

k + n− 1
.

(Vasile C., 2006)

Solution. Using the substitution

x1 =
a1
s
, x2 =

a2
s
, . . . , xn =

an
s
,

where

s =
a1 + a2 + · · ·+ an

n
≥ 1,

we need to show that x1 + x2 + · · ·+ xn = n involves

x21
kx21 + (x2 + · · ·+ xn)/s

+ · · ·+ x2n
(x1 + · · ·+ xn−1)/s+ kx2n

≥ n

k + n− 1
.

Since s ≥ 1, it suffices to prove the inequality for s = 1; that is, to show that

a21
ka21 − a1 + n

+
a22

ka22 − a2 + n
+ · · ·+ a2n

ka2n − an + n
≥ n

k + n− 1

for
a1 + a2 + · · ·+ an = n.

Write the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s),
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where

s =
a1 + a2 + · · ·+ an

n
= 1

and

f(u) =
u2

u2 − u+ n
, u ∈ [0, n].

We have

f ′(u) =
u(2n− u)

(ku2 − u+ n)2
, f ′′(u) =

2f1(u)

(u2 − u+ n)3
,

where
f1(u) = ku3 − 3knu2 + n2.

For u ∈ [0, 1] and n ≥ 3, we have

f1(u) ≥ −3knu2 + n2 ≥ −3kn+ n2 > −3n+ n2 ≥ 0.

Also, for u ∈ [0, 1] and n = 2, we have

f1(u) = 4− ku2(6− u) ≥ 4− 4

5
u2(6− u)

≥ 4− 4

5
u(6− u) =

4(1− u)(5− u)

5
≥ 0.

Since f ′′(u) ≥ 0 for u ∈ [0, 1], it follows that f is convex on [0, s]. By the LHCF-Theorem, we
need to show that

x2

kx2 − x+ n
+

(n− 1)y2

ky2 − y + n
≥ n

k + n− 1

for all nonnegative x, y which satisfy x+ (n− 1)y = n. Write this inequality as follows:

x2

kx2 − x+ n
− 1

k + n− 1
+ (n− 1)

[
y2

ky2 − y + n
− 1

k + n− 1

]
≥ 0,

(x− 1)(nx− x+ n)

kx2 − x+ 5
+

4(y − 1)(ny − y + n)

ky2 − y + 5
≥ 0,

(x− 1)

(
nx− x+ n

kx2 − x+ n
− ny − y + n

ky2 − y + n

)
≥ 0,

(x− 1)2h(x, y)

(kx2 − x+ n)(ky2 − y + n)
≥ 0,

where
h(x, y) = n2 − kn(x+ y)− k(n− 1)xy.

Since

0 < k ≤ k0, k0 =
1

1 + 1
4(n−1)2

,

we have

h(x, y) ≥ n2 − k0n(x+ y)− k0(n− 1)xy

= (n− 1)2k0y
2 − nk0y + n2(1− k0)

= k0

[
(n− 1)y − n

2(n− 1)

]2
≥ 0.
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The equality holds for a1 = a2 = · · · = an = 1. If k = k0, then the equality holds also for

a1 =
n(2n− 3)

2(n− 1)
, a2 = a3 = · · · = an =

n

2(n− 1)2

(or any cyclic permutation).

P 1.55. Let a1, a2, . . . , an be nonnegative real numbers so that a1+a2+ · · ·+an ≤ n. If k ≥ n−1,
then

a21
ka21 + a2 + · · ·+ an

+
a22

a1 + ka22 + · · ·+ an
+ · · ·+ a2n

a1 + a2 + · · ·+ ka2n
≤ n

k + n− 1
.

(Vasile C., 2006)

Solution. Using the notation

x1 =
a1
s
, x2 =

a2
s
, . . . , xn =

an
s
,

where

s =
a1 + a2 + · · ·+ an

n
≤ 1,

we need to show that x1 + x2 + · · ·+ xn = n involves

x21
kx21 + (x2 + · · ·+ xn)/s

+ · · ·+ x2n
(x1 + · · ·+ xn−1)/s+ kx2n

≤ n

k + n− 1
.

Since s ≤ 1, it suffices to prove the inequality for s = 1; that is, to show that

a21
ka21 − a1 + n

+
a22

ka22 − a2 + n
+ · · ·+ a2n

ka2n − an + n
≤ n

k + n− 1

for
a1 + a2 + · · ·+ an = n.

Write the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−u2

u2 − u+ n
, u ∈ [0, n].

We have

f ′(u) =
u(u− 2n)

(ku2 − u+ n)2
, f ′′(u) =

2f1(u)

(u2 − u+ n)3
,

where
f1(u) = −ku3 + 3knu2 − n2.
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For u ∈ [1, n], we have

f1(u) ≥ −knu2 + 3knu2 − n2 = 2knu2 − n2

≥ 2kn− n2 ≥ 2(n− 1)n− n2 = n(n− 2) ≥ 0.

Since f ′′(u) ≥ 0 for u ∈ [1, n], it follows that f is convex on [s, n]. By the RHCF-Theorem, it
suffices to show that

x2

kx2 − x+ n
+

(n− 1)y2

ky2 − y + n
≤ n

k + n− 1

for all nonnegative x, y which satisfy x + (n− 1)y = n. As shown in the proof of the preceding
P 1.54, we only need to show that h(x, y) ≥ 0, where

h(x, y) = kn(x+ y) + k(n− 1)xy − n2.

Since k ≥ n− 1, we have

h(x, y) ≥ n(n− 1)(x+ y) + (n− 1)2xy − n2

= −(n− 1)3y2 + n(n− 1)y + n2(n− 2)

= [n− (n− 1)y][n(n− 2) + (n− 1)2y]

= x[n(n− 2) + (n− 1)2y] ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = n− 1, then the equality holds also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 1.56. Let a1, a2, . . . , an ∈ [0, n] so that a1 + a2 + · · ·+ an ≥ n. If 0 < k ≤ 1

n
, then

a1 − 1

ka21 + a2 + · · ·+ an
+

a2 − 1

a1 + ka22 + · · ·+ an
+ · · ·+ an − 1

a1 + a2 + · · ·+ ka2n
≥ 0.

(Vasile C., 2006)

Solution. Let

s =
a1 + a2 + · · ·+ an

n
, s ≥ 1.

Case 1: s > 1 Without loss of generality, assume that

a1 ≥ · · · ≥ aj > 1 ≥ aj+1 · · · ≥ an, j ∈ {1, 2, . . . , n}.

Clearly, there are b1, b2, . . . , bn so that b1 + b2 + · · ·+ bn = n and

a1 ≥ b1 ≥ 1, . . . , aj ≥ bj ≥ 1, bj+1 = aj+1, . . . , bn = an.
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Write the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ 0,

where

f(u) =
u− 1

ku2 − u+ ns
, u ∈ [0, n],

f ′(u)
f1(u)

(ku2 − u+ ns)2
, f1(u) = k(−u2 + 2u) + ns− 1.

For u ∈ [1, n), we have

f1(u) ≥ k(−nu+ 2u) + ns− 1 = −k(n− 2)u+ ns− 1

≥ −k(n− 2)n+ ns− 1 ≥ −(n− 2) + ns− 1 = n(s− 1) + 1 > 0.

Consequently, f is strictly increasing on [1, n] and

f(b1) ≤ f(a1), . . . , f(bj) ≤ f(aj), f(bj+1) = f(aj+1), . . . , f(bn) = f(an).

Since
f(b1) + f(b2) + · · ·+ f(bn) ≤ f(a1) + f(a2) + · · ·+ f(an),

it suffices to show that f(b1) + f(b2) + · · ·+ f(bn) ≥ 0 for b1 + b2 + · · ·+ bn = n. This inequality
is proved at Case 2.

Case 2: s = 1. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
u− 1

ku2 − u+ n
, u ∈ [0, n],

f ′′(u) =
2g(u)

(ku2 − u+ n)3
, g(u) = k2u3 − 3k2u2 − 3k(n− 1)u+ kn+ n− 1.

We will show that f ′′(u) ≥ 0 for u ∈ [0, 1]. From

g′(u) = 3k2u(u− 2)− 3k(n− 1),

it follows that g′(u) < 0, g is decreasing, hence

g(u) ≥ g(1) = −2k2 − (2n− 3)k + n− 1

≥ −2

n2
− 2n− 3

n
+ n− 1

=
(n− 1)3 − 1

n2
≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that

x− 1

kx2 − x+ n
+

(n− 1)(y − 1)

ky2 − y + n
≥ 0
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for all nonnegative real x, y so that x+ (n− 1)y = n. Since (n− 1)(y − 1) = 1− x, we have

x− 1

kx2 − x+ n
+

(n− 1)(y − 1)

ky2 − y + n
= (x− 1)

(
1

kx2 − x+ n
− 1

ky2 − y + n

)
=

(x− 1)(x− y)(1− kx− ky)

(kx2 − x+ n)(ky2 − y + n)

=
n(x− 1)2(1− kx− ky)

(n− 1)(kx2 − x+ n)(ky2 − y + n)

≥
n(x− 1)2(1− x+y

n
)

(n− 1)(kx2 − x+ n)(ky2 − y + n)

=
(n− 2)y(x− 1)2

(n− 1)(kx2 − x+ n)(ky2 − y + n)
≥ 0.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1. If k =
1

n
, then the

equality holds also for
a1 = n, a2 = a3 = · · · = an = 0.

P 1.57. If a, b, c are positive real numbers so that abc = 1, then

√
a2 − a+ 1 +

√
b2 − b+ 1 +

√
c2 − c+ 1 ≥ a+ b+ c.

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,

where
f(u) =

√
e2u − eu + 1− eu, u ∈ I = R.

We claim that f is convex on I≥s. Since

e−uf ′′(u) =
4e3u − 6e2u + 9eu − 2

4(e2u − eu + 1)3/2
− 1,

we need to show that 4x3 − 6x2 + 9x− 2 > 0 and

(4x3 − 6x2 + 9x− 2)2 ≥ 16(x2 − x+ 1)3,

where x = eu ≥ 1. Indeed,

4x3 − 6x2 + 9x− 2 = x(x− 3)2 + (3x3 − 2) > 0
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and
(4x3 − 6x2 + 9x− 2)2 − 16(x2 − x+ 1)3 = 12x3(x− 1) + 9x2 + 12(x− 1) > 0.

By the RHCF-Theorem, it suffices to prove the original inequality for

b = c := t, a = 1/t2, t > 0,

that is, √
t4 − t2 + 1

t2
+ 2
√
t2 − t+ 1 ≥ 1

t2
+ 2t,

t2 − 1√
t4 − t2 + 1 + 1

+
2(1− t)√

t2 − t+ 1 + t
≥ 0.

Since
t2 − 1√
t4 − t2 + 1

≥ t2 − 1

t2 + 1
,

it suffices to show that
t2 − 1

t2 + 1
+

2(1− t)√
t2 − t+ 1 + t

≥ 0,

which is equivalent to

(t− 1)

[
t+ 1

t2 + 1
− 2√

t2 − t+ 1 + t

]
≥ 0,

(t− 1)
[
(t+ 1)

√
t2 − t+ 1− t2 + t− 2

]
≥ 0,

(t− 1)2(3t2 − 2t+ 3)

(t+ 1)
√
t2 − t+ 1 + t2 − t+ 2

≥ 0.

The equality holds for a = b = c = 1.

P 1.58. If a, b, c, d ≥ 1

1 +
√

6
so that abcd = 1, then

1

a+ 2
+

1

b+ 2
+

1

c+ 2
+

1

d+ 2
≤ 4

3
.

(Vasile C., 2005)

Solution. Using the notation

a = ex, b = ey, c = ez, d = ew,

we need to show that

f(x) + f(y) + f(z) + f(w) ≥ 4f(s), s =
x+ y + z + w

4
= 0,

where

f(u) =
−1

eu + 2
, u ∈ I = R.
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For u ≤ 0, we have

f ′′(u) =
eu(2− eu)

(eu + 2)3
> 0,

hence f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original inequality for

b = c = d := t, a = 1/t3, t ≥ 1

1 +
√

6
;

that is,
t3

2t3 + 1
+

3

t+ 2
≤ 4

3
,

which is equivalent to the obvious inequality

(t− 1)2(5t2 + 2t− 1) ≥ 0.

According to Note 4, the equality holds for a = b = c = d = 1, and also for

a = 19 + 9
√

6, b = c = d =
1

1 +
√

6

(or any cyclic permutation).

P 1.59. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3 ≥ 2(ab+ bc+ ca− a− b− c).

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,

where
f(u) = e2u − 1 + 2(eu − e−u), u ∈ R = R.

For u ≥ 0, we have
f ′′(u) = 4e2u + 2(eu − e−u) > 0,

hence f is convex on I≥s. By the RHCF-Theorem, it suffices to prove the original inequality for
b = c := t and a = 1/t2, where t > 0; that is, to show that

4t5 − 3t4 − 4t3 + 2t2 + 1 ≥ 0,

which is equivalent to
(t− 1)2(4t3 + 5t2 + 2t+ 1) ≥ 0.

The equality holds for a = b = c = 1.
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P 1.60. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3 ≥ 18(a+ b+ c− ab− bc− ca).

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,

where
f(u) = e2u − 1− 18(eu − e−u), u ∈ R.

For u ≤ 0, we have
f ′′(u) = 4e2u + 18(e−u − eu) > 0,

hence f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original inequality for
b = c := t and a = 1/t2, where t > 0. Since

a2 + b2 + c2 − 3 =
1

t4
+ 2t2 − 3 =

(t2 − 1)2(2t2 + 1)

t4

and

a+ b+ c− ab− bc− ca =
−(t4 − 2t3 + 2t− 1)

t2
=
−(t− 1)3(t+ 1)

t2
,

we get

a2 + b2 + c2 − 3− 18(a+ b+ c− ab− bc− ca) =
(t− 1)2(2t− 1)2(t+ 1)(5t+ 1)

t4
≥ 0.

The equality holds for a = b = c = 1, and also for a = 4 and b = c = 1/2 (or any cyclic
permutation).

P 1.61. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

a21 + a22 + · · ·+ a2n − n ≥ 6
√

3

(
a1 + a2 + · · ·+ an −

1

a1
− 1

a2
− · · · − 1

an

)
.

Solution. Using the notation ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f(u) = e2u − 1− 6

√
3 (eu − e−u), u ∈ I = R.
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For u ≤ 0, we have
f ′′(u) = 4e2u + 6

√
3(e−u − eu) > 0,

hence f is convex on I≤s. By the LHCF-Theorem and Note 2, it suffices to show that H(x, y) ≥ 0
for x, y ∈ R so that x+ (n− 1)y = 0, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.

From
f ′(u) = 2e2u − 6

√
3 (eu + e−u),

we get

H(x, y) =
2(ex − ey)
x− y

(
ex + ey − 3

√
3 + 3

√
3 e−x−y

)
.

Since (ex − ey)/(x− y) > 0, we need to prove that

ex + ey + 3
√

3 e−x−y ≥ 3
√

3.

Indeed, by the AM-GM inequality, we have

ex + ey + 3
√

3 e−x−y ≥ 3
3

√
ex · ey · 3

√
3 e−x−y = 3

√
3.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1.

P 1.62. If a1, a2, . . . , an (n ≥ 4) are positive real numbers so that a1a2 · · · an = 1, then

(n− 1)(a21 + a22 + · · ·+ a2n) + n(n+ 3) ≥ (2n+ 2)(a1 + a2 + · · ·+ an).

Solution. Using the substitutions ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f(u) = (n− 1)e2u − (2n+ 2)eu, u ∈ I = R.

For u ≥ 0, we have

f ′′(u) = 4(n− 1)e2u − (2n+ 2)eu

= 2eu[2(n− 1)eu − n− 1]

≥ 2eu[2(n− 1)− n− 1] = 2(n− 3)eu > 0.

Therefore, f is convex on I≥s. By the RHCF-Theorem and Note 2, it suffices to show that
H(x, y) ≥ 0 for x, y ∈ R so that x+ (n− 1)y = 0, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.
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From
f ′(u) = 2(n− 1)e2u − (2n+ 2)eu,

we get

H(x, y) =
2(ex − ey)
x− y

[(n− 1)(ex + ey)− (n+ 1)] .

Since (ex − ey)/(x− y) > 0, we need to prove that (n− 1)(ex + ey) ≥ n+ 1. Using the AM-GM
inequality, we have

(n− 1)(ex + ey) = (n− 1)ex + ey + ey + · · ·+ ey

≥ n n
√

(n− 1)ex · ey · ey · · · ey

= n n

√
(n− 1)ex+(n−1)y = n n

√
n− 1.

Thus, it suffices to show that
n n
√
n− 1 ≥ n+ 1,

which is equivalent to

n− 1 ≥
(

1 +
1

n

)n

.

This is true for n ≥ 4, since

n− 1 ≥ 3 >

(
1 +

1

n

)n

.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1.

Remark. From the proof above, the following sharper inequality follows (Gabriel Dospinescu
and Calin Popa):

• If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

a21 + a22 + · · ·+ a2n − n ≥
2n n
√
n− 1

n− 1
(a1 + a2 + · · ·+ an − n).

P 1.63. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If p, q ≥ 0 so
that p+ q ≥ n− 1, then

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≥ n

1 + p+ q
.

(Vasile C., 2007)

Solution. Using the substitutions ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where

f(u) =
1

1 + peu + qe2u
, u ∈ I = R.
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For u ≥ 0, we have

f ′′(u) =
eu[4q2e3u + 3pqe2u + (p2 − 4q)eu − p]

(1 + peu + qe2u)3

≥ e2u[4q2 + 3pq + (p2 − 4q)− p]
(1 + peu + qe2u)3

=
e2u[(p+ 2q)(p+ q − 2) + 2q2 + p]

(1 + peu + qe2u)3
> 0,

therefore f is convex on I≥s. By the RHCF-Theorem, it suffices to prove the original inequality
for

a1 = 1/tn−1, a2 = · · · = an = t, t > 0.

Write this inequality as

t2n−2

t2n−2 + ptn−1 + q
+

n− 1

1 + pt+ qt2
≥ n

1 + p+ q
.

Applying the Cauchy-Schwarz inequality, it suffices to prove that

(tn−1 + n− 1)2

(t2n−2 + ptn−1 + q) + (n− 1)(1 + pt+ qt2)
≥ n

1 + p+ q
,

which is equivalent to
pB + qC ≥ A,

where
A = (n− 1)(tn−1 − 1)2 ≥ 0,

B = (tn−1 − 1)2 + nE =
A

n− 1
+ nE, E = tn−1 + n− 2− (n− 1)t,

C = (tn−1 − 1)2 + nF =
A

n− 1
+ nF, F = 2tn−1 + n− 3− (n− 1)t2.

By the AM-GM inequality applied to n − 1 positive numbers, we have E ≥ 0 and F ≥ 0 for
n ≥ 3. Since A ≥ 0 and p+ q ≥ n− 1, we have

pB + qC − A ≥ pB + qC − (p+ q)A

n− 1
= n(pE + qF ) ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

Remark 1. For p = 2k and q = k2, we get the following result:

• Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If k ≥
√
n − 1,

then
1

(1 + ka1)2
+

1

(1 + ka2)2
+ · · ·+ 1

(1 + kan)2
≥ n

(1 + k)2
,

with equality for a1 = a2 = · · · = an = 1.
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In addition, for n = 4 and k = 1, we get the known inequality (Vasile C., 1999):

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
+

1

(1 + d)2
≥ 1,

where a, b, c, d > 0 so that abcd = 1.

Remark 2. For p+ q = n− 1 (n ≥ 3), we get the beautiful inequality

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≥ 1,

which is a generalization of the following inequalities:

1

1 + (n− 1)a1
+

1

1 + (n− 1)a2
+ · · ·+ 1

1 + (n− 1)an
≥ 1,

1

[1 + (
√
n− 1)a1]2

+
1

[1 + (
√
n− 1)a1]2

+ · · ·+ 1

[1 + (
√
n− 1)a1]2

≥ 1,

1

2 + (n− 1)(a1 + a21)
+

1

2 + (n− 1)(a2 + a22)
+ · · ·+ 1

2 + (n− 1)(an + a2n)
≥ 1

2
.

P 1.64. Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are nonnegative real
numbers so that p+ q = 3, then

1

1 + pa+ qa3
+

1

1 + pb+ qb3
+

1

1 + pc+ qc3
+

1

1 + pd+ qd3
≥ 1.

(Vasile C., 2007)

Solution. Using the notation

a = ex, b = ey, c = ez, d = ew,

we need to show that

f(x) + f(y) + f(z) + f(w) ≥ 4f(s), s =
x+ y + z + w

4
= 0,

where

f(u) =
1

1 + peu + qe3u
, u ∈ I = R.

We will show that f ′′(u) > 0 for u ≥ 0, hence f is convex on I≥s. Since

f ′′(u) =
th(t)

(1 + pt+ qt3)3
,

where
h(t) = 9q2t5 + 2pqt3 − 9qt2 + p2t− p, t = eu,
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we need to show that h(t) ≥ 0 for t ≥ 1. Indeed, we have

h(t) ≥ 9q2t3 + 2pqt3 − 9qt2 + p2t− pt = tg(t),

where

g(t) = (9q2 + 2pq)t2 − 9qt+ p2 − p
≥ (9q2 + 2pq)(2t− 1)− 9qt+ p2 − p
= q(18q + 4p− 9)t− 9q2 − 2pq + p2 − p
≥ q(18q + 4p− 9)− 9q2 − 2pq + p2 − p
= p2 + 2pq + 9q2 − p− 9q

= p2 + 2pq + 9q2 − (p+ 9q)(p+ q)

3

=
2(p− q)2 + 16q2

3
≥ 0.

By the RHCF-Theorem, it suffices to prove the original inequality for

b = c = d = t, a = 1/t3, t > 0;

that is,
t9

t9 + pt6 + q
+

3

1 + pt+ qt3
≥ 1,

3

1 + pt+ qt3
≥ pt6 + q

t9 + pt6 + q
,

(3− pq)t9 − p2t7 + 2pt6 − q2t3 − pqt+ 2q ≥ 0,

[(p+ q)2 − 3pq]t9 − 3p2t7 + 2p(p+ q)t6 − 3q2t3 − 3pqt+ 2q(p+ q) ≥ 0,

Ap2 +Bq2 ≥ Cpq,

where

A = t9 − 3t7 + 2t6 = t6(t− 1)2(t+ 2) ≥ 0,

B = t9 − 3t3 + 2 = (t3 − 1)2(t3 + 2) ≥ 0,

C = t9 − 2t6 + 3t− 2.

Since A ≥ 0 and B ≥ 0, it suffices to consider the case C ≥ 0. Since

Ap2 +Bq2 ≥ 2
√
ABpq,

we only need to show that 4AB ≥ C2. From

t3 − 3t+ 2 = (t− 1)2(t+ 2) ≥ 0,

we get 3t− 2 ≤ t3. Therefore

C ≤ t9 − 2t6 + t3 = t3(t3 − 1)2,
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hence

4AB − C2 ≥ 4AB − t6(t3 − 1)4

= t6(t− 1)2(t3 − 1)2[4(t+ 2)(t3 + 2)− (t2 + t+ 1)2]

= t6(t− 1)2(t3 − 1)2(3t4 + 6t3 − 3t2 + 6t+ 15) ≥ 0.

The proof is completed. The inequality holds for a = b = c = d = 1.

Remark 1. For p = 1 and p = 2, we get the following nice inequalities:

1

1 + a+ 2a3
+

1

1 + b+ 2b3
+

1

1 + c+ 2c3
+

1

1 + d+ 2d3
≥ 1,

1

1 + 2a+ a3
+

1

1 + 2b+ b3
+

1

1 + 2c+ c3
+

1

1 + 2d+ d3
≥ 1.

Remark 2. Similarly, we can prove the following generalizations:

• Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are nonnegative real
numbers so that p+ q ≥ 3, then

1

1 + pa+ qa3
+

1

1 + pb+ qb3
+

1

1 + pc+ qc3
+

1

1 + pd+ qd3
≥ 4

1 + p+ q
.

• Let a1, a2, . . . , an (n ≥ 4) be positive real numbers so that a1a2 · · · an = 1. If p, q, r ≥ 0 so
that p+ q + r ≥ n− 1, then

n∑
i=1

1

1 + pai + qa2i + ra3i
≥ n

1 + p+ q + r
.

For n = 4 and p+ q + r = 3, we get the beautiful inequality

4∑
i=1

1

1 + pai + qa2i + ra3i
≥ 1.

Since

a2i ≤
ai + a3i

2
,

the best inequality with respect to q if for q = 0:

4∑
i=1

1

1 + pai + ra3i
≥ 1, p+ r = 3.

P 1.65. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1

1 + a1 + · · ·+ an−11

+
1

1 + a2 + · · ·+ an−12

+ · · ·+ 1

1 + an + · · ·+ an−1n

≥ 1.

(Vasile C., 2007)
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Solution. Using the substitution ai = exi for i = 1, 2, . . . , n, and denoting

f(u) =
1

1 + eu + · · ·+ e(n−1)u
, u ∈ R,

we need to show that
f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where s =
x1 + x2 + · · ·+ xn

n
= 0. In addition, by RHCF-Theorem, if f is convex for u ≥ s = 0,

then we only need to show that
f(x) + (n− 1)f(y) ≥ 1

for all x, y ∈ R so that x ≤ 0 ≤ y and x + (n− 1)y = 0. Denoting k = n− 1 and t = ey (hence
t ≥ 1), the inequality becomes

tk
2

1 + tk + · · ·+ tk2
+

k

1 + t+ · · ·+ tk
≥ 1. (*)

First, we will show by induction that f(u) is convex for u ≥ 0. Setting t = eu, the necessary and
sufficient condition f ′′(u) ≥ 0 for u ≥ 0 (hence t ≥ 1) is equivalent to

2A2 ≥ B(1 + C),

where

A = t+ 2t2 + · · ·+ (n− 1)tn−1, B = t+ 4t2 + · · ·+ (n− 1)2tn−1, C = t+ t2 + · · ·+ tn−1.

For n = 2, the inequality reduces to t(t− 1) ≥ 0, which is true. Assuming that the inequality is
true for n (where n ≥ 2), we will show that it is true for n+ 1. Using the induction hypothesis,
we need to show that 2A2 ≥ B(1 + C) involves

2(A+ ntn)2 ≥ (B + n2tn)(1 + C + tn),

which is equivalent to
2A2 −B(1 + C) + tn[n2(tn − 1) +D] ≥ 0,

where

D = 4nA−B − n2C =
n−1∑
i=1

bit
i, bi = 3n2 − (2n− i)2.

Since 2A2 −B(1 + C) ≥ 0, it suffices to show that D ≥ 0. Since

b1 < b2 < · · · < bn−1, t ≤ t2 ≤ · · · ≤ tn−1,

we may apply Chebyshev’s inequality to get

D ≥ 1

n
(b1 + b2 + · · ·+ bn−1)(t+ t2 + · · ·+ tn−1).

Thus, it suffices to show that b1 + b2 + · · ·+ bn−1 ≥ 0. Indeed,

b1 + b2 + · · ·+ bn−1 =
n−1∑
i=1

[3n2 − (2n− i)2] =
n(n− 1)(4n+ 1)

6
> 0.
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To finish the proof, we need to prove (*). For the nontrivial case t > 1, the inequality can be
written as follows:

k

1 + t+ · · ·+ tk
≥ 1 + tk + · · ·+ t(k−1)k

1 + tk + · · ·+ tk2
,

k(t− 1)

tk+1 − 1
≥ tk

2 − 1

tk − 1
· tk − 1

t(k+1)k − 1
, k

t(k+1)k − 1

tk+1 − 1
≥ tk

2 − 1

t− 1
,

k
[
1 + tk+1 + t2(k+1) + · · ·+ t(k−1)(k+1)

]
≥ tk − 1

t− 1
· t

k2 − 1

tk − 1
,

k
[
1 · 1 + t · tk + · · ·+ tk−1 · t(k−1)k

]
≥
(
1 + t+ · · ·+ tk−1

) [
1 + tk + · · ·+ t(k−1)k

]
.

Since 1 < t < · · · < tk−1 and 1 < tk < · · · < t(k−1)k, the last inequality follows from Chebyshev’s
inequality.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1.

Remark. Actually, the following generalization holds:

• Let a1, a2, . . . , an be positive numbers so that a1a2 · · · an = 1, and let k1, k2, . . . , km ≥ 0 so
that k1 + k2 + · · ·+ km ≥ n− 1. If m ≤ n− 1, then

n∑
i=1

1

1 + k1ai + k2a2i + · · ·+ kmami
≥ n

1 + k1 + k2 + · · ·+ km
.

In addition, since

aki ≤
(m− k)ai + (k − 1)ami

m− 1
, k = 2, 3, . . . ,m− 1

(by the AM-GM inequality applied to m− 1 positive numbers), the best inequality with respect
to k2, . . . , km−1 is for k2 = 0, . . . , km−1 = 0; that is,

n∑
i=1

1

1 + k1ai + kmami
≥ n

1 + k1 + km
, k1 + km ≥ n− 1, 1 ≤ m ≤ n− 1.

If k1 + km = n− 1, then

n∑
i=1

1

1 + k1ai + kmami
≥ 1, 1 ≤ m ≤ n− 1,

therefore
n∑

i=1

1

1 + k1ai + kn−1a
n−1
i

≥ 1, k1 + kn−1 = n− 1.

For k1 = 1 and k1 = n− 2, we get the following strong inequalities:

n∑
i=1

1

1 + ai + (n− 2)an−1i

≥ 1,

n∑
i=1

1

1 + (n− 2)ai + an−1i

≥ 1.
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P 1.66. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

k ≥ n2 − 1,

then
1√

1 + ka1
+

1√
1 + ka2

+ · · ·+ 1√
1 + kan

≥ n√
1 + k

.

Solution. Using the substitutions ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where

f(u) =
1√

1 + keu
, u ∈ I = R.

For u ≥ 0, we have

f ′′(u) =
keu(keu − 2)

4(1 + keu)5/2
≥ keu(k − 2)

4(1 + keu)5/2
> 0.

Therefore, f is convex on I≥s. By the RHCF-Theorem, it suffices to prove the original inequality
for

a1 = 1/tn−1, a2 = · · · = an = t, t ≥ 1.

Write this inequality as h(t) ≥ 0, where

h(t) =

√
tn−1

tn−1 + k
+

n− 1√
1 + kt

− n√
1 + k

.

The derivative

h′(t) =
(n− 1)kt(n−3)/2

2(tn−1 + k)3/2
− (n− 1)k

2(kt+ 1)3/2

has the same sign as
h1(t) = tn/3−1(kt+ 1)− tn−1 − k.

Denoting m = n/3 (m ≥ 2/3), we see that

h1(t) = ktm + tm−1 − t3m−1 − k = k(tm − 1)− tm−1(t2m − 1) = (tm − 1)h2(t),

where
h2(t) = k − tm−1 − t2m−1.

For t > 1, we have

h′2(t) = tm−2[−m+ 1− (2m− 1)tm] < tm−2[−m+ 1− (2m− 1)]

= −(3m− 2)tm−2 ≤ 0,

hence h2(t) is strictly decreasing for t ≥ 1. Since

h2(1) = k − 2 > 0, lim
t→∞

h2(t) = −∞,
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there exists t1 > 1 so that h2(t1) = 0, h2(t) > 0 for t ∈ [1, t1), h2(t) < 0 for t ∈ (t1,∞). Since
h2(t), h1(t) and h′(t) has the same sign for t > 1, h(t) is strictly increasing for t ∈ [1, t1] and
strictly decreasing for t ∈ [t1,∞); this yields

h(t) ≥ min{h(1), h(∞)}.

From h(1) = 0 and h(∞) = 1− n√
1 + k

≥ 0, it follows that h(t) ≥ 0 for all t ≥ 1. The proof is

completed. The equality holds for a1 = a2 = · · · = an = 1.

Remark. The following generalization holds (Vasile C., 2005):

• Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If k and m are positive
numbers so that

m ≤ n− 1, k ≥ n1/m − 1,

then
1

(1 + ka1)m
+

1

(1 + ka2)m
+ · · ·+ 1

(1 + kan)m
≥ n

(1 + k)m
,

with equality for a1 = a2 = · · · = an = 1.

For 0 < m ≤ n− 1 and k = n1/m − 1, we get the beautiful inequality

1

(1 + ka1)m
+

1

(1 + ka2)m
+ · · ·+ 1

(1 + kan)m
≥ 1.

P 1.67. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If p, q ≥ 0 so that

0 < p+ q ≤ 1

n− 1
, then

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≤ n

1 + p+ q
.

(Vasile C., 2007)

Solution. Using the notation ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where

f(u) =
−1

1 + peu + qe2u
, u ∈ I = R.

For u ≤ 0, we have

f ′′(u) =
eu[−4q2e3u − 3pqe2u + (4q − p2)eu + p]

(1 + peu + qe2u)3

=
e2u[−4q2e2u − 3pqeu + (4q − p2) + pe−u]

(1 + peu + qe2u)3

≥ e2u[−4q2 − 3pq + (4q − p2) + p]

(1 + peu + qe2u)3

=
e2u[(p+ 4q)(1− p− q) + 2pq]

(1 + peu + qe2u)3
≥ 0,
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therefore f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original inequality
for

a1 = 1/tn−1, a2 = · · · = an = t, t > 0.

Write this inequality as

t2n−2

t2n−2 + ptn−1 + q
+

n− 1

1 + pt+ qt2
≤ n

1 + p+ q
,

p2A+ q2B + pqC ≤ pD + qE,

where

A = tn−1(tn − nt+ n− 1), B = t2n − nt2 + n− 1,

C = t2n−1 + t2n − ntn+1 + (n− 1)tn−1 − nt+ n− 1,

D = tn−1[(n− 1)tn + 1− ntn−1], E = (n− 1)t2n + 1− nt2n−2.

Applying the AM-GM inequality to n positive numbers yields D ≥ 0 and E ≥ 0. Since (n −
1)(p+ q) ≤ 1 involves pD + qE ≥ (n− 1)(p+ q)(pD + qE), it suffices to show that

p2A+ q2B + pqC ≤ (n− 1)(p+ q)(pD + qE).

Write this inequality as

p2A1 + q2B1 + pqC1 ≥ 0,

where

A1 = (n− 1)D − A = ntn[(n− 2)tn−1 + 1− (n− 1)tn−2],

B1 = (n− 1)E −B = nt2[(n− 2)t2n−2 + 1− (n− 1)t2n−4],

C1 = (n− 1)(D + E)− C = nt[(n− 2)(t2n−1 + t2n−2)− 2(n− 1)t2n−3 + tn + 1].

Applying the AM-GM inequality to n − 1 nonnegative numbers yields A1 ≥ 0 and B1 ≥ 0. So,
it suffices to show that C1 ≥ 0. Indeed, we have

(n− 2)(t2n−1 + t2n−2)− 2(n− 1)t2n−3 + tn + 1 = A2 +B2 + C2,

where

A2 = (n− 2)t2n−1 + t− (n− 1)t2n−3 ≥ 0,

B2 = (n− 2)t2n−2 + tn−1 − (n− 1)t2n−3 ≥ 0,

C2 = tn − tn−1 − t+ 1 = (t− 1)(tn−1 − 1) ≥ 0.

The inequalities A2 ≥ 0 and B2 ≥ 0 follow by applying the AM-GM inequality to n− 1 nonneg-
ative numbers.

The equality holds for a1 = a2 = · · · = an = 1.

Remark 1. For p+ q =
1

n− 1
, we get the inequality

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≤ n− 1,
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which is a generalization of the following inequalities:

1

n− 1 + a1
+

1

n− 1 + a2
+ · · ·+ 1

n− 1 + an
≤ 1,

1

2n− 2 + a1 + a21
+

1

2n− 2 + a2 + a22
+ · · ·+ 1

2n− 2 + an + a2n
≤ 1

2
.

Remark 2. For

p =
4n− 3

2(n− 1)(2n− 1)
, q =

1

2(n− 1)(2n− 1)
,

we get the inequality

1

(a1 + 2n− 2)(a1 + 2n− 1)
+ · · ·+ 1

(an + 2n− 2)(an + 2n− 1)
≤ 1

4n− 2
,

which is equivalent to

1

a1 + 2n− 2
+ · · ·+ 1

an + 2n− 2
≤ 1

4n− 2
+

1

a1 + 2n− 1
+ · · ·+ 1

an + 2n− 1
.

Remark 3. For p = 2k and q = k2, we get the following statement:

• Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

0 < k ≤
√

n

n− 1
− 1,

then
1

(1 + ka1)2
+

1

(1 + ka2)2
+ · · ·+ 1

(1 + kan)2
≤ n

(1 + k)2
,

with equality for a1 = a2 = · · · = an = 1.

P 1.68. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If

0 < k ≤ 2n− 1

(n− 1)2
,

then
1√

1 + ka1
+

1√
1 + ka2

+ · · ·+ 1√
1 + kan

≤ n√
1 + k

.
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Solution. Using the substitutions ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where

f(u) =
−1√

1 + keu
, u ∈ I = R.

For u ≤ 0, we have

f ′′(u) =
keu(2− keu)

4(1 + keu)5/2
≥ keu(2− k)

4(1 + keu)5/2
> 0.

Therefore, f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original inequality
for

a1 = 1/tn−1, a2 = · · · = an = t. 0 < t ≤ 1.

Write this inequality as h(t) ≤ 0, where

h(t) =

√
tn−1

tn−1 + k
+

n− 1√
1 + kt

− n√
1 + k

.

The derivative

h′(t) =
(n− 1)kt(n−3)/2

2(tn−1 + k)3/2
− (n− 1)k

2(kt+ 1)3/2

has the same sign as
h1(t) = tn/3−1(kt+ 1)− tn−1 − k.

Denoting m = n/3, m ≥ 1, we see that

h1(t) = ktm + tm−1 − t3m−1 − k = −k(1− tm) + tm−1(1− t2m) = (1− tm)h2(t),

where
h2(t) = tm−1 + t2m−1 − k

is strictly increasing for t ∈ [0, 1]. There are two possible cases: h2(0) ≥ 0 and h2(0) < 0.

Case 1: h2(0) ≥ 0. This case is possible only for m = 1 and k ≤ 1, when h2(t) = t+1−k > 0 for
t ∈ (0, 1]. Also, we have h1(t) > 0 and h′(t) > 0 for t ∈ (0, 1). Therefore, h is strictly increasing
on [0, 1], hence h(t) ≤ h(1) = 0.

Case 2: h2(0) < 0. This case is possible for either m = 1 (n = 3) and 1 < k ≤ 5/4, or
m > 1 (n ≥ 4). Since h2(1) = 2− k > 0, there exists t1 ∈ (0, 1) so that h2(t1) = 0, h2(t) < 0 for
t ∈ (0, t1), and h2(t) > 0 for t ∈ (t1, 1). Since h′ has the same sign as h2 on (0, 1), it follows that h
is strictly decreasing on [0, t1] and strictly increasing on [t1, 1]. Therefore, h(t) ≤ max{h(0), h(1)}.
Since h(0) = n− 1− n√

1 + k
≤ 0 and h(1) = 0, we have h(t) ≤ 0 for all t ∈ (0, 1].

The equality holds for a1 = a2 = · · · = an = 1.

Remark. The following generalization holds (Vasile C., 2005):

• Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If k and m are
positive numbers so that

m ≥ 1

n− 1
, k ≤

(
n

n− 1

)1/m

− 1,
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then
1

(1 + ka1)m
+

1

(1 + ka2)m
+ · · ·+ 1

(1 + kan)m
≤ n

(1 + k)m
,

with equality for a1 = a2 = · · · = an = 1.

For n ≥ 3, m ≥ 1

n− 1
and k =

(
n

n− 1

)1/m

− 1, we get the beautiful inequality

1

(1 + ka1)m
+

1

(1 + ka2)m
+ · · ·+ 1

(1 + kan)m
≤ n− 1.

P 1.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then√
a41 +

2n− 1

(n− 1)2
+

√
a42 +

2n− 1

(n− 1)2
+ · · ·+

√
a4n +

2n− 1

(n− 1)2
≥ 1

n− 1
(a1 + a2 + · · ·+ an)2.

(Vasile C., 2006)

Solution. According to the preceding P 1.68, the following inequality holds∑ 1√
1 + 2n−1

(n−1)2a
−4
1

≤ n− 1.

On the other hand, by the Cauchy-Schwarz inequality∑ 1√
1 + 2n−1

(n−1)2a
−4
1

(∑ a21

√
1 +

2n− 1

(n− 1)2
a−41

)
≥
(∑

a1

)2
.

From these inequalities, we get

(n− 1)

(∑
a21

√
1 +

2n− 1

(n− 1)2
a−41

)
≥
(∑

a1

)2
,

which is the desired inequality.
The equality holds for a1 = a2 = · · · = an = 1.

P 1.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−11 + an−12 + · · ·+ an−1n + n(n− 2) ≥ (n− 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.
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Solution. Using the notation ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f(u) = e(n−1)u − (n− 1)e−u, u ∈ I = R.

For u ≥ 0, we have

f ′′(u) = (n− 1)2e(n−1)u − (n− 1)e−u = (n− 1)e−u[(n− 1)enu − 1] ≥ 0;

therefore, f is convex on I≥s. By the RHCF-Theorem and Note 2, it suffices to show that
H(x, y) ≥ 0 for x, y ∈ R so that x+ (n− 1)y = 0, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.

From
f ′(u) = (n− 1)[e(n−1)u + e−u],

we get

H(x, y) =
(n− 1)(ex − ey)

x− y
[
e(n−2)x + e(n−3)x+y + · · ·+ ex+(n−3)y + e(n−2)y − e−x−y

]
=

(n− 1)(ex − ey)
x− y

[
e(n−2)x + e(n−3)x+y + · · ·+ ex+(n−3)y)

]
.

Since (ex − ey)/(x− y) > 0, we have H(x, y) > 0.
The equality holds for a1 = a2 = · · · = an = 1.

P 1.71. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If k ≥ n, then

ak1 + ak2 + · · ·+ akn + kn ≥ (k + 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

(Vasile C., 2006)

Solution. Using the notations ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f(u) = eku − (k + 1)e−u, u ∈ I = R.

For u ≥ 0, we have

f ′′(u) = k2eku − (k + 1)e−u = e−u
[
k2e(k+1)u − k − 1

]
≥ e−u(k2 − k − 1) > 0;
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therefore, f is convex on I≥s. By the RHCF-Theorem, it suffices to to prove the original inequality
for a1 ≤ 1 ≤ a2 = · · · = an; that is, to show that

ak + (n− 1)bk − k + 1

a
− (k + 1)(n− 1)

b
+ kn ≥ 0

for
abn−1 = 1, 0 < a ≤ 1 ≤ b.

By the weighted AM-GM inequality, we have

ak + (kn− k − 1) ≥ [1 + (kn− k − 1)]a
k

1+(kn−k−1) =
k(n− 1)

b
.

Thus, we still have to show that

(n− 1)

(
bk − 1

b

)
− (k + 1)

(
1

a
− 1

)
≥ 0,

which is equivalent to h(b) ≥ 0 for b ≥ 1, where

h(b) = (n− 1)(bk+1 − 1)− (k + 1)(bn − b).

Since

h′(b)

k + 1
= (n− 1)bk − nbn−1 + 1 ≥ (n− 1)bn − nbn−1 + 1

= nbn−1(b− 1)− (bn − 1)

= (b− 1)
[
(bn−1 − bn−2) + (bn−1 − bn−3) + · · ·+ (bn−1 − 1)

]
≥ 0,

h is increasing on [1,∞), hence h(b) ≥ h(1) = 0. The proof is completed. The equality holds for
a1 = a2 = · · · = an = 1.

P 1.72. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then(
1− 1

n

)a1

+

(
1− 1

n

)a2

+ · · ·+
(

1− 1

n

)an

≤ n− 1.

(Vasile C., 2006)

Solution. Let
k =

n

n− 1
, k > 1,

and
m = ln k, 0 < m ≤ ln 2 < 1.

Using the substitutions ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,
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where

f(u) = −k−eu , u ∈ I = R.

From

f ′′(u) = meuk−e
u

(1−meu),

it follows that f ′′(u) > 0 for u ≤ 0, since

1−meu ≥ 1−m ≥ 1− ln 2 > 0.

Therefore, f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original inequality
for

a2 = · · · = an := t, a1 = t−n+1, 0 < t ≤ 1.

Write this inequality as

h(t) ≤ n− 1,

where

h(t) = k−t
−n+1

+ (n− 1)k−t, t ∈ (0, 1].

We have

h′(t) = (n− 1)mt−nk−t
−n+1

h1(t), h1(t) = 1− tnkt−n+1−t,

h′1(t) = kt
−n+1−th2(t), h2(t) = m(n− 1 + tn)− ntn−1.

Since

h′2(t) = ntn−2(mt− n+ 1) ≤ ntn−2(m− n+ 1) ≤ ntn−2(m− 1) < 0,

h2 is strictly decreasing on [0, 1]. From

h2(0) = (n− 1)m > 0, h2(1) = n(m− 1) < 0,

it follows that there is t1 ∈ (0, 1) so that h2(t1) = 0, h2(t) > 0 for t ∈ [0, t1) and h2(t) < 0 for
t ∈ (t1, 1]. Therefore, h1 is strictly increasing on (0, t1] and strictly decreasing on [t1, 1]. Since
h1(0+) = −∞ and h1(1) = 0, there is t2 ∈ (0, t1) so that h1(t2) = 0, h1(t) < 0 for t ∈ (0, t2),
h1(t) > 0 for t ∈ (t2, 1). Thus, h is strictly decreasing on (0, t2] and strictly increasing on [t2, 1].
Since h(0+) = n− 1 and h(1) = n− 1, we have h(t) ≤ n− 1 for all t ∈ (0, 1]. This completes the
proof. The equality holds for a1 = a2 = · · · = an = 1.

P 1.73. If a, b, c are positive real numbers so that abc = 1, then

1

1 +
√

1 + 3a
+

1

1 +
√

1 + 3b
+

1

1 +
√

1 + 3c
≤ 1.

(Vasile C., 2008)
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Solution. Write the inequality as

√
1 + 3a− 1

3a
+

√
1 + 3b− 1

3b
+

√
1 + 3c− 1

3c
≤ 1,

1

a
+

1

b
+

1

c
+ 3 ≥

√
1

a2
+

3

a
+

√
1

b2
+

3

b
+

√
1

c2
+

3

c
.

Replacing a, b, c by 1/a, 1/b, 1/c, respectively, we need to prove that abc = 1 involves

a+ b+ c+ 3 ≥
√
a2 + 3a+

√
b2 + 3b+

√
c2 + 3c. (*)

Using the notation
a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,

where
f(u) = eu −

√
e2u + 3eu, u ∈ I = R.

We have

f ′′(u) = t

[
1− 4t2 + 18t+ 9

4(t+ 3)
√
t(t+ 3)

]
, t = eu ≥ 1.

For u ≥ 0, which involves t ≥ 1, from

16t(t+ 3)3 − (4t2 + 18t+ 9)2 = 9(4t2 + 12t− 9) > 0,

it follows that f ′′ > 0, hence f is convex on I≥s. By the RHCF-Theorem, it suffices to prove the
inequality (*) for b = c. Thus, we need to show that

a−
√
a2 + 3a+ 2(b−

√
b2 + 3b ) + 3 ≥ 0

for ab2 = 1. Write this inequality as

2b3 + 3b2 + 1 ≥
√

3b2 + 1 + 2b2
√
b2 + 3b.

Squaring and dividing by b2, the inequality becomes

9b2 + 4b+ 3 ≥ 4
√

(b2 + 3b)(3b2 + 1).

Since
2
√

(b2 + 3b)(3b2 + 1) ≤ (b2 + 3b) + (3b2 + 1) = 4b2 + 3b+ 1,

it suffices to show that
9b2 + 4b+ 3 ≥ 2(4b2 + 3b+ 1),

which is equivalent to (b− 1)2 ≥ 0. The equality holds for a = b = c = 1.

Remark. In the same manner, we can prove the following generalization:
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• Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

0 < k ≤ 4n

(n− 1)2
,

then
1

1 +
√

1 + ka1
+

1

1 +
√

1 + ka2
+ · · ·+ 1

1 +
√

1 + kan
≤ n

1 +
√

1 + k
.

P 1.74. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1

1 +
√

1 + 4n(n− 1)a1
+

1

1 +
√

1 + 4n(n− 1)a2
+ · · ·+ 1

1 +
√

1 + 4n(n− 1)an
≥ 1

2
.

(Vasile C., 2008)

Solution. Denote
k = 4n(n− 1), k ≥ 8,

and write the inequality as follows:

√
1 + ka1 − 1

ka1
+

√
1 + ka2 − 1

ka2
+ · · ·+

√
1 + kan − 1

kan
≥ 1

2
,

√
1

a21
+
k

a1
+

√
1

a22
+
k

a2
+ · · ·+

√
1

a21
+
k

a1
≥ 1

a1
+

1

a2
+ · · ·+ 1

an
+
k

2
.

Replacing a1, a2, . . . , an by 1/a1, 1/a2, . . . , 1/an, we need to prove that a1a2 · · · an = 1 implies√
a21 + ka1 +

√
a22 + ka2 + · · ·+

√
a2n + kan ≥ a1 + a2 + · · ·+ an +

k

2
. (*)

Using the substitutions ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f(u) =

√
e2u + keu − eu, u ∈ I = R.

We will show that f ′′(u) > 0 for u ≤ 0. Indeed, denoting t = eu, t ∈ (0, 1], we have

f ′′(u) = t

[
4t2 + 6kt+ k2

4(t+ k)
√
t(t+ k)

− 1

]
> 0

because

(4t2 + 6kt+ k2)2 − 16t(t+ k)3 = k2(k2 − 4kt− 4t2) ≥ k2(k2 − 4k − 4) > 0.
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Thus, f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the inequality (*) for
a2 = a3 = · · · = an; that is, to show that

√
a2 + ka− a+ (n− 1)

(√
b2 + kb− b

)
≥ n

(√
1 + k − 1

)
,

for all positive a, b satisfying abn−1 = 1. Write this inequality as

√
kbn−1 + 1 + (n− 1)

√
kb2n−1 + b2n ≥ (n− 1)bn + 2n(n− 1)bn−1 + 1.

By Minkowski’s inequality, we have

√
kbn−1 + 1 + (n− 1)

√
kb2n−1 + b2n ≥

≥
√
kbn−1[1 + (n− 1)bn/2]2 + [1 + (n− 1)bn]2.

Thus, it suffices to show that

kbn−1[1 + (n− 1)bn/2]2 + [1 + (n− 1)bn]2 ≥ [(n− 1)bn + 2n(n− 1)bn−1 + 1]2,

which is equivalent to

4n(n− 1)2b
3n−2

2

[
2 + (n− 2)b

n
2 − nb

n−2
2

]
≥ 0.

This inequality follows immediately by the AM-GM inequality applied to n positive numbers.
The equality holds for a1 = a2 = · · · = an = 1.

P 1.75. If a, b, c are positive real numbers so that abc = 1, then

a6

1 + 2a5
+

b6

1 + 2b5
+

c6

1 + 2c5
≥ 1.

(Vasile C., 2008)

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,

where

f(u) =
e6u

1 + 2e5u
, u ∈ I = R.

For u ≤ 0, which involves w = eu ∈ (0, 1], we have

f ′′(u) =
2w6(2− w5)(9− 2w5)

(1 + 2w5)3
> 0.
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Therefore, f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original inequality
for b = c and ab2 = 1; that is,

1

b2(b10 + 2)
+

2b6

1 + 2b5
≥ 1.

Since
1 + 2b5 ≤ 1 + b4 + b6,

it suffices to show that
1

x(x5 + 2)
+

2x3

1 + x2 + x3
≥ 1, x =

√
b.

This inequality can be written as follows:

x3(x6 − x5 − x3 + 2x− 1) + (x− 1)2 ≥ 0,

x3(x− 1)2(x4 + x3 + x2 − 1) + (x− 1)2 ≥ 0,

(x− 1)2[x7 + x5 + (x6 − x3 + 1)] ≥ 0.

The equality holds for a = b = c = 1.

P 1.76. If a, b, c are positive real numbers so that abc = 1, then

√
25a2 + 144 +

√
25b2 + 144 +

√
25c2 + 144 ≤ 5(a+ b+ c) + 24.

(Vasile C., 2008)

Solution. Using the notation
a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,

where
f(u) = 5eu −

√
25e2u + 144, u ∈ R.

We will show that f(u) is convex for u ≤ 0. From

f ′′(u) = 5w

[
1− 5w(25w2 + 288)

(25w2 + 144)3/2

]
, w = eu ∈ (0, 1],

we need to show that
(25w2 + 144)3 ≥ 25w2(25w2 + 288)2.

Setting 25w2 = 144z, we have z ∈
(

0,
25

144

]
and

(25w2 + 144)3 − 25w2(25w2 + 288)2 = 1443(z + 1)3 − 1443z(z + 2)2

= 1443(1− z − z2) > 0.
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By the LHCF-Theorem, it suffices to prove the original inequality for

a = t2, b = c = 1/t, t > 0;

that is,
5t3 + 24t+ 10 ≥

√
25t6 + 144t2 + 2

√
25 + 144t2.

Squaring and dividing by 4t give

60t3 + 25t2 − 36t+ 120 ≥
√

(25t4 + 144)(144t2 + 25).

Squaring again and dividing by 120, the inequality becomes

25t5 − 36t4 + 105t3 − 112t2 − 72t+ 90 ≥ 0,

(t− 1)2(25t3 + 14t2 + 108t+ 90) ≥ 0.

The equality holds for a = b = c = 1.

P 1.77. If a, b, c are positive real numbers so that abc = 1, then

√
16a2 + 9 +

√
16b2 + 9 +

√
16c2 + 9 ≥ 4(a+ b+ c) + 3.

(Vasile C., 2008)

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,

where
f(u) =

√
16e2u + 9− 4eu, u ∈ R.

We will show that f(u) is convex for u ≥ 0. From

f ′′(u) = 4w

[
4w(16w2 + 18)

(16w2 + 9)3/2
− 1

]
, w = eu ≥ 1,

we need to show that
16w2(16w2 + 18)2 ≥ (16w2 + 9)3.

Setting 16w2 = 9z, we have z ≥ 16

9
and

16w2(16w2 + 18)2 − (16w2 + 9)3 = 729z(z + 2)2 − 729(z + 1)3

= 729(z2 + z − 1) > 0.
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By the RHCF-Theorem, it suffices to prove the original inequality for

a = t2, b = c = 1/t, t > 0;

that is, √
16t6 + 9t2 + 2

√
16 + 9t2 ≥ 4t3 + 3t+ 8.

Squaring and dividing by 4t give√
(16t4 + 9)(9t2 + 16) ≥ 6t3 + 16t2 − 9t+ 12.

Squaring again and dividing by 12t, the inequality becomes

9t5 − 16t4 + 9t3 + 12t2 − 32t+ 18 ≥ 0,

(t− 1)2(9t3 + 2t2 + 4t+ 18) ≥ 0.

The equality holds for a = b = c = 1.

P 1.78. If ABC is a triangle, then

sinA

(
2 sin

A

2
− 1

)
+ sinB

(
2 sin

B

2
− 1

)
+ sinC

(
2 sin

C

2
− 1

)
≥ 0.

(Lorian Saceanu, 2015)

Solution. Write the inequality as

f(A) + f(B) + f(C) ≥ 3f(s), s =
A+B + C

3
=
π

3
,

where

f(u) = sinu
(

2 sin
u

2
− 1
)

= cos
u

2
− cos

3u

2
− sinu, u ∈ I = [0, π].

We will show that f is convex on I≤s. Indeed, for u ∈ [0, π/3], we have

f ′′(u) = cos
u

2

(
2 + 2 sin

u

2
− 9 sin2 u

2

)
≥ cos

u

2

(
2 + 2 sin

u

2
− 12 sin2 u

2

)
= 2 cos

u

2

(
1 + 3 sin

u

2

)(
1− 2 sin

u

2

)
≥ 0.

By the LHCF-Theorem, it suffices to prove the original inequality for B = C, when it transforms
into

sin 2B(2 cosB − 1) + 2 sinB

(
2 sin

B

2
− 1

)
≥ 0,

sinB sin
B

2

(
sin

B

2
+ 1

)(
2 sin

B

2
− 1

)2

≥ 0.

The equality occurs for an equilateral triangle, and for a degenerate triangle with A = π and
B = C = 0 (or any cyclic permutation).
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Remark. Based on this inequality, we can prove the following statement:

• If ABC is a triangle, then

sin 2A(2 cosA− 1) + sin 2B(2 cosB − 1) + sin 2C(2 cosC − 1) ≥ 0,

with equality for an equilateral triangle, for a degenerate triangle with A = 0 and B = C = π/2
(or any cyclic permutation), and for a degenerate triangle with A = π and B = C = 0 (or any
cyclic permutation).

If ABC is an acute or right triangle, then this inequality follows by replacing A, B and C
with π − 2A, π − 2B and π − 2C in the inequality from P 1.78. Consider now that

A >
π

2
> B ≥ C ≥ 0.

The inequality is true for B ≤ π/3, because

sin 2A(2 cosA− 1) ≥ 0, sin 2B(2 cosB − 1) ≥ 0, sin 2C(2 cosC − 1) ≥ 0.

Consider further that
2π

3
> A >

π

2
> B >

π

3
> C ≥ 0.

From
1− 2 cosA > 1− 2 cosB,

it follows that
(− sin 2A)(1− 2 cosA) > (− sin 2A)(1− 2 cosB).

Therefore it suffices to

(− sin 2A)(1− 2 cosB) + sin 2B(2 cosB − 1) + sin 2C(2 cosC − 1) ≥ 0,

which is equivalent to

(sin 2A+ sin 2B)(2 cosB − 1) + sin 2C(2 cosC − 1) ≥ 0,

2 sinC cos(A−B)(2 cosB − 1) + 2 sinC cosC(2 cosC − 1) ≥ 0.

This inequality is true if

cos(A−B)(2 cosB − 1) + cosC(2 cosC − 1) ≥ 0,

which can be written as

cosC(2 cosC − 1) ≥ cos(A−B)(1− 2 cosB).

Since

C < A−B <
2π

3
− π

3
=
π

3
,

we have cosC > cos(A−B). Therefore, it suffices to show that

2 cosC − 1 ≥ 1− 2 cosB,

which is equivalent to
cosB + cosC ≥ 1.

From B + C < π/2, we get cosB > cos(π/2− C) = sinC, hence

cosB + cosC > sinC + cosC =
√

1 + sin 2C ≥ 1.
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P 1.79. If ABC is an acute or right triangle, then

sin 2A

(
1− 2 sin

A

2

)
+ sin 2B

(
1− 2 sin

B

2

)
+ sin 2C

(
1− 2 sin

C

2

)
≥ 0.

(Vasile C., 2015)

Solution. Write the inequality as

f(A) + f(B) + f(C) ≥ 3f(s), s =
A+B + C

3
=
π

3
,

where

f(u) = sin 2u
(

1− 2 sin
u

2

)
= sin 2u− cos

3u

2
+ cos

5u

2
, u ∈ I = [0, π/2].

We will show that f is convex on [s, π/2]. From

f ′′(u) = −4 sin 2u+
9

4
cos

3u

2
− 25

4
cos

5u

2

and

cos
3u

2
− cos

5u

2
= 2 sin

u

2
sin 2u ≥ 0,

we get

f ′′(u) ≥ −4 sin 2u+
9

4
cos

5u

2
− 25

4
cos

5u

2

= −4

[
sin 2u+ sin

π − 5u

2

]
= 8 sin

π − u
4

cos
5π − 9u

4
.

For π/3 ≤ u ≤ π/2, we have
π

8
≤ 5π − 9u

4
≤ π

2
,

hence f ′′(u) ≥ 0. By the RHCF-Theorem, it suffices to prove the original inequality for B = C,
0 ≤ B ≤ π/2, when it becomes

− sin 4B(1− 2 cosB) + 2 sin 2B

(
1− 2 sin

B

2

)
≥ 0,

2 sin 2B

[
cos 2B(2 cosB − 1) + 1− sin

B

2

]
≥ 0.

We need to show that

cos 2B(2 cosB − 1) + 1− sin
B

2
≥ 0,

which is equivalent to g(t) ≥ 0, where

g(t) = (1− 8t2 + 8t4)(1− 4t2) + 1− 2t, t = sin
B

2
, 0 ≤ t ≤ 1√

2
.

Indeed, we have
g(t) = 2(1− t)2(1 + 3t+ 2t2 − 4t3 − 4t4) ≥ 0
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because

1 + 3t+ 2t2 − 4t3 − 4t4 ≥ 1 + 3t+ 2t2 − 2t− 2t2 = 1 + t > 0.

The equality occurs for an equilateral triangle, for a degenerate triangle with A = 0 and
and B = C = π/2 (or any cyclic permutation), and for a degenerate triangle with A = π and
B = C = 0 (or any cyclic permutation).

Remark 1. Actually, the inequality holds also for an obtuse triangle ABC. To prove this,
consider that

A >
π

2
> B ≥ C ≥ 0.

The inequality is true for B ≤ π/3, because

sin 2A

(
1− 2 sin

A

2

)
≥ 0, sin 2B

(
1− 2 sin

B

2

)
≥ 0, sin 2C

(
1− 2 sin

C

2

)
≥ 0.

Consider further that
2π

3
> A >

π

2
> B >

π

3
> C ≥ 0.

From

2 sin
A

2
− 1 > 2 sin

B

2
− 1,

it follows that

(− sin 2A)

(
2 sin

A

2
− 1

)
> (− sin 2A)

(
2 sin

B

2
− 1

)
.

Therefore it suffices to

(− sin 2A)

(
2 sin

B

2
− 1

)
+ sin 2B

(
1− 2 sin

B

2

)
+ sin 2C

(
1− 2 sin

C

2

)
≥ 0,

which is equivalent to

(sin 2A+ sin 2B)

(
1− 2 sin

B

2

)
+ sin 2C

(
1− 2 sin

C

2

)
≥ 0,

2 sinC cos(A−B)

(
1− 2 sin

B

2

)
+ 2 sinC cosC

(
1− 2 sin

C

2

)
≥ 0.

This inequality is true if

cos(A−B)

(
1− 2 sin

B

2

)
+ cosC

(
1− 2 sin

C

2

)
≥ 0,

which can be written as

cosC

(
1− 2 sin

C

2

)
≥ cos(A−B)

(
2 sin

B

2
− 1

)
.

Since

C < A−B <
2π

3
− π

3
=
π

3
,
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we have cosC > cos(A−B). Therefore, it suffices to show that

1− 2 sin
C

2
≥ 2 sin

B

2
− 1,

which is equivalent to

sin
B

2
+ sin

C

2
≤ 1,

2 sin
B + C

4
cos

B − C
4

≤ 1.

This is true since

2 sin
B + C

4
< 2 sin

π

8
< 1, cos

B − C
4

< 1.

Remark 2. Replacing A, B and C in P 1.79 by π − 2A, π − 2B and π − 2C, respectively, we
get the following inequality for an acute or right triangle ABC:

sin 4A(2 cosA− 1) + sin 4B(2 cosB − 1) + sin 4C(2 cosC − 1) ≥ 0,

with equality for an equilateral triangle, for a triangle with A = π/2 and B = C = π/4 (or any
cyclic permutation), and for a degenerate triangle with A = 0 and and B = C = π/2 (or any
cyclic permutation).

P 1.80. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

a

a2 − a+ 4
+

b

b2 − b+ 4
+

c

c2 − c+ 4
+

d

d2 − d+ 4
≤ 1.

(Sqing, 2015)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
−u

u2 − u+ 4
, u ∈ R.

We see that

f(u)− f(2) =
(u− 2)2

3(u2 − u+ 4
≥ 0.

From

f ′′(u) =
2(−u3 + 12u− 4)

(u2 − u+ 4)3
,

it follows that f is convex on [1, 2]. Define the function

f0(u) =


f(u), u ≤ 2

f(2), u > 2
.
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Since f0(u) ≤ f(u) for u ∈ R and f0(1) = f(1), it suffices to show that

f0(a) + f0(b) + f0(c) + f0(d) ≥ 4f0(s).

The function f0 is convex on [1,∞) because it is differentiable on [1,∞) and its derivative

f ′0(u) =


f ′(u), u ≤ 2

0, u > 2

is continuous and increasing on [1,∞). Therefore, by the RHCF-Theorem, we only need to show
that f0(x) + 3f0(y) ≥ 4f0(1) for all x, y ∈ R so that x ≤ 1 ≤ y and x + 3y = 4. There are two
cases to consider: y ≤ 2 and y > 2.

Case 1: y ≤ 2. The inequality f0(x) + 3f0(y) ≥ 4f0(1) is equivalent to f(x) + 3f(y) ≥ 4f(1).
According to Note 1, this is true if h(x, y) ≥ 0 for x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
=

u− 4

4(u2 − u+ 4)
,

h(x, y) =
g(x)− g(y)

x− y
=

4(x+ y)− xy
4(x2 − x+ 4)(y2 − y + 4)

=
3(y − 2)2 + 4

4(x2 − x+ 4)(y2 − y + 4)
> 0.

Case 2: y > 2. From y > 2 and x+ 3y = 4, we get x < −2 and

f0(x) + 3f0(y)− 4f0(1) = f(x) + 3f(2)− 4f(1) =
−x

x2 − x+ 4
> 0.

The equality holds for a = b = c = d = 1.

P 1.81. Let a, b, c be nonnegative real numbers so that a+ b+ c = 2. If

k0 ≤ k ≤ 3, k0 =
ln 2

ln 3− ln 2
≈ 1.71,

then
ak(b+ c) + bk(c+ a) + ck(a+ b) ≤ 2.

Solution. Write the inequality as

f(a) + f(b) + f(c) ≤ 2,

where
f(u) = uk(2− u), u ∈ [0,∞).
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From
f ′′(u) = kuk−2[2k − 2− (k + 1)u],

it follows that f is convex on

[
0,

2k − 2

k + 1

]
and concave on

[
2k − 2

k + 1
, 2

]
. According to LCRCF-

Theorem, the sum f(a) + f(b) + f(c) is maximum when either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. We need to show that

bc(bk−1 + ck−1) ≤ 2

for b+ c = 2. Since 0 < (k − 1)/2 ≤ 1, Bernoulli’s inequality gives

bk−1 + ck−1 = (b2)(k−1)/2 + (c2)(k−1)/2 ≤ 1 +
k − 1

2
(b2 − 1) + 1 +

k − 1

2
(c2 − 1)

= 3− k +
k − 1

2
(b2 + c2).

Thus, it suffices to show that

(3− k)bc+
k − 1

2
bc(b2 + c2) ≤ 2.

Since

bc ≤
(
b+ c

2

)2

= 1,

we only need to show that

3− k +
k − 1

2
bc(b2 + c2) ≤ 2,

which is equivalent to
bc(b2 + c2) ≤ 2.

Indeed, we have

8[2− bc(b2 + c2)] = (b+ c)4 − 8bc(b2 + c2) = (b− c)4 ≥ 0.

Case 2: 0 < a ≤ b = c. We only need to prove the homogeneous inequality

ak(b+ c) + bk(c+ a) + ck(a+ b) ≤ 2

(
a+ b+ c

2

)k+1

for b = c = 1 and 0 < a ≤ 1; that is,(
1 +

a

2

)k+1

− ak − a− 1 ≥ 0.

Since
(

1 +
a

2

)k+1

is increasing and ak is decreasing with respect to k, it suffices consider the case

k = k0; that is, to prove that g(a) ≥ 0, where

g(a) =
(

1 +
a

2

)k0+1

− ak0 − a− 1, 0 < a ≤ 1.
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We have

g′(a) =
k0 + 1

2

(
1 +

a

2

)k0
− k0ak0−1 − 1,

1

k0
g′′(a) =

k0 + 1

4

(
1 +

a

2

)k0−1
− k0 − 1

a2−k0
.

Since g′′ is increasing on (0, 1], g′′(0+) = −∞ and

1

k0
g′′(1) =

k0 + 1

4

(
3

2

)k0−1

− k0 + 1 =
k0 + 1

3
− k0 + 1 =

2(2− k0)
3

> 0,

there exists a1 ∈ (0, 1) so that g′′(a1) = 0, g′′(a) < 0 for a ∈ (0, a1), g
′′(a) > 0 for a ∈ (a1, 1].

Therefore, g′ is strictly decreasing on [0, a1] and strictly increasing on [a1, 1]. Since

g′(0) =
k0 − 1

2
> 0, g′(1) =

k0 + 1

2

[
(3/2)k0 − 2

]
= 0,

there exists a2 ∈ (0, a1) so that g′(a2) = 0, g′(a) > 0 for a ∈ [0, a2), g
′(a) < 0 for a ∈ (a2, 1).

Thus, g is strictly increasing on [0, a2] and strictly decreasing on [a2, 1]. Consequently,

g(a) ≥ min{g(0), g(1)},

and from
g(0) = 0, g(1) = (3/2)k0+1 − 3 = 0,

we get g(a) ≥ 0.
The equality holds for a = 0 and b = c (or any cyclic permutation). If k = k0, then the

equality holds also for a = b = c.

P 1.82. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

(n+ 1)2
(

1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ 4(n+ 2)(a21 + a22 + · · ·+ a2n) + n(n2 − 3n− 6).

(Vasile C., 2006)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ n(n2 − 3n− 6),

where

f(u) =
(n+ 1)2

u
− 4(n+ 2)u2, u ∈ (0,∞).

From

f ′′(u) =
2(n+ 1)2

u3
− 8(n+ 2),

it follows that f is strictly convex on (0, c] and strictly concave on [c,∞), where

c = 3

√
(n+ 1)2

4(n+ 2)
.
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In addition, f(0+) = ∞. According to LCRCF-Theorem and Note 6, it suffices to consider the
case

a1 = a2 = · · · = an−1 = x, an = n− (n− 1)x, 0 < x ≤ 1,

when the inequality becomes as follows:

(n+ 1)2
(
n− 1

x
+

1

an

)
≥ 4(n+ 2)[(n− 1)x2 + a2n) + n(n2 − 3n− 6),

n(n− 1)(2x− 1)2[(n+ 2)(n− 1)x2 − (n+ 2)(2n− 1)x+ (n+ 1)2] ≥ 0.

The last inequality is true since

(n− 1)x2 − (2n− 1)x+
(n+ 1)2

n+ 2
= (n− 1)

(
x− 2n− 1

2n− 2

)2

+
3(n− 2)

4(n− 1)(n+ 2)
≥ 0.

The equality holds for

a1 = a2 = · · · = an−1 =
1

2
, an =

n+ 1

2

(or any cyclic permutation).

P 1.83. If a, b, c, d, e are positive real numbers such that a+ b+ c+ d+ e = 5, then

27(
1

a
+

1

b
+

1

c
+

1

d
+

1

e
) ≥ 4(a3 + b3 + c3 + d3 + e3) + 115.

(Vasile Cı̂rtoaje)

Proof. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where

f(u) =
27

u
− 4u3, 0 < u < 5.

From

f ′′(u) =
6(9− 4u4)

u3
,

it follows that f is convex on (0, 1]. According to LHCF-Theorem, it suffices to prove that

f(x) + 4f(y) ≥ 5f(1)

for x ≥ 1 ≥ y > 0 and x+ 4y = 5. This occurs if h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

Since

g(u) = −27

u
− 4(u2 + u+ 1),
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h(x, y) =
A(x, y)

xy
, A(x, y) = 27− 4xy(x+ y + 1),

we need show that A(x, y) ≥ 0. Indeed,

1

3
A(x, y) = 9− 4y(4y − 5)(y − 2) = 9− 40y + 52y2 − 16y3

= (1− 2y)2(9− 4y) ≥ 0.

The equality holds for a = b = c = d = e = 1, and for a = 3 and b = c = d = e = 1/2 (or any
cyclic permutation).

Generalization. If a1, a2, ..., an are positive real numbers such that

a1 + a2 + · · ·+ an = n,

then

(n+ 1)2(2n− 1)(
1

a1
+

1

a2
+ · · ·+ 1

an
− n) ≥ 27(n− 1)2(a31 + a32 + · · ·+ a3n − n),

with equality for a1 = a2 = · · · = an = 1, and for

a1 =
2n− 1

3
, a2 = · · · = an =

n+ 1

3(n− 1)

(or any cyclic permutation).

P 1.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 12, then

(a2 + 10)(b2 + 10)(c2 + 10) ≥ 13310.

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 2 ln 11 + ln 110,

where
f(u) = ln(u2 + 10), u ∈ [0, 12].

From

f ′′(u) =
2(10− u2)
(u2 + 10)2

,

it follows that f is convex on [0,
√

10] and concave on [
√

10, 12]. According to LCRCF-Theorem,
the sum f(a) + f(b) + f(c) is minimum when a = b ≤ c. Therefore, it suffices to prove that
g(a) ≥ 0, where

g(a) = 2f(a) + f(c)− 2 ln 11− ln 110, c = 12− 2a, a ∈ [0, 4].
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Since c′(a) = −2, we have

g′(a) = 2f ′(a)− 2f ′(c) = 4

(
a

a2 + 10
− c

c2 + 10

)
=

4(a− c)(10− ac)
(a2 + 10)(c2 + 10)

=
24(4− a)(5− a)(a− 1)

(a2 + 10)(c2 + 10)
.

Therefore, g′(a) < 0 for a ∈ [0, 1) and g′(a) > 0 for a ∈ (1, 4), hence g is strictly decreasing on
[0, 1] and strictly increasing on [1, 4]. Thus, we have

g(a) ≥ g(1) = 0.

The equality holds for a = b = 1 and c = 10 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = 2n(n − 1). If
k = (n− 1)(2n− 1), then

(a21 + k)(a22 + k) · · · (a2n + k) ≥ k(k + 1)n,

with equality for a1 = k and a2 = · · · = an = 1 (or any cyclic permutation).

P 1.85. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(a21 + 1)(a22 + 1) · · · (a2n + 1) ≥ (n2 − 2n+ 2)n

(n− 1)2n−2
.

(Vasile C., 2006)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ ln k, k =
(n2 − 2n+ 2)n

(n− 1)2n−2
,

where

f(u) = ln(u2 + 1), u ∈ [0, n].

From

f ′′(u) =
2(1− u2)
(u2 + 1)2

,

it follows that f is strictly convex on [0, 1] and strictly concave on [1, n]. According to LCRCF-
Theorem, it suffices to consider the case a1 = a2 = · · · = an−1 ≤ an; that is, to show that
g(x) ≥ 0, where

g(x) = (n− 1)f(x) + f(y)− ln k, y = n− (n− 1)x, x ∈ [0, 1].
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Since y′(x) = −(n− 1), we get

g′(x) = (n− 1)f ′(x)− (n− 1)f ′(y) = (n− 1)[f ′(x)− f ′(y)]

= 2(n− 1)

(
x

x2 + 1
− y

y2 + 1

)
=

2(n− 1)(x− y)(1− xy)

(x2 + 1)(y2 + 1)

=
2n(n− 1)(x− 1)2[(n− 1)x− 1]

(x2 + 1)(y2 + 1)
.

Therefore, g′(x) ≤ 0 for x ∈
[
0,

1

n− 1

]
and g′(x) ≥ 0 for x ∈

[
1

n− 1
, n

]
, hence g is decreasing

on

[
0,

1

n− 1

]
and increasing on

[
1

n− 1
, 1

]
. Since g

(
1

n− 1

)
= 0, the conclusion follows.

The equality holds for a1 = a2 = · · · = an−1 =
1

n− 1
and an = n− 1 (or any cyclic permuta-

tion).

P 1.86. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 2)(b2 + 2)(c2 + 2) ≤ 44.

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≤ ln 44,

where
f(u) = ln(u2 + 2), u ∈ [0, 3].

From

f ′′(u) =
2(2− u2)
(u2 + 2)2

,

it follows that f is strictly convex on [0,
√

2] and strictly concave on [
√

2, 3]. According to
LCRCF-Theorem, the sum f(a) + f(b) + f(c) is maximum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. We need to show that b+ c = 3 involves

(b2 + 2)(c2 + 2) ≤ 22,

which is equivalent to
bc(bc− 4) ≤ 0.

This is true because

bc ≤
(
b+ c

2

)2

=
9

4
< 4.

Case 2: 0 < a ≤ b = c. We need to show that a+ 2b = 3 (0 < a ≤ 1) involves

(a2 + 2)(b2 + 2)2 ≤ 44,
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which is equivalent to g(a) ≤ 0, where

g(a) = ln(a2 + 2) + 2 ln(b2 + 2)− ln 44, b =
3− a

2
, a ∈ (0, 1].

Since b′(a) = −1/2, we have

g′(a) =
2a

a2 + 2
− 2b

b2 + 2
=

2(a− b)(2− ab)
(a2 + 2)(b2 + 2)

=
3(a− 1)(a2 − 3a+ 4)

2(a2 + 2)(b2 + 2)
.

Because
a2 − 3a+ 4 = (a− 2)2 + a > 0,

we have g′(a) < 0 for a ∈ (0, 1), g is strictly decreasing on [0, 1], hence it suffices to show that
g(0) ≤ 0. This reduces to 16 · 22 ≥ 172, which is true because

16 · 22− 172 = 63 > 0.

The equality holds for a = b = 0 and c = 3 (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k ≥ 9

8
, then

(a2 + k)(b2 + k)(c2 + k) ≤ k2(k + 9),

with equality for a = b = 0 and c = 3 (or any cyclic permutation). If k = 9/8, then the equality
holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 1.87. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 1)(b2 + 1)(c2 + 1) ≤ 169

16
.

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≤ ln 169− ln 16,

where
f(u) = ln(u2 + 1), u ∈ [0, 3].

From

f ′′(u) =
2(1− u2)
(u2 + 1)2

,

it follows that f is strictly convex on [0, 1] and strictly concave on [1, 3]. According to LCRCF-
Theorem, it suffices to consider the cases a = 0 and 0 < a ≤ b = c.
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Case 1: a = 0. We need to show that b+ c = 3 involves

(b2 + 1)(c2 + 1) ≤ 169

16
,

which is equivalent to
(4bc+ 1)(4bc− 9) ≤ 0.

This is true because
4bc ≤ (b+ c)2 = 9.

Case 2: 0 < a ≤ b = c. We need to show that a+ 2b = 3 (0 < a ≤ 1) involves

(a2 + 1)(b2 + 1)2 ≤ 169

16
,

which is equivalent to g(a) ≤ 0, where

g(a) = ln(a2 + 1) + 2 ln(b2 + 1)− ln 169 + ln 16, b =
3− a

2
, a ∈ (0, 1].

Since b′(a) = −1/2, we have

g′(a) =
2a

a2 + 1
− 2b

b2 + 1
=

2(a− b)(1− ab)
(a2 + 1)(b2 + 1)

=
3(a− 1)2(a− 2)

2(a2 + 1)(b2 + 1)
≤ 0,

hence g is strictly decreasing. Consequently, we have

g(a) < g(0) = 0.

The equality holds for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 1.88. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(2a2 + 1)(2b2 + 1)(2c2 + 1) ≤ 121

4
.

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≤ ln 121− ln 4,

where
f(u) = ln(2u2 + 1), u ∈ [0, 3].

From

f ′′(u) =
4(1− 2u2)

(2u2 + 1)2
,
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it follows that f is strictly convex on [0, 1/
√

2] and strictly concave on [1/
√

2, 3]. By LCRCF-
Theorem, it suffices to consider the cases a = 0 and 0 < a ≤ b = c.

Case 1: a = 0. We need to show that b+ c = 3 involves

(2b2 + 1)(2c2 + 1) ≤ 121

4
,

which is equivalent to
(4bc+ 5)(4bc− 9) ≤ 0.

This is true because
4bc ≤ (b+ c)2 = 9.

Case 2: 0 < a ≤ b = c. We need to show that a+ 2b = 3 (0 < a ≤ 1) involves

(2a2 + 1)(2b2 + 1)2 ≤ 121

4
,

which is equivalent to g(a) ≤ 0, where

g(a) = ln(2a2 + 1) + 2 ln(2b2 + 1)− ln 121 + ln 4, b =
3− a

2
, a ∈ (0, 1].

Since b′(a) = −1/2, we have

g′(a) =
4a

2a2 + 1
− 4b

2b2 + 1
=

4(a− b)(1− 2ab)

(2a2 + 1)(2b2 + 1)

=
6(a− 1)(a2 − 3a+ 1)

(2a2 + 1)(2b2 + 1)

=
3(1− a)(3 +

√
5− 2a)(2a− 3 +

√
5)

2(2a2 + 1)(2b2 + 1)
,

hence g′

(
3−
√

5

2

)
= 0, g′(a) < 0 for a ∈

[
0,

3−
√

5

2

)
, g′(a) > 0 for a ∈

(
3−
√

5

2
, 1

)
.

Therefore, g is strictly decreasing on

[
0,

3−
√

5

2

]
and strictly increasing on

[
3−
√

5

2
, 1

]
. Since

g(0) = 0, it suffices to show that g(1) ≤ 0, which reduces to 27 · 4 ≤ 121.
The equality holds for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 1.89. If a, b, c are nonnegative real numbers so that a+ b+ c ≥ k0, where

k0 =
3

8

√
66 + 10

√
105 ≈ 4.867,

then

3
√

(a2 + 1)(b2 + 1)(c2 + 1) ≤
(
a+ b+ c

3

)2

+ 1.

(Vasile C., 2018)
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Solution. Consider first the case a+ b+ c = k0, and write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
=
k0
3
,

where

f(u) = − ln(u2 + 1), u ∈ [0, k0].

For u ∈ [s, k0], f(u) is convex because

f ′′(u) =
6(3u2 − 1)

(3u2 + 1)2
> 0.

By the RHCF-Theorem, we only need to show that

f(x) + 2f(y) ≥ 3f(s)

for 0 ≤ x ≤ s ≤ y so that x+ 2y = 3s; that is, to show that g(x) ≥ 0 for x ∈ [0, s], where

g(x) = f(x) + 2f(y)− 3f(s), y =
k0 − x

2
.

Since y′(x) = −1/3, we have

g′(x) = f ′(x) + 2y′f ′(y) =
−2x

x2 + 1
+

2y

y2 + 1

=
2(x− y)(xy − 1)

(x2 + 1)(y2 + 1)
=

3(s− x)(x2 − k0x+ 2)

2(x2 + 1)(y2 + 1)
.

Since g is increasing on [0, s1] and decreasing on [s1, s], where s1 =
k0 −

√
k20 − 8

2
, it suffices to

show that g(0) ≥ 0 and g(s) ≥ 0. These inequalities are true because g(0) = 0 and g(s) = 0.
The equality g(0) = 0 is equivalent to

3
√

(y2 + 1)2 =

(
2y

3

)2

+ 1,

where y =
k0
2

.

According to RHCF-Theorem, if the inequality

f(a) + f(b) + f(c) ≥ 3f

(
a+ b+ c

3

)
holds for a+ b+ c = k0, then it holds for a+ b+ c > k0, too.

The equality holds for a = b = c. In addition, for a+ b+ c = k0, the equality occurs again for
a = 0 and b = c = k0/2 (or any cyclic permutation).
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P 1.90. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(a2 + 3)(b2 + 3)(c2 + 3)(d2 + 3) ≤ 513.

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≤ ln 513,

where
f(u) = ln(u2 + 3), u ∈ [0, 4].

From

f ′′(u) =
2(3− u2)
(u2 + 3)2

,

it follows that f is strictly convex on [0,
√

3] and strictly concave on [
√

3, 4]. By LCRCF-Theorem,
it suffices to consider the cases a = 0 and 0 < a ≤ b = c.

Case 1: a = 0. We need to show that b+ c+ d = 4 involves

(b2 + 3)(c2 + 3)(d2 + 3) ≤ 171.

Substituting b, c, d by 4b/3, 4c/3, 4d/3, respectively, we need to show that b+ c+ d = 3 involves

(b2 + k)(c2 + k)(d2 + k) ≤ k2(k + 9),

where k = 27/16. According to Remark from the proof of P 1.86, this inequality holds for all
k ≥ 9/8.

Case 2: 0 < a ≤ b = c = d. We need to show that a+ 3b = 4 (0 < a ≤ 1) involves

(a2 + 3)(b2 + 3)3 ≤ 513,

which is equivalent to g(a) ≤ 0, where

g(a) = ln(a2 + 3) + 3 ln(b2 + 3)− ln 513, b =
4− a

3
, a ∈ (0, 1].

Since b′(a) = −1/3, we have

g′(a) =
2a

a2 + 3
− 2b

b2 + 3
=

2(a− b)(3− ab)
(a2 + 3)(b2 + 3)

=
8(a− 1)(a2 − 4a+ 9)

9(a2 + 3)(b2 + 3)
.

Because
a2 − 4a+ 9 = (a− 2)2 + 5 > 0,

we have g′(a) > 0 for a ∈ [0, 1), g is strictly decreasing on [0, 1], hence it suffices to show that
g(0) ≤ 0. This reduces to show that the original inequality holds for a = 0 and b = c = d = 4/3,
which follows immediately from the case 1.

The equality holds for a = b = c = 0 and d = 4 (or any cyclic permutation).
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P 1.91. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(a2 + 2)(b2 + 2)(c2 + 2)(d2 + 2) ≤ 144.

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≤ ln 144,

where
f(u) = ln(u2 + 2), u ∈ [0, 4].

From

f ′′(u) =
2(2− u2)
(u2 + 2)2

,

it follows that f is strictly convex on [0,
√

2] and strictly concave on [
√

2, 4]. By LCRCF-Theorem,
it suffices to consider the cases a = 0 and 0 < a ≤ b = c.

Case 1: a = 0. We need to show that b+ c+ d = 4 involves

(b2 + 2)(c2 + 2)(d2 + 2) ≤ 72.

Substituting b, c, d by 4b/3, 4c/3, 4d/3, respectively, we need to show that b+ c+ d = 3 involves

(8b2 + 9)(8c2 + 9)(8d2 + 9) ≤ 94.

This is true according to Remark from the proof of P 1.86.

Case 2: 0 < a ≤ b = c = d. We need to show that a+ 3b = 4 (0 < a ≤ 1) involves

(a2 + 2)(b2 + 2)3 ≤ 144,

which is equivalent to g(a) ≤ 0, where

g(a) = ln(a2 + 2) + 3 ln(b2 + 2)− ln 144, b =
4− a

3
, a ∈ (0, 1].

Since b′(a) = −1/3, we have

g′(a) =
2a

a2 + 2
− 2b

b2 + 2
=

2(a− b)(2− ab)
(a2 + 2)(b2 + 2)

=
8(a− 1)(a2 − 4a+ 6)

9(a2 + 2)(b2 + 2)
.

Because
a2 − 4a+ 6 = (a− 2)2 + 2 > 0,

we have g′(a) > 0 for a ∈ [0, 1), g is strictly decreasing on [0, 1], hence it suffices to show that
g(0) ≤ 0. This reduces to show that the original inequality holds for a = 0 and b = c = d = 4/3,
which follows immediately from the case 1.

The equality holds for a = b = c = 0 and d = 4 (or any cyclic permutation), and also for
a = b = 0 and c = d = 2 (or any permutation).
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P 1.92. If a, b, c, d are nonnegative real numbers such that

a+ b+ c+ d = 4,

then
a

3a3 + 2
+

b

3b3 + 2
+

c

3c3 + 2
+

d

3d3 + 2
≤ 4

5
.

(Vasile Cı̂rtoaje, 2019)

Solution. Consider the function

f(u) =
−u

3u3 + 2
: I = [0, 4].

Since

f ′′(u) =
18u2(4− 3u3)

(3u3 + 2)3

is positive for u ∈ [0, 1], f is left convex on I≤1. According to LHCF-Theorem and Note 1, it is
enough to show that h(x, y) ≥ 0 for x, y ∈ [0, 4] such that x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
=

3u2 + 3u− 2

3u3 + 2
,

h(x, y) =
g(x)− g(y)

x− y
=

2F (x, y)

(3x3 + 2)(3y3 + 2)
,

where

F (x, y) = 2(x2 + xy + y2) + 2(x+ y) + 2− 3x2y2 − 3xy(x+ y).

From

4 = x+ 3y ≥ 2
√

3xy,

we get 3xy ≤ 4. Thus, we have

F (x, y) ≥ 2(x2 + xy + y2) + 2(x+ y) + 2− 4xy − 4(x+ y) = 26(y − 1)2 ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1.

P 1.93. If a, b, c, d are positive real numbers such that

1

9a+ 2
+

1

9b+ 2
+

1

9c+ 2
+

1

9d+ 2
=

4

11
,

then

3(a+ b+ c+ d) + 20 ≥ 8

(
1

a
+

1

b
+

1

c
+

1

d

)
.

(V. Cı̂rtoaje, 2021)
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Solution. Using the substitution

1

9a+ 2
=
a1
11

,
1

9b+ 2
=
a2
11

, . . . ,

that is

a =
1

9

(
11

a1
− 2

)
, b =

1

9

(
11

a2
− 2

)
, . . . ,

the required inequality can be written as

f(a1) + f(a2) + f(a3) + f(a4) ≥ 4f(s), s =
a1 + a2 + a3 + a4

4
= 1,

where

f(u) =
11

u
− 216u

11− 2u
, u ∈

(
0,

11

2

)
,

with
1

22
f ′′(u) =

1

u3
− 432

(11− 2u)3
.

For u ∈ (0, 1], we have
1

u3
− 432

(11− 2u)3
≥ 1− 432

93
> 0,

therefore f is convex on (0, s]. By the LHCF-Theorem, it suffices to show that

f(x) + 3f(y) ≥ 4f(1),

where x+ 3y = 4. According to Note 1, this is true if h(x, y) ≥ 0 for x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
= 11

(
−1

u
− 24

11− 2u

)
,

h(x, y) =
g(x)− g(y)

x− y
= 11

[
1

xy
− 48

(11− 2x)(11− 2y)

]
=

121[11− 21(x+ y)− 4xy]

xy(11− 2x)(11− 2y)
=

363(2y − 1)2

xy(11− 2x)(11− 2y)
≥ 0.

We have f(a1) + f(a2) + f(a3) + f(a4) = 4f(1) for a1 = a2 = a3 = a4 = 1, and for a1 =
5

2
and

a2 = a3 = a4 =
1

2
(or any cyclic permutation). Therefore, the original inequality is an equality

for a = b = c = d = 1, and also for a =
4

15
and b = c = d =

20

9
(or any cyclic permutation).

P 1.94. If a1, a2, ..., an are nonnegative real numbers such that a1 + a2 + · · ·+ an = 1, then

a31 + a32 + · · ·+ a3n ≤
1

8
+ a41 + a42 + · · ·+ a4n.

(Vasile C., 2018)



136 Vasile Ĉırtoaje

Solution. We use the induction method. For n = 2, denoting

a1a2 = p, p ≤ 1/4,

we have

a31 + a32 = (a1 + a2)
3 − 3a1a2(a1 + a2) = 1− 3p,

a41 + a42 = (a21 + a22)
2 − 2a21a

2
2 = 2p2 − 4p+ 1,

and the inequality is equivalent to

(4p− 1)2 ≥ 0.

Consider further that n ≥ 3, a1 ≤ a2 ≤ · · · ≤ an, and write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≤ 1

8
,

where

f(u) = u3 − u4, u ∈ [0, 1].

From

f ′′(u) = 6u(1− 2u),

it follows that f is strictly convex on [0, 1/2] and strictly concave on [1/2, 1]. By LCRCF-
Theorem, it suffices to consider the cases a1 = 0 and 0 < a1 ≤ a2 = · · · = an.

Case 1: a1 = 0. The inequality follows by the induction hypothesis.
Case 2: 0 < a1 ≤ a2 = · · · = an. We only need to prove the homogeneous inequality

8(a41 + a42 + · · ·+ a4n) + (a1 + a2 + · · ·+ an)4 ≥ 8(a1 + a2 + · · ·+ an)(a31 + a32 + · · ·+ a3n)

for a1 = x and a2 = · · · = an−1 = 1, that is

8(x4 + n− 1) + (x+ n− 1)4 ≥ 8(x+ n− 1)(x3 + n− 1),

x4 − 4(n− 1)x3 + 6(n− 1)2x2 + 4(n− 1)(n2 − 2n− 1)x+ (n− 3)(n− 1)(n2 − 5) ≥ 0,

x2(x− 2n+ 2)2 + 2(n− 1)2x2 + 4(n− 1)(n2 − 2n− 1)x+ (n− 3)(n− 1)(n2 − 5) ≥ 0.

The equality holds for a1 = · · · = an−2 = 0 and an−1 = an = 1/2 (or any permutation).

P 1.95. If a1, a2, . . . , an (n ≥ 4) are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then

n(n− 1)(2n− 1)
n∑

i=1

1

ai + n− 1
≥ a21 + a22 + · · ·+ a2n + n2(2n− 3).

(Vasile C., 2018)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
n(n− 1)(2n− 1)

u+ n− 1
− u2, u ∈ [0, n].

For u ≤ 1, we have

1

2
f ′′(u) =

n(n− 1)(2n− 1)

(u+ n− 1)3
− 1 ≥ (n− 1)(2n− 1)

n2
=
n2 − 3n+ 1

n2
> 0,

therefore f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that

f(x) + (n− 1)f(y) ≥ nf(1),

where x ≥ 1 ≥ y and x+ (n− 1)y = n. Write this inequality as follows:

n(n− 1)(2n− 1)

(
1

x+ n− 1
+

n− 1

y + n− 1
− 1

)
− [x2 + (n− 1)y2 − n] ≥ 0,

n(n− 1)2(2n− 1)(y − 1)2

[2n− 1− (n− 1)y](y + n− 1)
− n(n− 1)(y − 1)2 ≥ 0,

n(n− 1)y(y − 1)2[(n− 1)y + n2 − 4n+ 2] ≥ 0.

Clearly, the last inequality is true for n ≥ 4.
The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 = 0, an = n

(or any cyclic permutation).

Remark. The inequality is equivalent to

(2n− 1)
n∑

i=1

1

ai + n− 1
+

2

n(n− 1)

∑
1≤i<j≤n

aiaj ≥ 2n.

P 1.96. If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then

n(n2 − n+ 1)
n∑

i=1

1

ai + n− 1
≤ a21 + a22 + · · ·+ a2n + n2(n− 1).

(Vasile C. and L. Giugiuc, 2021)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = u2 − n(n2 − n+ 1)

u+ n− 1
, u ∈ [0, n].

For u ≥ 1, we have

1

2
f ′′(u) = 1− n(n2 − n+ 1)

(u+ n− 1)3
≥ 1− n2 − n+ 1

n2
=
n− 1

n2
> 0,

therefore f is convex on [s, n]. By the RHCF-Theorem, it suffices to show that

f(x) + (n− 1)f(y) ≥ nf(1),

where
x+ (n− 1)y = n, x ≤ 1 ≤ y ≤ n

n− 1
.

Write this inequality as follows:

x2 + (n− 1)y2 − n− n(n2 − n+ 1)

(
1

x+ n− 1
+

n− 1

y + n− 1
− 1

)
≥ 0,

n(n− 1)(y − 1)2 − n(n− 1)(n2 − n+ 1)(y − 1)2

[2n− 1− (n− 1)y](y + n− 1)
≥ 0,

n(n− 1)(y − 1)2[n− (n− 1)y](y + n− 2) ≥ 0.

Clearly, the last inequality is true.
The equality occurs for a1 = a2 = · · · = an = 1, and also for a1 = 0 and a2 = a3 = · · · = an =
n

n− 1
(or any cyclic permutation).

Remark. The inequality is equivalent to

(n2 − n+ 1)
n∑

i=1

1

ai + n− 1
+

2

n

∑
1≤i<j≤n

aiaj ≤ n2.

P 1.97. If a1, a2, . . . , an (n ≥ 4) are nonnegative real numbers such that

1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
≥ 1,

then

a21 + a22 + · · ·+ a2n − n ≥
n2 − n− 1

n− 2
(a1 + a2 + · · ·+ an − n).

(L. Giugiuc and V. Cı̂rtoaje, 2021)
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Solution. Using the substitution

1

ai + n− 1
=
xi
n
, i = 1, 2, . . . , n,

that is
ai =

n

xi
− n+ 1, 0 < xi ≤

n

n− 1
, i = 1, 2, . . . , n,

the required inequality can be written as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s), s =
x1 + x2 + · · ·+ xn

n
= 1,

where

f(u) =
n

u2
− 3n2 − 7n+ 3

(n− 2)u
, u ∈

(
0,

n

n− 1

]
,

with
1

2
f ′′(u) =

1

u4

(
3n− 3n2 − 7n+ 3

n− 2
u

)
.

For u ∈ (0, 1], we have

3n− 3n2 − 7n+ 3

n− 2
u ≥ 3n− 3n2 − 7n+ 3

n− 2
=
n− 3

n− 2
> 0,

therefore f is convex on (0, s]. By the LHCF-Theorem, it suffices to show that

f(x) + (n− 1)f(y) ≥ nf(1),

where

x+ (n− 1)y = n, y =
n− x
n− 1

,
n

n− 1
≥ x ≥ 1 ≥ y > 0.

Write this inequality as follows:

n

(
1

x2
+
n− 1

y2
− n

)
− 3n2 − 7n+ 3

n− 2

(
1

x
+
n− 1

y
− n

)
≥ 0,

n2(x− 1)2[n+ 2(n− 1)x− x2]
x2(n− x)2

− n(3n2 − 7n+ 3)(x− 1)2

(n− 2)x(n− x)
≥ 0.

The inequality is true if

n[n+ 2(n− 1)x− x2]
x(n− x)

− 3n2 − 7n+ 3

n− 2
≥ 0,

which is equivalent to
[n− (n− 1)x][n(n− 2)− (2n− 3)x] ≥ 0.

It is true for n ≥ 4 since

n(n− 2)− (2n− 3)x ≥ n(n− 2)− n(2n− 3)

n− 1
=
n2 − 5n+ 5

n− 1
> 0.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
n− 1

n− 2
and an = 0 (or any cyclic permutation).
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P 1.98. Let a, b, c be nonnegative real numbers, no two of which are zero, and

x =
2a

b+ c
, y =

2b

c+ a
, z =

2c

a+ b
.

Prove that
1√

5x+ 4
+

1√
5y + 4

+
1√

5z + 4
≥ 1.

(V. Cı̂rtoaje, 2021)

Solution. Due to homogeneity, we may assume a+ b+ c = 3, when

x =
2a

3− a
, y =

2b

3− b
, z =

2c

3− c
.

Thus, we need to show that
f(a) + f(b) + f(c) ≥ 3f(s),

where

s =
a+ b+ c

3
= 1

and

f(u) =

√
3− u
2 + u

, u ∈ [0, 3).

From

f ′′(u) =
5(7− 4u)

4
√

(2 + u)5(3− u)3
,

it follows that f is convex on [0, s]. By the LHCF-Theorem, it suffices to consider the case where
two of a, b, c are equal. Due to homogeneity, we may set b = c = 1, when

x = a, y = z =
2

a+ 1
.

So, we need to show that
1√

5a+ 4
+ 2

√
a+ 1

4a+ 14
≥ 1.

Using the substitution

5a+ 4 = 9t2, t ≥ 2

3
,

the inequality becomes

1

3t
+

1

3

√
2(9t2 + 1)

2t2 + 3
≥ 1,√

2(9t2 + 1)

2t2 + 3
≥ 3t− 1

t
.

By squaring, the inequality becomes

4t3 − 9t2 + 6t− 1 ≥ 0,

(t− 1)2(4t− 1) ≥ 0.

The equality occurs for a = b = c.
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P 1.99. If a, b, c, d are positive real numbers such that abcd = 1, then

a3 + b3 + c3 + d3 + 4 ≥ 2(a2 + b2 + c2 + d2).

(V. Cı̂rtoaje, 2021)

Solution. Using the substitutions

a = ex, b = ey, c = ez, d = ew,

we need to show that

f(x) + f(y) + f(z) + f(w) ≥ 4f(s), s =
x+ y + z + w

4
= 0,

where
f(u) = e3u − 2e2u, u ∈ R.

For u ≥ 0, we have
f ′′(u) = e2u(9eu − 8) > 0,

hence f is convex for u ≥ 0. By the RHCF-Theorem and Note 2, it suffices to show that
H(x, y) ≥ 0 for x, y ∈ R so that x+ 3y = 0, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.

From
f ′(u) = 3e3u − 4e2u,

we get

H(x, y) =
ex − ey

x− y
·
[
3(e2x + ex+y + e2y)− 4(ex + ey)

]
.

Since (ex − ey)/(x− y) > 0, we need to prove that

3(e2x + ex+y + e2y)− 4(ex + ey) ≥ 0

for x+ 3y = 0. This is true if

3(a2 + ab+ b2)− 4(a+ b) ≥ 0

for ab3 = 1, a, b > 0. The inequality is equivalent to

3(b8 + b4 + 1)− 4b3(b4 + 1) ≥ 0,

3b8 ≥ (b4 + 1)(4b3 − 3).

Since
4b3 ≤ 2b4 + 2b2,

it suffices to show that
3b8 ≥ (b4 + 1)(2b4 + 2b2 − 3).
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Denoting b2 = x, the inequality becomes

3x4 ≥ (x2 + 1)(2x2 + 2x− 3),

x4 − 2x3 + x2 − 2x+ 3 ≥ 0,

x2(x− 1)2 − 2x+ 3 ≥ 0.

For x ≤ 1, we have

x2(x− 1)2 − 2x+ 3 ≥ −2x+ 3 > 0,

and for x ≥ 1, we have

x2(x− 1)2 − 2x+ 3 ≥ (x− 1)2 − 2x+ 3 = (x− 2)2 ≥ 0.

The equality occurs for a = b = c = d = 1.

P 1.100. If a, b, c, d ∈ [−1, 1] such that a+ b+ c+ d = 1, then

−1

9
≤ a3 + b3 + c3 + d3 ≤ 7

4
.

(V. Cı̂rtoaje, 2021)

Solution. We will apply LCRCF-Theorem to f(x) = −x3, which is convex on [−1, 0] and
concave on [0, 1]. In addition, assume that a ≤ b ≤ c ≤ d.

I. Write the right inequality as f(a) + f(b) + f(c) + f(d) ≥ −7

4
. According to Note 7, it

suffices to consider the cases d = 1 and a = b = c ≤ d.

Case 1: d = 1. We need to show that a3 + b3 + c3 ≤ 3

4
for a+ b+ c = 0. Since

a+ b = −c ∈ [−1, 0],

we have

3

4
− a3 − b3 − c3 =

3

4
− a3 − b3 + (a+ b)3 =

3

4
+ 3ab(a+ b) ≥ 3

4
+

3

4
(a+ b)3 ≥ 3

4
− 3

4
= 0.

Case 2: a = b = c ≤ d. We need to show that 3a3 + d3 ≤ 7

4
for 3a + d = 1. We have

3a = 1− d ≥ 0, hence

7

4
− 3a3 − d3 =

7

4
− 3a3 − (1− 3a)3 = 24a3 − 27a2 + 9a+

3

4
> 3a(8a2 − 9a+ 3) ≥ 0.

The equality occurs for a = b =
−1

2
and c = d = 1 (or any permutation).
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II. Write the left inequality as f(a)+f(b)+f(c)+f(d) ≤ 1

9
. According to LCRCF-Theorem,

it suffices to consider the cases a = −1 and a ≤ b = c = d.

Case 1: a = −1. We need to show that b3 + c3 + d3 ≥ 8

9
for b + c + d = 2. According to

LCRCF-Theorem, it suffices to consider the cases b = −1 and b ≤ c = d. For b = −1, we get

c+ d = 3, which is not possible. For b ≤ c = d, we need to show that b3 + 2c3 ≥ 8

9
for b+ 2c = 2.

We have b = 2(1− c), hence

b3 + 2c3 − 8

9
= 8(1− c)3 + 2c3 − 8

9
=

2

9
(32− 108c+ 108c2 − 27c3) =

2

9
(2− 3c)2(8− 3c) ≥ 0.

Case 2: a ≤ b = c = d. We need to show that a3 + 3b3 +
1

9
≥ 0 for a + 3b = 1. From

1 = a+ 3b ≤ 4b and 3b = 1− a ≤ 2, we have
1

4
≤ b ≤ 2

3
, hence

a3 + 3b3 +
1

9
= (1− 3b)3 + 3b3 +

1

9
=

1

9
(10− 81b+ 243b2 − 216b3) =

1

9
(2− 3b)(5− 33b+ 72b2)

≥ 1

9
(2− 3b)(4− 34b+ 72b2) =

2

9
(2− 3b)(4b− 1)(9b− 2) ≥ 0.

The equality occurs for a = −1 and b = c = d =
2

3
(or any permutation).

P 1.101. Prove that
19

4
is the minimum positive value of the constant k such that

3

√
b+ c

ka+ b+ c
+ 3

√
c+ a

kb+ c+ a
+

3

√
a+ b

kc+ a+ b
≥ 3 3

√
2

k + 2

holds for any nonnegative real numbers a, b, c with a+ b+ c > 0.

(V. Cı̂rtoaje, 2024)

Solution. For b = c = 0, the inequality becomes 2 ≥ 3 3

√
2

k + 2
, which is equivalent to k ≥ 19

4
.

To show that
19

4
is the minimum value of the constant k, we need to prove the inequality

3

√
b+ c

19a+ 4b+ 4c
+ 3

√
c+ a

19b+ 4c+ 4a
+

3

√
a+ b

19c+ 4a+ 4b
≥ 3
√

2.

Due to homogeneity, we may assume that a+ b+ c = 3. Thus, we need to show that

f(a) + f(b) + f(c) ≥ 3f(s),

where

s =
a+ b+ c

3
= 1
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and

f(u) = 3

√
3− u
4 + 5u

, u ∈ [0, 3].

From

f ′′(u) =
38(26− 15u)

3(4 + 5u)7/3(3− u)5/3
,

it follows that f is convex on [0, s]. By the LHCF-Theorem, it suffices to consider the case where
a ≥ b = c. Due to homogeneity, we may set a = 1, hence b = c := x ≤ 1. So, we need to show
that

3

√
2x

8x+ 19
+ 2 3

√
x+ 1

23x+ 4
≥ 3
√

2.

Denoting

t = 3

√
27x

8x+ 19
≤ 1,

the inequality becomes

t+
3

√
4(11t3 + 27)

15t3 + 4
≥ 3,

4(11t3 + 27)

15t3 + 4
≥ (3− t)3,

t(5t5 − 45t4 + 135t3 − 119t2 − 12t+ 36) ≥ 0,

t(t− 1)2(5t3 − 35t2 + 60t+ 36) ≥ 0.

It is true because
5t3 − 35t2 + 60t+ 36 > 35t(1− t) ≥ 0.

The equality occurs for a = b = c, and also for b = c = 0, or c = a = 0, or a = b = 0.



Chapter 2

Half Convex Function Method for
Ordered Variables

2.1 Theoretical Basis

The following statement is known as the Right Half Convex Function Theorem for Ordered
Variables (RHCF-OV Theorem).

RHCF-OV Theorem (Vasile Cı̂rtoaje, 2008). Let f be a real function defined on an interval I
and convex on I≥s, where s ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I so that

x ≤ s ≤ y, x+ (n−m)y = (1 + n−m)s.

Proof. For
a1 = x, a2 = · · · = am = s, am+1 = · · · = an = y,

the inequality
f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s)

becomes
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s);

thus, the necessity is proved. To prove the sufficiency, we assume that

a1 ≤ a2 ≤ · · · ≤ an.

145
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From a1 ≤ a2 ≤ · · · ≤ am ≤ s, it follows that there is an integer

k ∈ {m,m+ 1, . . . , n− 1}

so that
a1 ≤ · · · ≤ ak ≤ s ≤ ak+1 ≤ · · · ≤ an.

Since f is convex on I≥s, we may apply Jensen’s inequality to get

f(ak+1) + · · ·+ f(an) ≥ (n− k)f(z),

where

z =
ak+1 + · · ·+ an

n− k
, z ∈ I.

Therefore, to prove the desired inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ f(s),

it suffices to show that

f(a1) + · · ·+ f(ak) + (n− k)f(z) ≥ nf(s). (*)

Let b1, . . . , bk be defined by

ai + (n−m)bi = (1 + n−m)s, i = 1, . . . , k.

We claim that
z ≥ b1 ≥ · · · ≥ bk ≥ s, b1, . . . , bk ∈ I.

Indeed, we have
b1 ≥ · · · ≥ bk,

bk − s =
s− ak
n−m

≥ 0,

and
z ≥ b1

because

(n−m)b1 = (1 + n−m)s− a1
= −(m− 1)s+ (a2 + · · ·+ ak) + (ak+1 + · · ·+ an)

≤ −(m− 1)s+ (k − 1)s+ (ak+1 + · · ·+ an) =

= (k −m)s+ (n− k)z ≤ (n−m)z.

Since b1, . . . , bk ∈ I≥s, by hypothesis we have

f(a1) + (n−m)f(b1) ≥ (1 + n−m)f(s),

· · ·

f(ak) + (n−m)f(bk) ≥ (1 + n−m)f(s),
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hence
f(a1) + · · ·+ f(ak) + (n−m)[f(b1) + · · ·+ f(bk)] ≥ k(1 + n−m)f(s),

f(a1) + · · ·+ f(ak) ≥ k(1 + n−m)f(s)− (n−m)[f(b1) + · · ·+ f(bk)].

According to this result, the inequality (*) is true if

k(1 + n−m)f(s)− (n−m)[f(b1) + · · ·+ f(bk)] + (n− k)f(z) ≥ nf(s),

which is equivalent to

pf(z) + (k − p)f(s) ≥ f(b1) + · · ·+ f(bk), p =
n− k
n−m

≤ 1.

By Jensen’s inequality, we have

pf(z) + (1− p)f(s) ≥ f(w), w = pz + (1− p)s ≥ s.

Thus, we only need to show that

f(w) + (k − 1)f(s) ≥ f(b1) + · · ·+ f(bk).

Since the decreasingly ordered vector ~Ak = (w, s, . . . , s) majorizes the decreasingly ordered vector
~Bk = (b1, b2, . . . , bk), this inequality follows from Karamata’s inequality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem for Ordered Variables (LHCF-
OV Theorem).

LHCF-OV Theorem. Let f be a real function defined on an interval I and convex on I≤s,
where s ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I so tht
x ≥ s ≥ y, x+ (n−m)y = (1 + n−m)s.

From the RHCF-OV Theorem and the LHCF-OV Theorem, we find the HCF-OV Theorem
(Half Convex Function Theorem for Ordered Variables).

HCF-OV Theorem. Let f be a real function defined on an interval I and convex on I≥s (or I≤s),
where s ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
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holds for all a1, a2, . . . , an ∈ I so that

a1 + a2 + · · ·+ an = ns

and at least m of a1, a2, . . . , an are smaller (greater) than s, where m ∈ {1, 2, . . . , n− 1}, if and
only if

f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I satisfying x+ (n−m)y = (1 + n−m)s.

The RHCF-OV Theorem, the LHCF-OV Theorem and the HCF-OV Theorem are respectively
generalizations of the RHCF-Theorem, the LHCF Theorem and the HCF-Theorem, because the
last theorems can be obtained from the first theorems for m = 1.

Note 1. Let us denote

g(u) =
f(u)− f(s)

u− s
, h(x, y) =

g(x)− g(y)

x− y
.

In many applications, it is useful to replace the hypothesis

f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

in the RHCF-OV Theorem and the LHCF-OV Theorem by the equivalent condition

h(x, y) ≥ 0 for all x, y ∈ I so that x+ (n−m)y = (1 + n−m)s.

This equivalence is true since

f(x) + (n−m)f(y)− (1 + n−m)f(s) = [f(x)− f(s)] + (n−m)[f(y)− f(s)]

= (x− s)g(x) + (n−m)(y − s)g(y)

=
n−m

1 + n−m
(x− y)[g(x)− g(y)]

=
n−m

1 + n−m
(x− y)2h(x, y).

Note 2. Assume that f is differentiable on I, and let

H(x, y) =
f ′(x)− f ′(y)

x− y
.

The desired inequality of Jensen’s type in the RHCF-OV Theorem and the LHCF-OV Theorem
holds true by replacing the hypothesis

f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

with the more restrictive condition

H(x, y) ≥ 0 for all x, y ∈ I so that x+ (n−m)y = (1 + n−m)s.

To prove this, we will show that the new condition implies

f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)
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for all x, y ∈ I so that x+ (n−m)y = (1 + n−m)s. Write this inequality as

f1(x) ≥ (1 + n−m)f(s),

where

f1(x) = f(x) + (n−m)f

(
(1 + n−m)s− x

n−m

)
.

From

f ′1(x) = f ′(x)− f ′
(

(1 + n−m)s− x
n−m

)
= f ′(x)− f ′(y)

=
1 + n−m
n−m

(x− s)H(x, y),

it follows that f1 is decreasing on I≤s and increasing on I≥s; therefore,

f1(x) ≥ f1(s) = (1 + n−m)f(s).

Note 3. The RHCF-OV Theorem and the LHCF-OV Theorem are also valid in the case
when f is defined on I \ {u0}, where u0 ∈ I<s for the RHCF-OV Theorem, and u0 ∈ I>s for the
LHCF-OV Theorem.

Note 4. The desired inequalities in the RHCF-OV Theorem and the LHCF-OV Theorem
become equalities for

a1 = a2 = · · · = an = s.

In addition, if there exist x, y ∈ I so that

x+ (n−m)y = (1 + n−m)s, f(x) + (n−m)f(y) = (1 + n−m)f(s), x 6= y,

then the equality holds also for

a1 = x, a2 = · · · = am = s, am+1 = · · · = an = y

Notice that these equality conditions are equivalent to

x+ (n−m)y = (1 + n−m)s, h(x, y) = 0

(x < y for the RHCF-OV Theorem, and x > y for the LHCF-OV Theorem).

Note 5. The WRHCF-OV Theorem and the WLHCF-OV Theorem are extensions of the
weighted Jensen’s inequality to right and left half convex functions with ordered variables (Vasile
Cı̂rtoaje, 2008).

WRHCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on I≥s, where s ∈ int(I). The
inequality

p1f(x1) + p2f(x2) + · · ·+ pnf(xn) ≥ f(p1x1 + p2x2 + · · ·+ pnxn)
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holds for all x1, x2, . . . , xn ∈ I so that p1x1 + p2x2 + · · ·+ pnxn = s and

x1 ≤ x2 ≤ · · · ≤ xn, xm ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + kf(y) ≥ (1 + k)f(s)

for all x, y ∈ I satisfying
x ≤ s ≤ y, x+ ky = (1 + k)s,

where

k =
pm+1 + pm+2 + · · ·+ pn

p1
.

WLHCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on I≤s, where s ∈ int(I). The
inequality

p1f(x1) + p2f(x2) + · · ·+ pnf(xn) ≥ f(p1x1 + p2x2 + · · ·+ pnxn)

holds for all x1, x2, . . . , xn ∈ I so that p1x1 + p2x2 + · · ·+ pnxn = s and

x1 ≥ x2 ≥ · · · ≥ xn, xm ≥ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + kf(y) ≥ (1 + k)f(s)

for all x, y ∈ I satisfying
x ≥ s ≥ y, x+ ky = (1 + k)s,

where

k =
pm+1 + pm+2 + · · ·+ pn

p1
.
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2.2 Applications

2.1. Find the least value k0 ∈ [1,∞) of the constant k such that

1

ka2 + b+ c
+

1

kb2 + c+ a
+

1

kc2 + a+ b
≥ 3

k + 2

for any nonnegative real numbers a, b, c with at most one of them larger than 1 and a+ b+ c = 3.

2.2. If a, b, c, d are real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d, a+ b+ c+ d = 4,

then

(3a2 − 2)(a− 1)2 + (3b2 − 2)(b− 1)2 + (3c2 − 2)(c− 1)2 + (3d2 − 2)(d− 1)2 ≥ 0.

2.3. If a, b, c, d are nonnegative real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d, a+ b+ c+ d = 4,

then
1

2a3 + 5
+

1

2b3 + 5
+

1

2c3 + 5
+

1

2d3 + 5
≤ 4

7
.

2.4. If

−2n− 1

n− 1
≤ a1 ≤ · · · ≤ an ≤ 1 ≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
a31 + a32 + · · ·+ a32n ≥ 2n.

2.5. Let a1, a2, . . . , an (n ≥ 3) be real numbers so that a1 + a2 + · · ·+ an = n. Prove that

(a) if −3 ≤ a1 ≤ · · · ≤ an−2 ≤ 1 ≤ an−1 ≤ an, then

a31 + a32 + · · ·+ a3n ≥ a21 + a22 + · · ·+ a2n;

(b) if −n− 1

n− 3
≤ a1 ≤ a2 ≤ 1 ≤ · · · ≤ an, then

a31 + a32 + · · ·+ a3n + n ≥ 2(a21 + a22 + · · ·+ a2n).
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2.6. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n and let
m ∈ {1, 2, . . . , n− 1}. Prove that

(a) if a1 ≤ a2 ≤ · · · ≤ am ≤ 1, then

(n−m)(a31 + a32 + · · ·+ a3n − n) ≥ (2n− 2m+ 1)(a21 + a22 + · · ·+ a2n − n);

(b) if a1 ≥ a2 ≥ · · · ≥ am ≥ 1, then

a31 + a32 + · · ·+ a3n − n ≤ (n−m+ 2)(a21 + a22 + · · ·+ a2n − n).

2.7. Let a1, a2, . . . , an (n ≥ 3) be real numbers so that a1 + a2 + · · ·+ an = n. Prove that

(a) if a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, then

a41 + a42 + · · ·+ a4n − n ≥ 6(a21 + a22 + · · ·+ a2n − n);

(b) if a1 ≤ · · · ≤ an−2 ≤ 1 ≤ an−1 ≤ an, then

a41 + a42 + · · ·+ a4n − n ≥
14

3
(a21 + a22 + · · ·+ a2n − n);

(c) if a1 ≤ a2 ≤ 1 ≤ a3 ≤ · · · ≤ an, then

a41 + a42 + · · ·+ a4n − n ≥
2(n2 − 3n+ 3)

n2 − 5n+ 7
(a21 + a22 + · · ·+ a2n − n).

2.8. Let a, b, c, d, e be nonnegative real numbers so that a+ b+ c+ d+ e = 5. Prove that

(a) if a ≥ b ≥ 1 ≥ c ≥ d ≥ e, then

21(a2 + b2 + c2 + d2 + e2) ≥ a4 + b4 + c4 + d4 + e4 + 100;

(b) if a ≥ b ≥ c ≥ 1 ≥ d ≥ e, then

13(a2 + b2 + c2 + d2 + e2) ≥ a4 + b4 + c4 + d4 + e4 + 60.

2.9. Let a1, a2, . . . , an (n ≥ 3) be nonnegative numbers so that a1 + a2 + · · · + an = n. Prove
that

(a) if a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, then

7(a31 + a32 + · · ·+ a3n) ≥ 3(a41 + a42 + · · ·+ a4n) + 4n;

(b) if a1 ≥ · · · ≥ an−2 ≥ 1 ≥ an−1 ≥ an, then

13(a31 + a32 + · · ·+ a3n) ≥ 4(a41 + a42 + · · ·+ a4n) + 9n.
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2.10. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n and

a1 ≥ · · · ≥ am ≥ 1 ≥ am+1 ≥ · · · ≥ an, m ∈ {1, 2, . . . , n− 1},

then

(n−m+ 1)2
(

1

a1
+

1

a2
+ · · ·+ 1

an
− n

)
≥ 4(n−m)(a21 + a22 + · · ·+ a2n − n).

2.11. If a1, a2, . . . , an are positive real numbers so that
1

a1
+

1

a2
+ · · ·+ 1

an
= n and

a1 ≤ · · · ≤ am ≤ 1 ≤ am+1 ≤ · · · ≤ an, m ∈ {1, 2, . . . , n− 1},

then

a21 + a22 + · · ·+ a2n − n ≥ 2

(
1 +

√
n−m

n−m+ 1

)
(a1 + a2 + · · ·+ an − n).

2.12. Let a1, a2, . . . , an be nonnegative real numbers such that

a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 ≥ ak+1 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n.

If n ≥ 3 and 1 ≤ k ≤ n− 1, then

1

ka21 + k + 1
+

1

ka22 + k + 1
+ · · ·+ 1

ka2n + k + 1
≥ n

2k + 1
.

2.13. If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
1

na21 + n2 + n+ 1
+

1

na22 + n2 + n+ 1
+ · · ·+ 1

na22n + n2 + n+ 1
≤ 2n

(n+ 1)2
.

2.14. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ c ≥ 1 ≥ d ≥ e ≥ f, a+ b+ c+ d+ e+ f = 6,

then
3a+ 4

3a2 + 4
+

3b+ 4

3b2 + 4
+

3c+ 4

3c2 + 4
+

3d+ 4

3d2 + 4
+

3e+ 4

3e2 + 4
+

3f + 4

3f 2 + 4
≤ 6.
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2.15. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d ≥ e ≥ f, a+ b+ c+ d+ e+ f = 6,

then
a2 − 1

(2a+ 7)2
+

b2 − 1

(2b+ 7)2
+

c2 − 1

(2c+ 7)2
+

d2 − 1

(2d+ 7)2
+

e2 − 1

(2e+ 7)2
+

f 2 − 1

(2f + 7)2
≥ 0.

2.16. If a, b, c, d, e, f are nonnegative real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d ≤ e ≤ f, a+ b+ c+ d+ e+ f = 6,

then
a2 − 1

(2a+ 5)2
+

b2 − 1

(2b+ 5)2
+

c2 − 1

(2c+ 5)2
+

d2 − 1

(2d+ 5)2
+

e2 − 1

(2e+ 5)2
+

f 2 − 1

(2f + 5)2
≤ 0.

2.17. If a, b, c are nonnegative real numbers so that

a ≤ b ≤ 1 ≤ c, a+ b+ c = 3,

then √
2a

b+ c
+

√
2b

c+ a
+

√
2c

a+ b
≥ 3.

2.18. If a1, a2, . . . , a8 are nonnegative real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1 ≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then
(a21 + 1)(a22 + 1) · · · (a28 + 1) ≥ (a1 + 1)(a2 + 1) · · · (a8 + 1).

2.19. If a, b, c, d are real numbers so that

−1

2
≤ a ≤ b ≤ 1 ≤ c ≤ d, a+ b+ c+ d = 4,

then

7

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
+ 3

(
1

a
+

1

b
+

1

c
+

1

d

)
≥ 40.

2.20. Let a, b, c, d be real numbers such that a+ b+ c+ d = 4. Prove that

(a) if −1 ≤ a ≤ b ≤ c ≤ 1 ≤ d, then

3

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
≥ 8 +

1

a
+

1

b
+

1

c
+

1

d
;

(b) if −1 ≤ a ≤ b ≤ 1 ≤ c ≤ d, then

2

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
≥ 4 +

1

a
+

1

b
+

1

c
+

1

d
.
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2.21. If a, b, c, d are positive real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d, abcd = 1,

then

a2 + b2 + c2 + d2 − 4 ≥ 18

(
a+ b+ c+ d− 1

a
− 1

b
− 1

c
− 1

d

)
.

2.22. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d, abcd = 1,

then √
a2 − a+ 1 +

√
b2 − b+ 1 +

√
c2 − c+ 1 +

√
d2 − d+ 1 ≥ a+ b+ c+ d.

2.23. If a, b, c, d are positive real numbers so that

a ≤ b ≤ c ≤ 1 ≤ d, abcd = 1,

then
1

a3 + 3a+ 2
+

1

b3 + 3b+ 2
+

1

c3 + 3c+ 2
+

1

d3 + 3d+ 2
≥ 2

3
.

2.24. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1,

then
1

a1
+

1

a2
+ · · ·+ 1

an
≥ a1 + a2 + · · ·+ an.

2.25. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If k ≥ 1, then
1

1 + ka1
+

1

1 + ka2
+ · · ·+ 1

1 + kan
≥ n

1 + k
.

2.26. If a1, a2, . . . , a9 are positive real numbers so that

a1 ≤ · · · ≤ a8 ≤ 1 ≤ a9, a1a2 · · · a9 = 1,

then
1

(a1 + 2)2
+

1

(a2 + 2)2
+ · · ·+ 1

(a9 + 2)2
≥ 1.
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2.27. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that

p+ q ≥ 1 +
2pq

p+ 4q
,

then
1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≥ n

1 + p+ q
.

2.28. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If m ≥ 1 and 0 < k ≤ m, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≥ n

(1 + k)m
.

2.29. If a1, a2, . . . , an are positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1,

then
1√

1 + 3a1
+

1√
1 + 3a2

+ · · ·+ 1√
1 + 3an

≥ n

2
.

2.30. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If 0 < m < 1 and 0 < k ≤ 1

21/m − 1
, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≥ n

(1 + k)m
.

2.31. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 ≥ ak+1 ≥ · · · ≥ an > 0, a1a2 · · · an = 1.

If n ≥ 3 and 1 ≤ k ≤ n− 1, then

1

ka1 + 1
+

1

ka2 + 1
+ · · ·+ 1

kan + 1
≥ n

k + 1
.
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2.32. If a1, a2, . . . , an (n ≥ 4) are positive real numbers so that

a1 ≥ a2 ≥ a3 ≥ 1 ≥ a4 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 1)2
+

1

(a2 + 1)2
+ · · ·+ 1

(an + 1)2
≥ n

4
.

2.33. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 3)2
+

1

(a2 + 3)2
+ · · ·+ 1

(an + 3)2
≤ n

16
.

2.34. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ q ≤ 1, then

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≤ n

1 + p+ q
.

2.35. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1.

If m > 1 and k ≥ 1

21/m − 1
, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≤ n

(1 + k)m
.

2.36. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1,

then
1√

1 + 2a1
+

1√
1 + 2a2

+ · · ·+ 1√
1 + 2an

≤ n√
3
.
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2.37. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1.

If 0 < m < 1 and k ≥ m, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≤ n

(1 + k)m
.

2.38. If a1, a2, . . . , an (n ≥ 3) are positive real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1 ≥ an−1 ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 5)2
+

1

(a2 + 5)2
+ · · ·+ 1

(an + 5)2
≤ n

36
.

2.39. If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a21 + a22 + · · ·+ a2n = n,

then
1

3− a1
+

1

3− a2
+ · · ·+ 1

3− an
≤ n

2
.

2.40. Let a1, a2, . . . , an be nonnegative real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1 + a2 + · · ·+ an = n.

Prove that

a31 + a32 + · · ·+ a3n − n ≥ (n− 1)2

[(
n− a1
n− 1

)3

+

(
n− a2
n− 1

)3

+ · · ·+
(
n− an
n− 1

)3

− n

]
.
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2.3 Solutions

P 2.1. Find the least value k0 ∈ [1,∞) of the constant k such that

1

ka2 + b+ c
+

1

kb2 + c+ a
+

1

kc2 + a+ b
≥ 3

k + 2

for any nonnegative real numbers a, b, c with at most one of them larger than 1 and a+ b+ c = 3.

(Vasile C., 2007)

Solution. For a = 0, b = 1 and c = 2, the constraint is satisfied and the inequality leads to
2k2 − 6k + 1 ≥ 0, hence

k0 =
3 +
√

7

2
≈ 2.823.

To prove that k0 is the least value of k, we need to prove the inequality for k = k0, hence for

2k2 − 6k + 1 = 0.

Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
1

ku2 − u+ 3
, u ∈ I = [0, 3].

Without loss of generality, assume that

a ≤ b ≤ 1 ≤ c.

We have

f ′′(u) =
2g(u)

(ku2 − u+ 3)3
,

where g(u) = 3k2u2 − 3ku− 3k + 1. For u ≥ 1, we have

g(u) = 3(ku− 1/2)2 − 3k + 1/4 ≥ 3(k − 1/2)2 − 3k + 1/4 = 3k2 − 6k + 1 = k2 > 0,

hence f is convex on I≥s. By applying the RHCF-OV Theorem for n = 3 and m = 2, it suffices
to show that f(x) + f(y) ≥ 2f(1) for 0 ≤ x ≤ y and x+ y = 2. Denoting p = xy, we have p ≤ 1,
while the inequality is equivalent to

2k + 2− kp
k2p2 − (8k − 1)p+ 12k + 3

≥ 1

k + 2
, 1− 6k + 2k2 − (k2 − 6k + 1)p− k2p2 ≥ 0,

(1− p)(1− 6k + 2k2 + k2p2) ≥ 0, (1− p)p2 ≥ 0.

So, the proof is finished. For k = k0, the equality occurs when a = b = c = 1, and also when
a = 0, b = 1 and c = 2 (or any permutation).
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P 2.2. If a, b, c, d are real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d, a+ b+ c+ d = 4,

then

(3a2 − 2)(a− 1)2 + (3b2 − 2)(b− 1)2 + (3c2 − 2)(c− 1)2 + (3d2 − 2)(d− 1)2 ≥ 0.

(Vasile C., 2007)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where
f(u) = (3u2 − 2)(u− 1)2, u ∈ I = R.

From
f ′′(u) = 2(18u2 − 18u+ 1),

it follows that f ′′(u) > 0 for u ≥ 1, hence f is convex on I≥s. Therefore, we may apply the
RHCF-OV Theorem for n = 4 and m = 2. Thus, it suffices to show that f(x) + 2f(y) ≥ 3f(1)
for all real x, y so that x+ 2y = 3. Using Note 1, we only need to show that h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) = 3(u3 + u2 + u+ 1)− 6(u2 + u+ 1) + u+ 1 = 3u3 − 3u2 − 2u− 2,

h(x, y) = 3(x2 + xy + y2)− 3(x+ y)− 2 = (3y − 4)2 ≥ 0.

From x+ 2y = 3 and h(x, y) = 0, we get x = 1/3, y = 4/3. Therefore, in accordance with Note
4, the equality holds for a = b = c = d = 1, and also for

a =
1

3
, b = 1, c = d =

4

3
.

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , a2n be real numbers so that

a1 ≤ · · · ≤ an ≤ 1 ≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k =
n

n2 − n+ 1
, then

(a21 − k)(a1 − 1)2 + (a22 − k)(a2 − 1)2 + · · ·+ (a22n − k)(a2n − 1)2 ≥ 0,

with equality for a1 = a2 = · · · = a2n = 1, and also for

a1 =
1

n2 − n+ 1
, a2 = · · · = an = 1, an+1 = · · · = an =

n2

n2 − n+ 1
.
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P 2.3. If a, b, c, d are nonnegative real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d, a+ b+ c+ d = 4,

then
1

2a3 + 5
+

1

2b3 + 5
+

1

2c3 + 5
+

1

2d3 + 5
≤ 4

7
.

(Vasile C., 2009)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
−1

2u3 + 5
, u ≥ 0.

From

f ′′(u) =
12u(5− 4u3)

(2u3 + 5)3
,

it follows that f ′′(u) ≥ 0 for u ∈ [0, 1], hence f is convex on [0, s]. Therefore, we may apply the
LHCF-OV Theorem for n = 4 and m = 2. Using Note 1, we only need to show that h(x, y) ≥ 0
for x, y ≥ 0 so that x+ 2y = 3. We have

g(u) =
f(u)− f(1)

u− 1
=

2(u2 + u+ 1)

7(2u3 + 5)
,

h(x, y) =
g(x)− g(y)

x− y
=

2E

7(2x3 + 5)(2y3 + 5)
,

where
E = −2x2y2 − 2xy(x+ y)− 2(x2 + xy + y2) + 5(x+ y) + 5.

Since
E = (1− 2y)2(2 + 3y − 2y2) = (1− 2y)2(2 + xy) ≥ 0,

the proof is completed. From x + 2y = 3 and h(x, y) = 0, we get x = 2, y = 1/2. Therefore, in
accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

a = 2, b = 1, c = d =
1

2
.

Remark. Similarly, we can prove the following generalization.

• If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

then
1

a31 + n+ 1
n

+
1

a32 + n+ 1
n

+ · · ·+ 1

a32n + n+ 1
n

≥ 2n2

n2 + n+ 1
,

with equality for a1 = a2 = · · · = a2n = 1, and also for

a1 = n, a2 = · · · = an = 1, an+1 = · · · = a2n =
1

n
.
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P 2.4. If

−2n− 1

n− 1
≤ a1 ≤ · · · ≤ an ≤ 1 ≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
a31 + a32 + · · ·+ a32n ≥ 2n.

(Vasile C., 2007)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(a2n) ≥ 2nf(s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f(u) = u3, u ≥ −2n− 1

n− 1
.

From f ′′(u) = 6u, it follows that f(u) is convex for u ≥ s. Therefore, we may apply the RHCF-
OV Theorem for 2n numbers and m = n. By Note 1, it suffices to show that h(x, y) ≥ 0 for all

x, y ≥ −2n− 1

n− 1
so that x+ ny = 1 + n. We have

g(u) =
f(u)− f(1)

u− 1
= u2 + u+ 1,

h(x, y) =
g(x)− g(y)

x− y
= x+ y + 1 =

(n− 1)x+ 2n+ 1

n− 1
≥ 0.

From x+ ny = 1 + n and h(x, y) = 0, we get

x =
−2n− 1

n− 1
, y =

n+ 2

n− 1
.

In accordance with Note 4, the equality holds for a1 = a2 = · · · = a2n = 1, and also for

a1 =
−2n− 1

n− 1
, a2 = · · · = an = 1, an+1 = · · · = a2n =

n+ 2

n− 1
.

P 2.5. Let a1, a2, . . . , an (n ≥ 3) be real numbers so that a1 + a2 + · · ·+ an = n. Prove that

(a) if −3 ≤ a1 ≤ · · · ≤ an−2 ≤ 1 ≤ an−1 ≤ an, then

a31 + a32 + · · ·+ a3n ≥ a21 + a22 + · · ·+ a2n;

(b) if −n− 1

n− 3
≤ a1 ≤ a2 ≤ 1 ≤ · · · ≤ an, then

a31 + a32 + · · ·+ a3n + n ≥ 2(a21 + a22 + · · ·+ a2n).

(Vasile C., 2007)
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Solution. (a) Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = u3 − u2, u ≥ −3.

For u ≥ 1, we have
f ′′(u) = 6u− 2 > 0,

hence f(u) is convex for u ≥ s. Thus, we may apply the RHCF-OV Theorem for m = n − 2.
According to this theorem, it suffices to show that

f(x) + 2f(y) ≥ 3f(1)

for −3 ≤ x ≤ y satisfying x + 2y = 3. Using Note 1, we only need to show that h(x, y) ≥ 0,
where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have
g(u) = u2,

h(x, y) = x+ y =
x+ 3

2
≥ 0.

From x+ 2y = 3 and h(x, y) = 0, we get x = −3 and y = 3. Therefore, in accordance with Note
4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = −3, a2 = · · · = an−2 = 1, an−1 = an = 3.

(b) Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = u3 − 2u2, u ≥ −n− 1

n− 3
.

For u ≥ 1, we have
f ′′(u) = 6u− 4 > 0,

hence f(u) is convex for u ≥ s. Thus, we may apply the RHCF-OV Theorem for m = 2.
According to this theorem, it suffices to show that

f(x) + (n− 2)f(y) ≥ (n− 1)f(1)

for −n− 1

n− 3
≤ x ≤ y satisfying x + (n − 2)y = n − 1. Using Note 1, we only need to show that

h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.
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We have
g(u) = u2 − u− 1,

h(x, y) = x+ y − 1 =
(n− 3)x+ n− 1

n− 1
≥ 0.

From x + (n − 2)y = n − 1 and h(x, y) = 0, we get x = −n− 1

n− 3
and y =

n− 1

n− 3
. Therefore,

in accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1. If n ≥ 4, then the
equality holds also for

a1 = −n− 1

n− 3
, a2 = 1, a3 = · · · = an =

n− 1

n− 3
.

P 2.6. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n and let
m ∈ {1, 2, . . . , n− 1}. Prove that

(a) if a1 ≤ a2 ≤ · · · ≤ am ≤ 1, then

(n−m)(a31 + a32 + · · ·+ a3n − n) ≥ (2n− 2m+ 1)(a21 + a22 + · · ·+ a2n − n);

(b) if a1 ≥ a2 ≥ · · · ≥ am ≥ 1, then

a31 + a32 + · · ·+ a3n − n ≤ (n−m+ 2)(a21 + a22 + · · ·+ a2n − n).

(Vasile C., 2007)

Solution. (a) Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = (n−m)u3 − (2n− 2m+ 1)u2, u ∈ I = [0, n].

For u ≥ 1, we have

f ′′(u) = 6(n−m)u− 2(2n− 2m+ 1)

≥ 6(n−m)− 2(2n− 2m+ 1) = 2(n−m− 1) ≥ 0,

hence f is convex on I≥s. Thus, by the RHCF-OV Theorem and Note 1, we only need to show
that h(x, y) ≥ 0 for all nonnegative numbers x, y so that x+ (n−m)y = n−m+ 1. We have

g(u) =
f(u)− f(1)

u− 1
= (n−m)(u2 + u+ 1)− (2n− 2m+ 1)(u+ 1)

= (n−m)u2 − (n−m+ 1)u− n+m− 1,

h(x, y) =
g(x)− g(y)

x− y
= (n−m)(x+ y)− n+m− 1 = (n−m− 1)x ≥ 0.
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From x + (n − m)y = 1 + n − m and h(x, y) = 0, we get x = 0, y = (n − m + 1)/(n − m).
Therefore, in accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = am = 1, am+1 = · · · = an = 1 +
1

n−m
.

(b) Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = (n−m+ 2)u2 − u3, u ∈ I = [0, n].

For u ≤ 1, we have

f ′′(u) = 2(n−m+ 2− 3u) ≥ 2(n−m+ 2− 3) = 2(n−m− 1) ≥ 0,

hence f is convex on I≤s. By the LHCF-OV Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for all x, y ≥ 0 so that x+ (n−m)y = 1 + n−m. We have

g(u) =
f(u)− f(1)

u− 1
= (n−m+ 2)(u+ 1)− (u2 + u+ 1)

= −u2 + (n−m+ 1)u+ n−m+ 1,

h(x, y) =
g(x)− g(y)

x− y
= −(x+ y) + n−m+ 1 = (n−m− 1)y ≥ 0.

From x + (n−m)y = 1 + n−m and h(x, y) = 0, we get x = n−m + 1, y = 0. Therefore, the
equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n−m+ 1, a2 = · · · = am = 1, am+1 = · · · = an = 0.

Remark 1. For m = 1, we get the following results:

• If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(n− 1)(a31 + a32 + · · ·+ a3n − n) ≥ (2n− 1)(a21 + a22 + · · ·+ a2n − n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

• If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

a31 + a32 + · · ·+ a3n − n ≤ (n+ 1)(a21 + a22 + · · ·+ a2n − n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = n, a2 = a3 = · · · = an = 0
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(or any cyclic permutation).

Remark 2. For m = n− 1, we get the following statements:

• If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1 + a2 + · · ·+ an = n,

then
a31 + a32 + · · ·+ a3n + 2n ≥ 3(a21 + a22 + · · ·+ a2n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = an−1 = 1, an = 2.

• If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1 + a2 + · · ·+ an = n,

then
a31 + a32 + · · ·+ a3n + 2n ≤ 3(a21 + a22 + · · ·+ a2n),

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 2, a2 = · · · = an−1 = 1, an = 0.

Remark 3. Replacing n with 2n and choosing then m = n, we get the following results:

• If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≤ · · · ≤ an ≤ 1 ≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
n(a31 + a32 + · · ·+ a32n − 2n) ≥ (2n+ 1)(a21 + a22 + · · ·+ a22n − 2n),

with equality for a1 = a2 = · · · = a2n = 1, and also for

a1 = 0, a2 = · · · = an = 1, an+1 = · · · = a2n = 1 +
1

n
.

• If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
a31 + a32 + · · ·+ a32n − 2n ≤ (n+ 2)(a21 + a22 + · · ·+ a22n − 2n),

with equality for a1 = a2 = · · · = a2n = 1, and also for

a1 = n+ 1, a2 = · · · = an = 1, an+1 = · · · = a2n = 0.
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P 2.7. Let a1, a2, . . . , an (n ≥ 3) be real numbers so that a1 + a2 + · · ·+ an = n. Prove that

(a) if a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, then

a41 + a42 + · · ·+ a4n − n ≥ 6(a21 + a22 + · · ·+ a2n − n);

(b) if a1 ≤ · · · ≤ an−2 ≤ 1 ≤ an−1 ≤ an, then

a41 + a42 + · · ·+ a4n − n ≥
14

3
(a21 + a22 + · · ·+ a2n − n);

(c) if a1 ≤ a2 ≤ 1 ≤ a3 ≤ · · · ≤ an, then

a41 + a42 + · · ·+ a4n − n ≥
2(n2 − 3n+ 3)

n2 − 5n+ 7
(a21 + a22 + · · ·+ a2n − n).

(Vasile C., 2009)

Solution. Consider the inequality

a41 + a42 + · · ·+ a4n − n ≥ k(a21 + a22 + · · ·+ a2n − n), k ≤ 6,

and write it as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = u4 − ku2, u ∈ R.

From f ′′(u) = 2(6u2 − k), it follows that f is convex for u ≥ 1. Therefore, we may apply the
RHCF-OV Theorem for m = n − 1, m = n − 2 and m = 2, respectively. By Note 1, it suffices
to show that h(x, y) ≥ 0 for all real x, y so that x+ (n−m)y = 1 + n−m. We have

g(u) =
f(u)− f(1)

u− 1
= u3 + u2 + u+ 1− k(u+ 1),

h(x, y) =
g(x)− g(y)

x− y
= x2 + xy + y2 + x+ y + 1− k.

(a) We need to show that h(x, y) ≥ 0 for k = 6, m = n− 1, x+ y = 2. Indeed, we have

h(x, y) = 1− xy =
1

4
(x− y)2 ≥ 0.

From x + y = 2 and h(x, y) = 0, we get x = y = 1. Therefore, in accordance with Note 4, the
equality holds for a1 = a2 = · · · = an = 1.

(b) For k = 14/3, m = n− 2 and x+ 2y = 3, we have

h(x, y) =
1

3
(3y − 5)2 ≥ 0.
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From x + 2y = 3 and h(x, y) = 0, we get x = −1/3 and y = 5/3. Therefore, the equality holds
for a1 = a2 = · · · = an = 1, and also for

a1 =
−1

3
, a2 = · · · = an−2 = 1, an−1 = an =

5

3
.

(c) We have k =
2(n2 − 3n+ 3)

n2 − 5n+ 7
, m = 2 and x+ (n− 2)y = n− 1, which involve

h(x, y) =
[(n2 − 5n+ 7)y − n2 + 3n− 1]2

n2 − 5n+ 7
≥ 0.

From x+ (n− 2)y = n− 1 and h(x, y) = 0, we get

x =
−n2 + 5n− 5

n2 − 5n+ 7
, y =

n2 − 3n+ 1

n2 − 5n+ 7
.

Therefore, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
−n2 + 5n− 5

n2 − 5n+ 7
, a2 = 1, a3 = · · · = an =

n2 − 3n+ 1

n2 − 5n+ 7
.

P 2.8. Let a, b, c, d, e be nonnegative real numbers so that a+ b+ c+ d+ e = 5. Prove that

(a) if a ≥ b ≥ 1 ≥ c ≥ d ≥ e, then

21(a2 + b2 + c2 + d2 + e2) ≥ a4 + b4 + c4 + d4 + e4 + 100;

(b) if a ≥ b ≥ c ≥ 1 ≥ d ≥ e, then

13(a2 + b2 + c2 + d2 + e2) ≥ a4 + b4 + c4 + d4 + e4 + 60.

(Vasile C., 2009)

Solution. Consider the inequality

k(a2 + b2 + c2 + d2 + e2 − 5) ≥ a4 + b4 + c4 + d4 + e4 − 5, k ≥ 6,

and write it as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where
f(u) = ku2 − u4, u ≥ 0.

From f ′′(u) = 2(k − 6u2), it follows that f is convex on [0, 1]. Therefore, we may apply the
LHCF-OV Theorem for m = 2 and m = 3, respectively. By Note 1, it suffices to show that
h(x, y) ≥ 0 for all x, y ≥ 0 so that x+ (5−m)y = 6−m. We have

g(u) =
f(u)− f(1)

u− 1
= k(u+ 1)− (u3 + u2 + u+ 1),
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h(x, y) =
g(x)− g(y)

x− y
= k − (x2 + xy + y2 + x+ y + 1).

(a) We need to show that h(x, y) ≥ 0 for k = 21, n = 5, m = 2 and x+ 3y = 4; indeed, we
have

h(x, y) = 21− (x2 + xy + y2 + x+ y + 1) = y(22− 7y) = y(10 + 3x+ 2y) ≥ 0.

From x + 3y = 4 and h(x, y) = 0, we get x = 4 and y = 0. Therefore, in accordance with Note
4, the equality holds for a = b = c = d = e = 1, and also for

a = 4, b = 1, c = d = e = 0.

(b) We have k = 13, n = 5, m = 3 and x+ 2y = 3, which involve

h(x, y) = 13− (x2 + xy + y2 + x+ y + 1) = y(10− 3y) = y(4 + 2x+ y) ≥ 0.

From x + 2y = 3 and h(x, y) = 0, we get x = 3 and y = 0. Therefore, the equality holds for
a = b = c = d = e = 1, and also for

a = 3, b = c = 1, d = e = 0.

P 2.9. Let a1, a2, . . . , an (n ≥ 3) be nonnegative numbers so that a1 + a2 + · · · + an = n. Prove
that

(a) if a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, then

7(a31 + a32 + · · ·+ a3n) ≥ 3(a41 + a42 + · · ·+ a4n) + 4n;

(b) if a1 ≥ · · · ≥ an−2 ≥ 1 ≥ an−1 ≥ an, then

13(a31 + a32 + · · ·+ a3n) ≥ 4(a41 + a42 + · · ·+ a4n) + 9n.

(Vasile C., 2009)

Solution. Consider the inequality

k(a31 + a32 + · · ·+ a3n − n) ≥ a41 + a42 + · · ·+ a4n − n, k ≥ 2,

and write it as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = ku3 − u4, u ≥ 0.
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From f ′′(u) = 6u(k − 2u2), it follows that f is convex on [0, 1]. Therefore, we may apply the
LHCF-OV Theorem for m = n − 1 and m = n − 2, respectively. By Note 1, it suffices to show
that h(x, y) ≥ 0 for x ≥ y ≥ 0 so that x+my = 1 +m. We have

g(u) =
f(u)− f(1)

u− 1
= k(u2 + u+ 1)− (u3 + u2 + u+ 1),

h(x, y) =
g(x)− g(y)

x− y
= −(x2 + xy + y2) + (k − 1)(x+ y + 1).

(a) We need to show that h(x, y) ≥ 0 for k = 7/3, m = n− 1, x+ y = 2. Indeed,

h(x, y) = xy ≥ 0.

From x > y, x + y = 2 and h(x, y) = 0, we get x = 2 and y = 0. Therefore, in accordance with
Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = 2, a2 = · · · = an−1 = 1, an = 0.

(b) We have k = 13/4, m = n− 2, x+ 2y = 3, which involve

h(x, y) = 3y(9− 4y) = 3y(3 + 2x) ≥ 0.

From x + 2y = 3 and h(x, y) = 0, we get x = 3 and y = 0. Therefore, the equality holds for
a1 = a2 = · · · = an = 1, and also for

a1 = 3, a2 = · · · = an−2 = 1, an−1 = an = 0.

P 2.10. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n and

a1 ≥ · · · ≥ am ≥ 1 ≥ am+1 ≥ · · · ≥ an, m ∈ {1, 2, . . . , n− 1},

then

(n−m+ 1)2
(

1

a1
+

1

a2
+ · · ·+ 1

an
− n

)
≥ 4(n−m)(a21 + a22 + · · ·+ a2n − n).

(Vasile C., 2007)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
(n−m+ 1)2

u
− 4(n−m)u2, u > 0.
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For u ∈ (0, 1], we have

f ′′(u) =
2(n−m+ 1)2

u3
− 8(n−m)

≥ 2(n−m+ 1)2 − 8(n−m) = 2(n−m− 1)2 ≥ 0.

Since f is convex on (0, s], we may apply the LHCF-OV Theorem. By Note 1, it suffices to show
that h(x, y) ≥ 0 for all x, y > 0 so that x+ (n−m)y = 1 + n−m. We have

g(u) =
f(u)− f(1)

u− 1
=
−(n−m+ 1)2

u
− 4(n−m)(u+ 1),

h(x, y) =
(n−m+ 1)2

xy
− 4(n−m) =

[n−m+ 1− 2(n−m)y]2

xy
≥ 0.

From x+ (n−m)y = 1 + n−m and h(x, y) = 0, we get

x =
n−m+ 1

2
, y =

n−m+ 1

2(n−m)
.

Therefore, in accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
n−m+ 1

2
, a2 = a3 = · · · = am = 1, am+1 = · · · = an =

n−m+ 1

2(n−m)
.

Remark 1. For m = n− 1, we get the following elegant statement:

• If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1 + a2 + · · ·+ an = n,

then
1

a1
+

1

a2
+ · · ·+ 1

an
≥ a21 + a22 + · · ·+ a2n,

with equality for a1 = a2 = · · · = an = 1

Remark 2. Replacing n with 2n and choosing then m = n, we get the following statement:

• If a1, a2, . . . , a2n are positive real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then

(n+ 1)2
(

1

a1
+

1

a2
+ · · ·+ 1

a2n
− 2n

)
≥ 4n(a21 + a22 + · · ·+ a22n − 2n),

with equality for a1 = a2 = · · · = a2n = 1, and also for

a1 =
n+ 1

2
, a2 = a3 = · · · = an = 1, an+1 = · · · = a2n =

n+ 1

2n
.
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P 2.11. If a1, a2, . . . , an are positive real numbers so that
1

a1
+

1

a2
+ · · ·+ 1

an
= n and

a1 ≤ · · · ≤ am ≤ 1 ≤ am+1 ≤ · · · ≤ an, m ∈ {1, 2, . . . , n− 1},

then

a21 + a22 + · · ·+ a2n − n ≥ 2

(
1 +

√
n−m

n−m+ 1

)
(a1 + a2 + · · ·+ an − n).

(Vasile C., 2007)

Solution. Replacing each ai by 1/ai, we need to prove that

a1 ≥ · · · ≥ am ≥ 1 ≥ am+1 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n

involves

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1

u2
− 2k

u
, k = 1 +

√
m− n

n−m+ 1
, u > 0.

For u ∈ (0, 1], we have

f ′′(u) =
6− 4ku

u4
≥ 6− 4k

u4
=

2(
√
n−m− 1)2

(n−m+ 1)u4
≥ 0.

Thus, f is convex on (0, 1]. By the LHCF-OV Theorem and Note 1, it suffices to show that
h(x, y) ≥ 0 for x, y > 0 so that x+ (n−m)y = 1 + n−m, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) =
−1

u2
+

2k − 1

u

and

h(x, y) =
1

xy

(
1

x
+

1

y
+ 1− 2k

)
.

We only need to show that
1

x
+

1

y
≥ 1 +

2
√
n−m

n−m+ 1
.

Indeed, using the Cauchy-Schwarz inequality, we get

1

x
+

1

y
≥ (1 +

√
n−m)2

x+ (n−m)y
=

(1 +
√
n−m)2

n−m+ 1
= 1 +

2
√
n−m

n−m+ 1
.

From x+ (n−m)y = 1 + n−m and h(x, y) = 0, we get

x =
n−m+ 1

1 +
√
n−m

, y =
n−m+ 1

n−m+
√
n−m

.
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By Note 4, we have
f(a1) + f(a2) + · · ·+ f(an) = nf(1)

for a1 = a2 = · · · = an = 1, and also for

a1 =
n−m+ 1

1 +
√
n−m

, a2 = a3 = · · · = am = 1, am+1 = · · · = an =
n−m+ 1

n−m+
√
n−m

.

Therefore, the original inequality becomes an equality for a1 = a2 = · · · = an = 1, and also for

a1 =
1 +
√
n−m

n−m+ 1
, a2 = a3 = · · · = am = 1, am+1 = · · · = an =

n−m+
√
n−m

n−m+ 1
.

Remark. Replacing n with 2n and choosing then m = n, we get the statement below.

• If a1, a2, . . . , a2n are positive real numbers so that

a1 ≤ · · · ≤ an ≤ 1 ≤ an+1 ≤ · · · ≤ a2n,
1

a1
+

1

a2
+ · · ·+ 1

a2n
= 2n,

then

a21 + a22 + · · ·+ a22n − 2n ≥ 2

(
1 +

√
n

n+ 1

)
(a1 + a2 + · · ·+ a2n − 2n).

with equality for a1 = a2 = · · · = a2n = 1, and also for

a1 =
1 +
√
n

n+ 1
, a2 = a3 = · · · = an = 1, an+1 = · · · = a2n =

n+
√
n

n+ 1
.

P 2.12. Let a1, a2, . . . , an be nonnegative real numbers such that

a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 ≥ ak+1 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n.

If n ≥ 3 and 1 ≤ k ≤ n− 1, then

1

ka21 + k + 1
+

1

ka22 + k + 1
+ · · ·+ 1

ka2n + k + 1
≥ n

2k + 1
.

(Vasile C., 2007)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

and

f(u) =
1

ku2 + k + 1
, u ≥ 0.

For u ≥ 1, we have

f ′′(u) =
2k(3ku2 − k − 1)

(ku2 + k + 1)3
≥ 2k(2k − 1)

(ku2 + k + 1)3
> 0,
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hence f(u) is convex for u ≥ s. Therefore, we may apply the RHCF-OV Theorem for m = n−k.
By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ≥ 0 so that x+ ky = 1 + k. Since

g(u) =
f(u)− f(1)

u− 1
=

−k(u+ 1)

(2k + 1)(ku2 + k + 1)
,

h(x, y) =
g(x)− g(y)

x− y
=

k

2k + 1
· k(xy + x+ y − 1)− 1

(kx2 + k + 1)(ky2 + k + 1)
,

we only need to show that
k(xy + x+ y − 1)− 1 ≥ 0.

Indeed,

k(xy + x+ y − 1)− 1 = ky(1 + x) + kx− k − 1 = (1 + k − x)(1 + x) + kx− k − 1

= x(2k − x) = x(k − 1 + ky) ≥ x(k − 1) ≥ 0.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = ak = 1 +
1

k
, ak+1 = · · · = an−1 = 1, an = 0.

Solution. Consider the inequality

1

a21 + k
+

1

a22 + k
+ · · ·+ 1

a2n + k
≥ n

1 + k
, k ∈ [0, 3];

and write it as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

and

f(u) =
1

u2 + k
, u ≥ 0.

For u ≥ 1, we have

f ′′(u) =
2(3u2 − k)

(u2 + k)3
≥ 2(3− k)

(u2 + k)3
≥ 0,

hence f(u) is convex for u ≥ s. Therefore, we may apply the RHCF-OV Theorem for m = n− 1
and m = n − 2, respectively. By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ≥ 0 so
that x+ (n−m)y = 1 + n−m. Since

g(u) =
f(u)− f(1)

u− 1
=

−u− 1

(1 + k)(u2 + k)
,

h(x, y) =
g(x)− g(y)

x− y
=

xy + x+ y − k
(1 + k)(x2 + k)(y2 + k)

,

we only need to show that
xy + x+ y − k ≥ 0.
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(a) We need to show that xy + x+ y − k ≥ 0 for k = 2, m = n− 1, x+ y = 2; indeed, we
have

xy + x+ y − k = xy ≥ 0.

From x < y, x + y = 2 and xy + x + y − k = 0, we get x = 0 and y = 2. Therefore, by Note 4,
the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = an−1 = 1, an = 2.

(b) We have k = 3/2, m = n− 2, x+ 2y = 3, hence

xy + x+ y − k =
x(4− x)

2
=
x(1 + 2y)

2
≥ 0.

From x + 2y = 3 and xy + x + y − k = 0, we get x = 0 and y = 3/2. Therefore, the equality
holds for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = an−2 = 1, an−1 = an =
3

2
.

P 2.13. If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
1

na21 + n2 + n+ 1
+

1

na22 + n2 + n+ 1
+ · · ·+ 1

na22n + n2 + n+ 1
≤ 2n

(n+ 1)2
.

(Vasile C., 2007)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(a2n) ≥ 2nf(s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f(u) =
−1

nu2 + n2 + n+ 1
, u ≥ 0.

For u ∈ [0, 1], we have

f ′′(u) =
2nu(n2 + n+ 1− 3nu2)

(nu2 + n2 + n+ 1)3
≥ 2nu(n2 + n+ 1− 3n)

(nu2 + n2 + n+ 1)3
≥ 0,

hence f is convex on [0, s]. Therefore, we may apply the LHCF-OV Theorem for 2n numbers
and m = n. By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ≥ 0 so that x+ny = 1+n.
We have

g(u) =
f(u)− f(1)

u− 1
=

n(u+ 1)

(n+ 1)2(nu2 + n2 + n+ 1)
,
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h(x, y) =
g(x)− g(y)

x− y

=
n(n2 + n+ 1− nx− ny − nxy)

(n+ 1)2(nx2 + n2 + n+ 1)(ny2 + n2 + n+ 1)

=
n(ny − 1)2

(n+ 1)2(nx2 + n2 + n+ 1)(ny2 + n2 + n+ 1)
≥ 0.

From x + ny = 1 + n and h(x, y) = 0, we get x = n and y = 1/n. Therefore, the equality holds
for a1 = a2 = · · · = a2n = 1, and also for

a1 = n, a2 = · · · = an = 1, an+1 = · · · = an =
1

n
.

P 2.14. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ c ≥ 1 ≥ d ≥ e ≥ f, a+ b+ c+ d+ e+ f = 6,

then
3a+ 4

3a2 + 4
+

3b+ 4

3b2 + 4
+

3c+ 4

3c2 + 4
+

3d+ 4

3d2 + 4
+

3e+ 4

3e2 + 4
+

3f + 4

3f 2 + 4
≤ 6.

(Vasile C., 2009)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) + f(f) ≥ 6f(s), s =
a+ b+ c+ d+ e+ f

6
= 1,

where

f(u) =
−3u− 4

3u2 + 4
, u ≥ 0.

For u ∈ [0, 1], we have

f ′′(u) =
6(16− 9u3) + 216u(1− u)

(3u2 + 4)3
> 0,

hence f is convex on [0, s]. Therefore, we may apply the LHCF-OV Theorem for n = 6 and
m = 3. By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ≥ 0 so that x + 3y = 4. We
have

g(u) =
f(u)− f(1)

u− 1
=

3u

3u2 + 4
,

h(x, y) =
g(x)− g(y)

x− y
=

3(4− 3xy)

(3x2 + 4)(3y2 + 4)

=
3(x− 2)2

(3x2 + 4)(3y2 + 4)
≥ 0.

From x+ 3y = 4 and h(x, y) = 0, we get x = 2 and y = 2/3. Therefore, in accordance with Note
4, the equality holds for a = b = c = d = e = f = 1, and also for

a = 2, b = c = 1, d = e = f =
2

3
.
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P 2.15. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d ≥ e ≥ f, a+ b+ c+ d+ e+ f = 6,

then
a2 − 1

(2a+ 7)2
+

b2 − 1

(2b+ 7)2
+

c2 − 1

(2c+ 7)2
+

d2 − 1

(2d+ 7)2
+

e2 − 1

(2e+ 7)2
+

f 2 − 1

(2f + 7)2
≥ 0.

(Vasile C., 2009)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) + f(f) ≥ 6f(s), s =
a+ b+ c+ d+ e+ f

6
= 1,

where

f(u) =
u2 − 1

(2u+ 7)2
, u ≥ 0.

For u ∈ [0, 1], we have

f ′′(u) =
2(37− 28u)

(2u+ 7)4
> 0,

hence f is convex on [0, s]. Therefore, we may apply the LHCF-OV Theorem for n = 6 and
m = 2. By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ≥ 0 so that x + 4y = 5. We
have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1

(2u+ 7)2
,

h(x, y) =
g(x)− g(y)

x− y
=

21− 4x− 4y − 4xy

(2x+ 7)2(2y + 7)2

=
(x− 4)2

(2x+ 7)2(2y + 7)2
≥ 0.

From x+ 4y = 5 and h(x, y) = 0, we get x = 4 and y = 1/4. Therefore, the equality holds only
for a = b = c = d = e = f = 1, and also for

a = 4, b = 1, c = d = e = f =
1

4
.

P 2.16. If a, b, c, d, e, f are nonnegative real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d ≤ e ≤ f, a+ b+ c+ d+ e+ f = 6,

then
a2 − 1

(2a+ 5)2
+

b2 − 1

(2b+ 5)2
+

c2 − 1

(2c+ 5)2
+

d2 − 1

(2d+ 5)2
+

e2 − 1

(2e+ 5)2
+

f 2 − 1

(2f + 5)2
≤ 0.

(Vasile C., 2009)
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Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) + f(f) ≥ 6f(s), s =
a+ b+ c+ d+ e+ f

6
= 1,

where

f(u) =
1− u2

(2u+ 5)2
, u ≥ 0.

For u ≥ 1, we have

f ′′(u) =
2(20u− 13)

(2u+ 5)4
> 0,

hence f(u) is convex for u ≥ s. Therefore, we may apply the RHCF-OV Theorem for n = 6 and
m = 2. By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ≥ 0 so that x + 4y = 5. We
have

g(u) =
f(u)− f(1)

u− 1
=
−u− 1

(2u+ 5)2
,

h(x, y) =
g(x)− g(y)

x− y

=
4xy + 4x+ 4y − 5

(2x+ 5)2(2y + 5)2

=
4xy + 3x

(2x+ 5)2(2y + 5)2
≥ 0.

From x+ 4y = 5 and h(x, y) = 0, we get x = 0 and y = 5/4. Therefore, in accordance with Note
4, the equality holds only for a = b = c = d = e = f = 1, and also for

a = 0, b = 1, c = d = e = f =
5

4
.

P 2.17. If a, b, c are nonnegative real numbers so that

a ≤ b ≤ 1 ≤ c, a+ b+ c = 3,

then √
2a

b+ c
+

√
2b

c+ a
+

√
2c

a+ b
≥ 3.

(Vasile C., 2008)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =

√
u

3− u
, u ∈ [0, 3).
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From

f ′′(u) =
3(4u− 3)

4u3/2(3− u)5/2
,

it follows that f(u) is convex for u ≥ s. Therefore, we may apply the RHCF-OV Theorem for
n = 3 and m = 2. So, it suffices to show that

f(x) + f(y) ≥ 2f(1)

for x+ y = 2, 0 ≤ x ≤ 1 ≤ y. This inequality is true if g(x) ≥ 0, where

g(x) = f(x) + f(y)− 2f(1), y = 2− x, x ∈ [0, 1].

Since y′ = −1, we have

g′(x) = f ′(x)− f ′(y) =
3

2

[
1√

x(3− x)3
− 1√

y(3− y)3

]
.

The derivative f ′(x) has the same sign as h(x), where

h(x) = y(3− y)3 − x(3− x)3 = (2− x)(1 + x)3 − x(3− x)3

= 2(1− 11x+ 15x2 − 5x3) = 2(1− x)(1− 10x+ 5x2).

Let

x1 = 1− 2√
5
.

Since h(x1) = 0, h(x) > 0 for x ∈ [0, x1) and h(x) < 0 for x ∈ (x1, 1), it follows that g is
increasing on [0, x1] and decreasing on [x1, 1]. From

g(0) = f(0) + f(2)− 2f(1) = 0,

g(1) = f(1) + f(1)− 2f(1) = 0,

it follows that g(x) ≥ 0 for x ∈ [0, 1].

The equality holds for a = b = c = 1, and also for a = 0, b = 1 and c = 2.

P 2.18. If a1, a2, . . . , a8 are nonnegative real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1 ≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then

(a21 + 1)(a22 + 1) · · · (a28 + 1) ≥ (a1 + 1)(a2 + 1) · · · (a8 + 1).

(Vasile C., 2008)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(a8) ≥ 8f(s), s =
a1 + a2 + · · ·+ a8

8
= 1,

where
f(u) = ln(u2 + 1)− ln(u+ 1), u ≥ 0.

For u ∈ [0, 1], we have

f ′′(u) =
2(1− u2)
(u2 + 1)2

+
1

(u+ 1)2
=

(u2 − u4) + 4u(1− u2) + u2 + 3

(u2 + 1)2(u+ 1)2
> 0.

Therefore, f is convex on [0, s]. According to the LHCF-OV Theorem applied for n = 8 and
m = 4, it suffices to show that f(x) + 4f(y) ≥ 5f(1) for x, y ≥ 0 so that x+ 4y = 5. Using Note
2, we only need to show that H(x, y) ≥ 0 for x, y ≥ 0 so that x+ 4y = 5, where

H(x, y) =
f ′(x)− f ′(y)

x− y
=

2(1− xy)

(x2 + 1)(y2 + 1)
+

1

(x+ 1)(y + 1)
.

The inequality H(x, y) ≥ 0 is equivalent to

2(1− xy)(x+ 1)(y + 1) + (x2 + 1)(y2 + 1) ≥ 0.

Since 2(x2 + 1) ≥ (x+ 1)2 and 2(y2 + 1) ≥ (y + 1)2, it suffices to prove that

8(1− xy) + (x+ 1)(y + 1) ≥ 0.

Indeed,

8(1− xy) + (x+ 1)(y + 1) = 28x2 − 38x+ 14 = 28(x− 19/28)2 + 31/28 > 0.

The proof is completed. The equality holds for a1 = a2 = · · · = a8.

P 2.19. If a, b, c, d are real numbers so that

−1

2
≤ a ≤ b ≤ 1 ≤ c ≤ d, a+ b+ c+ d = 4,

then

7

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
+ 3

(
1

a
+

1

b
+

1

c
+

1

d

)
≥ 40.

(Vasile C., 2011)

Solution. We have

d = 4− a− b− c ≤ 4 +
1

2
+

1

2
− 1 = 4.

Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,
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where

f(u) =
7

u2
+

3

u
, u ∈ I =

[
−1

2
, 4

]
\ {0}.

Clearly, f(u) is convex for u ≥ 1 (because
7

u2
and

3

u
are convex). According to Note 3, we may

apply the RHCF-OV Theorem for n = 4 and m = 2. By Note 1, we only need to show that
h(x, y) ≥ 0 for x, y ∈ I so that x+ 2y = 3, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) = − 7

u2
− 10

u
,

h(x, y) =
7(x+ y) + 10xy

x2y2
=

(2x+ 1)(−5x+ 21)

2x2y2
≥ 0.

From x+ 2y = 3 and h(x, y) = 0, we get x = −1/2, y = 7/3. Therefore, in accordance with Note
4, the equality holds for a = b = c = d = 1, and also for

a =
−1

2
, b = 1, c = d =

7

4
.

P 2.20. Let a, b, c, d be real numbers such that a+ b+ c+ d = 4. Prove that

(a) if −1 ≤ a ≤ b ≤ c ≤ 1 ≤ d, then

3

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
≥ 8 +

1

a
+

1

b
+

1

c
+

1

d
;

(b) if −1 ≤ a ≤ b ≤ 1 ≤ c ≤ d, then

2

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
≥ 4 +

1

a
+

1

b
+

1

c
+

1

d
.

(Vasile C., 2011)

Solution. (a) We have

d = 4− a− b− c ≤ 4 + 1 + 1 + 1 = 7.

Write the desired inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
3

u2
− 1

u
, u ∈ I = [−1, 7] \ {0}.
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From

f ′′(u) =
2(9− u)

u4
> 0,

it follows that f is convex on I≥s. According to Note 3, we may apply the RHCF-OV Theorem
for n = 4 and m = 3. By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ∈ I so that
x+ y = 2. We have

g(u) =
f(u)− f(1)

u− 1
= −2

u
− 3

u2
,

h(x, y) =
g(x)− g(y)

x− y
=

3(x+ y) + 2xy

x2y2

=
2(x+ 1)(3− x)

x2y2
=

2(x+ 1)(y + 1)

x2y2
≥ 0.

From x < y, x+ y = 2 and h(x, y) = 0, we get x = −1 and y = 3. Therefore, in accordance with
Note 4, the equality holds for a = b = c = d = 1, and also for

a = −1, b = c = 1, d = 3.

(b) We have
d = 4− a− b− c ≤ 4 + 1 + 1− 1 = 5.

Write the desired inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
2

u2
− 1

u
, u ∈ I = [−1, 5] \ {0}.

From

f ′′(u) =
2(6− u)

u4
> 0,

it follows that f is convex on I≥s. According to Note 3, we may apply the RHCF-OV Theorem
for n = 4 and m = 2. By Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ∈ I so that
x+ 2y = 3. We have

g(u) =
f(u)− f(1)

u− 1
= −1

u
− 2

u2
,

h(x, y) =
g(x)− g(y)

x− y
=

2(x+ y) + xy

x2y2

=
(x+ 1)(6− x)

2x2y2
≥ 0.

From x + 2y = 3 and h(x, y) = 0, we get x = −1 and y = 2. Therefore, the equality holds for
a = b = c = d = 1, and also for

a = −1, b = 1, c = d = 2.
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P 2.21. If a, b, c, d are positive real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d, abcd = 1,

then

a2 + b2 + c2 + d2 − 4 ≥ 18

(
a+ b+ c+ d− 1

a
− 1

b
− 1

c
− 1

d

)
.

(Vasile C., 2008)

Solution. Using the substitution

a = ex, b = ey, c = ez, d = ew,

we need to show that
f(x) + f(y) + f(z) + f(w) ≥ 4f(s),

where

x ≥ y ≥ 0 ≥ z ≥ w, s =
x+ y + z + w

4
= 0,

f(u) = e2u − 1− 18(eu − e−u), u ∈ R.

For u ≤ 0, we have
f ′′(u) = 4e2u + 18(e−u − eu) > 0,

hence f is convex on (−∞, s]. By the LHCF-OV Theorem applied for n = 4 and m = 2, it
suffices to show that f(x) + 2f(y) ≥ 3f(0) for all real x, y so that x + 2y = 0; that is, to show
that

a2 + 2b2 − 3− 18

(
a+ 2b− 1

a
− 2

b

)
≥ 0

for all a, b > 0 so that ab2 = 1. This inequality is equivalent to

(b2 − 1)2(2b2 + 1)

b4
+

18(b− 1)3(b+ 1)

b2
≥ 0,

(b− 1)2(2b− 1)2(b+ 1)(5b+ 1)

b4
≥ 0.

The proof is completed. The equality holds for a = b = c = d = 1, and also for

a = 4, b = 1, c = d = 1/2.

P 2.22. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d, abcd = 1,

then √
a2 − a+ 1 +

√
b2 − b+ 1 +

√
c2 − c+ 1 +

√
d2 − d+ 1 ≥ a+ b+ c+ d.

(Vasile C., 2008)
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Solution. Using the substitution

a = ex, b = ey, c = ez, d = ew,

we need to show that
f(x) + f(y) + f(z) + f(w) ≥ 4f(s),

where

x ≤ y ≤ 0 ≤ z ≤ w, s =
x+ y + z + w

4
= 0,

f(u) =
√
e2u − eu + 1− eu, u ∈ R.

We claim that f is convex for u ≥ 0. Since

e−uf ′′(u) =
4e3u − 6e2u + 9eu − 2

4(e2u − eu + 1)3/2
− 1,

we need to show that
4t3 − 6t2 + 9t− 2 ≥ 0

and
(4t3 − 6t2 + 9t− 2)2 ≥ 16(t2 − t+ 1)3,

where t = eu ≥ 1. Indeed, we have

4t3 − 6t2 + 9t− 2 ≥ 4t3 − 6t2 + 7t > 4t3 − 6t2 + 2t = 2t(t− 1)(2t− 1) ≥ 0

and
(4t3 − 6t2 + 9t− 2)2 − 16(t2 − t+ 1)3 = 12t3(t− 1) + 9t2 + 12(t− 1) > 0.

By the RHCF-OV Theorem applied for n = 4 and m = 2, it suffices to show that f(x) + 2f(y) ≥
3f(0) for all real x, y so that x+ 2y = 0; that is, to show that

√
a2 − a+ 1 + 2

√
b2 − b+ 1 ≥ a+ 2b

for all a, b > 0 so that ab2 = 1. This inequality is equivalent to

√
b4 − b2 + 1

b2
+ 2
√
b2 − b+ 1 ≥ 1

b2
+ 2b,

√
b4 − b2 + 1− 1

b2
+ 2(
√
b2 − b+ 1− 1) ≥ 0,

b2 − 1√
b4 − b2 + 1 + 1

+
2(1− b)√

b2 − b+ 1 + b
≥ 0.

Since
b2 − 1√

b4 − b2 + 1 + 1
≥ b2 − 1

b2 + 1
,

it suffices to show that
b2 − 1

b2 + 1
+

2(1− b)√
b2 − b+ 1 + b

≥ 0,
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which is equivalent to

(b− 1)

[
b+ 1

b2 + 1
− 2√

b2 − b+ 1 + b

]
≥ 0,

(b− 1)
[
(b+ 1)

√
b2 − b+ 1− b2 + b− 2

]
≥ 0,

(b− 1)2(3b2 − 2b+ 3)

(b+ 1)
√
b2 − b+ 1 + b2 − b+ 2

≥ 0.

The last inequality is clearly true. The equality holds for a = b = c = d = 1.

P 2.23. If a, b, c, d are positive real numbers so that

a ≤ b ≤ c ≤ 1 ≤ d, abcd = 1,

then
1

a3 + 3a+ 2
+

1

b3 + 3b+ 2
+

1

c3 + 3c+ 2
+

1

d3 + 3d+ 2
≥ 2

3
.

(Vasile C., 2007)

Solution. Using the substitution

a = ex, b = ey, c = ez, d = ew,

we need to show that
f(x) + f(y) + f(z) + f(w) ≥ 4f(s),

where

x ≤ y ≤ z ≤ 0 ≤ w, s =
x+ y + z + w

4
= 0,

f(u) =
1

e3u + 3eu + 2
, u ∈ R.

We claim that f is convex for u ≥ 0. Indeed, denoting t = eu, t ≥ 1, we have

f ′′(u) =
3t(3t5 + 2t3 − 6t2 + 3t− 2)

(t3 + 3t+ 2)3

=
3t(t− 1)(3t4 + 3t3 + 5t2 − t+ 2)

(t3 + 3t+ 2)3
≥ 0.

By the RHCF-OV Theorem applied for n = 4 and m = 3, it suffices to show that f(x) + f(y) ≥
2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

a3 + 3a+ 2
+

1

b3 + 3b+ 2
≥ 1

3

for all a, b > 0 so that ab = 1. This inequality is equivalent to

(a− 1)4(a2 + a+ 1) ≥ 0.

The equality holds for a = b = c = d = 1.
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P 2.24. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1,

then
1

a1
+

1

a2
+ · · ·+ 1

an
≥ a1 + a2 + · · ·+ an.

(Vasile C., 2007)

Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we need to show that
f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ · · · ≥ xn−1 ≥ 0 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) = e−u − eu, u ∈ R.

For u ≤ 0, we have
f ′′(u) = e−u − eu ≥ 0,

therefore f(u) is convex for u ≤ s. By the LHCF-OV Theorem applied for m = n− 1, it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

a
− a+

1

b
− b ≥ 0

for all a, b > 0 so that ab = 1. This is true since

1

a
− a+

1

b
− b =

1

a
− a+ a− 1

a
= 0.

The equality holds for

a1 ≥ 1, a2 = · · · = an−1 = 1, an = 1/a1.

P 2.25. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If k ≥ 1, then
1

1 + ka1
+

1

1 + ka2
+ · · ·+ 1

1 + kan
≥ n

1 + k
.

(Vasile C., 2007)
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Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we need to show that
f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≤ · · · ≤ xn−1 ≤ 0 ≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
1

1 + keu
, u ∈ R.

For u ≥ 0, we have

f ′′(u) =
keu(keu − 1)

(1 + keu)3
≥ 0,

therefore f(u) is convex for u ≥ s. By the RHCF-OV Theorem applied for m = n− 1, it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

1 + ka
+

1

1 + kb
≥ 2

1 + k

for all a, b > 0 so that ab = 1. This is true since

1

1 + ka
+

1

1 + kb
− 2

1 + k
=
k(k − 1)(a− 1)2

(1 + ka)(a+ k)
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1, then the equality holds for

a1 ≤ 1, a2 = · · · = an−1 = 1, an = 1/a1.

P 2.26. If a1, a2, . . . , a9 are positive real numbers so that

a1 ≤ · · · ≤ a8 ≤ 1 ≤ a9, a1a2 · · · a9 = 1,

then
1

(a1 + 2)2
+

1

(a2 + 2)2
+ · · ·+ 1

(a9 + 2)2
≥ 1.

(Vasile C., 2007)

Solution. Using the substitution

ai = exi , i = 1, 2, . . . , 9,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(x9) ≥ 9f(s),
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where

x1 ≤ · · · ≤ x8 ≤ 0 ≤ x9, s =
x1 + x2 + · · ·+ x9

9
= 0,

f(u) =
1

(eu + 2)2
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
4eu(eu − 1)

(eu + 2)4
≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case n = 9 and m = 8), it
suffices to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

(a+ 2)2
+

1

(b+ 2)2
≥ 2

9

for all a, b > 0 so that ab = 1. Write this inequality as

b2

(2b+ 1)2
+

1

(b+ 2)2
≥ 2

9
,

which is equivalent to the obvious inequality

(b− 1)4 ≥ 0.

The equality holds for a1 = a2 = · · · = a9 = 1.

P 2.27. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that

p+ q ≥ 1 +
2pq

p+ 4q
,

then
1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≥ n

1 + p+ q
.

(Vasile C., 2007)

Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≤ · · · ≤ xn−1 ≤ 0 ≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,
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f(u) =
1

1 + peu + qe2u
, u ∈ R.

We have

f ′′(u) =
euf1(u)

(1 + peu + qe2u)3
,

where
f1(u) = 4q2e3u + 3pqe2u + (p2 − 4q)eu − p.

The hypothesis p+ q ≥ 1 +
2pq

p+ 4q
is equivalent to

p2 + 3pq + 4q2 ≥ p+ 4q.

For u ∈ [0,∞), we have

f1(u) ≥ 4q2eu + 3pqeu + (p2 − 4q)eu − p ≥ p(eu − 1) ≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m = n− 1), it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

1 + pa+ qa2
+

1

1 + pb+ qb2
≥ 2

1 + p+ q

for all a, b > 0 so that ab = 1. Write this inequality as

1

1 + pa+ qa2
+

a2

a2 + pa+ q
≥ 2

1 + p+ q

which is equivalent to
(a− 1)2h(a) ≥ 0,

where

h(a) = q(p+ q − 1)(a2 + 1) + (p2 + pq + 2q2 − p− 2q)a

≥ 2q(p+ q − 1)a+ (p2 + pq + 2q2 − p− 2q)a

= (p2 + 3pq + 4q2 − p− 4q)a ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

Remark. For p = 1, q = 1/4 and n = 9, we get the preceding P 2.26.

P 2.28. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If m ≥ 1 and 0 < k ≤ m, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≥ n

(1 + k)m
.

(Vasile C., 2007)
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Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≤ · · · ≤ xn−1 ≤ 0 ≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
1

(eu + k)m
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
meu(meu − k)

(eu + k)m+2
≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m = n− 1), it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x ≤ y and x + y = 0; that is, to show
that

1

(a+ k)m
+

1

(b+ k)m
≥ 2

(1 + k)m

for all a, b > 0 so that a ∈ (0, 1] and ab = 1. Write this inequality as g(a) ≥ 0, where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
− 2

(1 + k)m
,

with
g′(a)

m
=
am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1
.

If g′(a) ≤ 0 for a ∈ (0, 1], then g is decreasing, hence g(a) ≥ g(1) = 0. Thus, it suffices to show
that

am−1 ≤
(
ka+ 1

a+ k

)m+1

.

Since
ka+ 1

a+ k
− ma+ 1

a+m
=

(m− k)(1− a2)
(a+ k)(a+m)

≥ 0,

we only need to show that

am−1 ≤
(
ma+ 1

a+m

)m+1

,

which is equivalent to h(a) ≤ 0 for a ∈ (0, 1], where

h(a) = (m− 1) ln a+ (m+ 1) ln(a+m)− (m+ 1) ln(ma+ 1),

with

h′(a) =
m− 1

a
+
m+ 1

a+m
− m(m+ 1)

ma+ 1
=
m(m− 1)(a− 1)2

a(a+m)(ma+ 1)
.

Since h′(a) ≥ 0, h(a) is increasing for a ∈ (0, 1], therefore h(a) ≤ h(1) = 0. The equality holds
for a1 = a2 = · · · = an = 1.

Remark. For k = m = 2 and n = 9, we get the inequality in P 2.26.
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P 2.29. If a1, a2, . . . , an are positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1,

then
1√

1 + 3a1
+

1√
1 + 3a2

+ · · ·+ 1√
1 + 3an

≥ n

2
.

(Vasile C., 2007)

Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≤ · · · ≤ xn−1 ≤ 0 ≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
1√

1 + 3eu
, u ∈ R.

For u ≥ 0, we have

f ′′(u) =
3eu(3eu − 2)

4(1 + 3eu)5/2
> 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m = n− 1), it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1√
1 + 3a

+
1√

1 + 3b
≥ 1

for all a, b > 0 so that ab = 1. Write this inequality as

1√
1 + 3a

+

√
a

a+ 3
≥ 1.

Substituting
1√

1 + 3a
= t, 0 < t < 1, the inequality becomes

√
1− t2
8t2 + 1

≥ 1− t.

By squaring, we get
t(1− t)(2t− 1)2 ≥ 0,

which is true. The equality holds for a1 = a2 = · · · = an = 1.
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P 2.30. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If 0 < m < 1 and 0 < k ≤ 1

21/m − 1
, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≥ n

(1 + k)m
.

(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

21/m > 1 +
1

m
,

hence

k ≤ 1

21/m − 1
< m < 1.

Using the substitution
ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≤ · · · ≤ xn−1 ≤ 0 ≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
1

(eu + k)m
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
meu(meu − k)

(eu + k)m+2
≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m = n− 1), it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

(a+ k)m
+

1

(b+ k)m
≥ 2

(1 + k)m

for all a, b > 0 so that ab = 1. Write this inequality as g(a) ≥ 0 for a ≥ 1, where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
− 2

(1 + k)m
.

The derivative
g′(a)

m
=
am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1

has the same sign as the function

h(a) = (m− 1) ln a+ (m+ 1) ln(a+ k)− (m+ 1) ln(ka+ 1).
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We have

h′(a) =
m− 1

a
+ (m+ 1)

(
1

a+ k
− k

ka+ 1

)
=

kh1(a)

a(a+ k)(ka+ 1)
,

where

h1(a) = (m− 1)(a2 + 1)− 2
(
k − m

k

)
a.

The discriminant D of the quadratic function h1(a) is

D

4
=
(
k − m

k

)2
− (m− 1)2 = (1− k2)

(
m2

k2
− 1

)
.

Since D > 0, the roots a1 and a2 of h1(a) are real and unequal. If a1 < a2, then h1(a) ≥ 0 for
a ∈ [a1, a2] and h1(a) ≤ 0 for a ∈ (−∞, a1] ∪ [a2,∞). Since

h1(1) =
2(k + 1)(m− k)

k
> 0,

it follows that a1 < 1 < a2, therefore h1(a) and h′(a) are positive for a ∈ [1, a2) and negative for
a ∈ (a2,∞), h is increasing on [1, a2] and decreasing on [a2,∞). From h(1) = 0 and

lim
a→∞

h(a) = −∞,

it follows that there is a3 > a2 so that h(a) and g′(a) are positive for a ∈ (1, a3) and negative for
a ∈ (a3,∞). As a result, g is increasing on [1, a3] and decreasing on [a3,∞). Since g(1) = 0 and

lim
a→∞

g(a) =
1

km
− 2

(1 + k)m
≥ 0,

it follows that g(a) ≥ 0 for a ≥ 1. This completes the proof. The equality holds for a1 = a2 =
· · · = an = 1.

Remark. For k =
1

3
and m =

1

2
, we get the preceding P 2.29.

P 2.31. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 ≥ ak+1 ≥ · · · ≥ an, a1a2 · · · an = 1.

If n ≥ 3 and 1 ≤ k ≤ n− 1, then

1

ka1 + 1
+

1

ka2 + 1
+ · · ·+ 1

kan + 1
≥ n

k + 1
.

(Vasile C., 2007)
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Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ x2 ≥ · · · ≥ xk ≥ 1 ≥ xk+1 ≥ · · · ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
1

keu + 1
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
keu(keu − 1)

(keu + 1)3
> 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m = n− k), it suffices
to show that f(x) + kf(y) ≥ (1 + k)f(0) for all real x, y so that x+ ky = 0; that is, to show that

1

ka+ 1
+

k

kb+ 1
≥ 1

for all a, b > 0 so that abk = 1. The inequality is equivalent to

bk

bk + k
+

k

kb+ 1
≥ 1, kg(b) ≥ 0,

where

g(b) = bk − kb+ k − 1.

From g′(b) = k(bk−1 − 1), it follows that g(b) is decreasing on (0, 1] and increasing on [1,∞),
hence

g(b) ≥ g(1) = 0.

The equality holds for a1 = a2 = · · · = an = 1.

P 2.32. If a1, a2, . . . , an (n ≥ 4) are positive real numbers so that

a1 ≥ a2 ≥ a3 ≥ 1 ≥ a4 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 1)2
+

1

(a2 + 1)2
+ · · ·+ 1

(an + 1)2
≥ n

4
.

(Vasile C., 2007)
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Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ x2 ≥ x3 ≥ 0 ≥ x4 ≥ · · · ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
1

(eu + 1)2
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
2eu(2eu − 1)

(eu + 1)4
> 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m = 3), it suffices to
show that f(x) + 3f(y) ≥ 4f(0) for all real x, y so that x+ 3y = 0; that is, to show that

1

(a+ 1)2
+

3

(b+ 1)2
≥ 1

for all a, b > 0 so that ab3 = 1. The inequality is equivalent to

b6

(b3 + 1)2
+

3

(b+ 1)2
≥ 1.

Using the Cauchy-Schwarz inequality, it suffices to show that

(b3 + 3)2

(b3 + 1)2 + 3(b+ 1)2
≥ 1,

which is equivalent to the obvious inequality

(b− 1)2(4b+ 5) ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

P 2.33. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 3)2
+

1

(a2 + 3)2
+ · · ·+ 1

(an + 3)2
≤ n

16
.

(Vasile C., 2007)
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Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ · · · ≥ xn−1 ≥ 0 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
−1

(eu + 3)2
, u ∈ R.

For u ∈ (−∞, 0], we have

f ′′(u) =
2eu(3− 2eu)

(eu + 3)4
> 0,

hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m = n−1), it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

(a+ 3)2
+

1

(b+ 3)2
≤ 1

8

for all a, b > 0 so that ab = 1. Write this inequality as

b2

(3b+ 1)2
+

1

(b+ 3)2
≤ 1

8
,

which is equivalent to the obvious inequality

(b2 − 1)2 + 12b(b− 1)2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1,

If k ≥ 1 +
√

2, then

1

(a1 + k)2
+

1

(a2 + k)2
+ · · ·+ 1

(an + k)2
≤ n

(1 + k)2
,

with equality for a1 = a2 = · · · = an = 1.
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P 2.34. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ q ≤ 1, then

1

1 + pa1 + qa21
+

1

1 + pa2 + qa22
+ · · ·+ 1

1 + pan + qa2n
≤ n

1 + p+ q
.

(Vasile C., 2007)

Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ · · · ≥ xn−1 ≥ 0 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
−1

1 + peu + qe2u
, u ∈ R.

For u ≤ 0, we have

f ′′(u) =
eu[−4q2e3u − 3pqe2u + (4q − p2)eu + p]

(1 + peu + qe2u)3

≥ e2u[−4q2 − 3pq + (4q − p2) + p]

(1 + peu + qe2u)3

=
e2u[(p+ 4q)(1− p− q) + 2pq]

(1 + peu + qe2u)3
≥ 0,

therefore f(u) is convex for u ≤ s. According to the LHCF-OV Theorem (case m = n − 1), it
suffices to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

1 + pa+ qa2
+

1

1 + pb+ qb2
≤ 2

1 + p+ q

for all a, b > 0 so that ab = 1. Write this inequality as

(a− 1)2[q(1− p− q)a2 + (p+ 2q − p2 − pq − 2q2)a+ q(1− p− q)] ≥ 0,

which is true because

p+ 2q − p2 − pq − 2q2 ≥ (p+ 2q)(p+ q)− p2 − pq − 2q2 = 2pq ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.
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P 2.35. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1.

If m > 1 and k ≥ 1

21/m − 1
, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≤ n

(1 + k)m
.

(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

21/m < 1 +
1

m
,

hence

k ≥ 1

21/m − 1
> m > 1.

Using the substitution
ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ · · · ≥ xn−1 ≥ 0 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
−1

(eu + k)m
, u ∈ R.

For u ≤ 0, we have

f ′′(u) =
meu(k −meu)

(eu + k)m+2
≥ 0,

hence f is convex u ≤ s. By the LHCF-OV Theorem (case m = n− 1), it suffices to show that
f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

(a+ k)m
+

1

(b+ k)m
≤ 2

(1 + k)m

for all a, b > 0 so that ab = 1. Write this inequality as g(a) ≤ 0 for a ≥ 1, where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
− 2

(1 + k)m
.

The derivative
g′(a)

m
=
am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1

has the same sign as the function

h(a) = (m− 1) ln a+ (m+ 1) ln(a+ k)− (m+ 1) ln(ka+ 1).
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We have

h′(a) =
m− 1

a
+ (m+ 1)

(
1

a+ k
− k

ka+ 1

)
=

kh1(a)

a(a+ k)(ka+ 1)
,

where
h1(a) = (m− 1)(a2 + 1)− 2

(
k − m

k

)
a.

The discriminant D of the quadratic function h1(a) is

D

4
=
(
k − m

k

)2
− (m− 1)2 = (k2 − 1)

(
1− m2

k2

)
.

Since D > 0, the roots a1 and a2 of h1(a) are real and unequal. If a1 < a2, then h1(a) ≤ 0 for
a ∈ [a1, a2] and h1(a) ≥ 0 for a ∈ (−∞, a1] ∪ [a2,∞). Since

h1(1) =
2(k + 1)(m− k)

k
< 0,

it follows that a1 < 1 < a2, therefore h1(a) and h′(a) are negative for a ∈ [1, a2) and positive for
a ∈ (a2,∞), h(a) is decreasing for a ∈ [1, a2] and increasing for a ∈ [a2,∞). From h(1) = 0 and

lim
a→∞

h(a) =∞,

it follows that there is a3 > a2 so that h(a) and g′(a) are negative for a ∈ (1, a3) and positive for
a ∈ (a3,∞). As a result, g is decreasing on [1, a3] and increasing on [a3,∞). Since g(1) = 0 and

lim
a→∞

g(a) =
1

km
− 2

(1 + k)m
≤ 0,

it follows that g(a) ≤ 0 for a ≥ 1. This completes the proof. The equality holds for a1 = a2 =
· · · = an = 1.

P 2.36. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1,

then
1√

1 + 2a1
+

1√
1 + 2a2

+ · · ·+ 1√
1 + 2an

≤ n√
3
.

(Vasile C., 2007)

Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),
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where

x1 ≥ · · · ≥ xn−1 ≥ 0 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
−1√

1 + 2eu
, u ∈ R.

For u ≤ 0, we have

f ′′(u) =
eu(1− eu)

(1 + 2eu)5/2
> 0,

hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m = n−1), it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that√

3

1 + 2a
+

√
3

1 + 2b
≤ 2

for all a, b > 0 so that ab = 1. By the Cauchy-Schwarz inequality, we get√
3

1 + 2a
+

√
3

1 + 2b
≤

√(
3

1 + 2a
+ 1

)(
1 +

3

1 + 2b

)
= 2.

The equality holds for a1 = a2 = · · · = an = 1.

P 2.37. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a1a2 · · · an = 1.

If 0 < m < 1 and k ≥ m, then

1

(a1 + k)m
+

1

(a2 + k)m
+ · · ·+ 1

(an + k)m
≤ n

(1 + k)m
.

(Vasile C., 2007)

Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ · · · ≥ xn−1 ≥ 0 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
−1

(eu + k)m
, u ∈ R.

For u ≤ 0, we have

f ′′(u) =
meu(k −meu)

(eu + k)m+2
≥ 0,
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hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m = n−1), it suffices
to show that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0; that is, to show that

1

(a+ k)m
+

1

(b+ k)m
≤ 2

(1 + k)m

for all a, b > 0 so that ab = 1. Write this inequality as g(a) ≤ 0 for a ≥ 1, where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
− 2

(1 + k)m
,

with
g′(a)

m
=
am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1
.

If g′(a) ≤ 0 for a ≥ 1, then g is decreasing, hence g(a) ≤ g(1) = 0. Thus, it suffices to show that

am−1 ≤
(
ka+ 1

a+ k

)m+1

.

Since
ka+ 1

a+ k
− ma+ 1

a+m
=

(k −m)(a2 − 1)

(a+ k)(a+m)
≥ 0,

we only need to show that

am−1 ≤
(
ma+ 1

a+m

)m+1

,

which is equivalent to h(a) ≤ 0 for a ≥ 1, where

h(a) = (m− 1) ln a+ (m+ 1) ln(a+m)− (m+ 1) ln(ma+ 1),

h′(a) =
m− 1

a
+
m+ 1

a+m
− m(m+ 1)

ma+ 1
=
m(m− 1)(a− 1)2

a(a+m)(ma+ 1)
.

Since h′(a) ≤ 0, h(a) is decreasing for a ≥ 1, hence

h(a) ≤ h(1) = 0.

This completes the proof. The equality holds for a1 = a2 = · · · = an = 1.

Remark. For k =
1

2
and m =

1

2
, we get the preceding P 2.36.

P 2.38. If a1, a2, . . . , an (n ≥ 3)are positive real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1 ≥ an−1 ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 5)2
+

1

(a2 + 5)2
+ · · ·+ 1

(an + 5)2
≤ n

36
.

(Vasile C., 2007)
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Solution. Using the substitution

ai = exi , i = 1, 2, . . . , n,

we can write the inequality as

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≥ · · · ≥ xn−2 ≥ 0 ≥ xn−1 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
−1

(eu + 5)2
, u ∈ R.

For u ∈ (−∞, 0], we have

f ′′(u) =
2eu(5− 2eu)

(eu + 5)4
> 0,

hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m = n−2), it suffices
to show that f(x) + 2f(y) ≥ 3f(0) for all real x, y so that x+ 2y = 0; that is, to show that

1

(a+ 5)2
+

2

(b+ 5)2
≤ 1

12

for all a, b > 0 so that ab2 = 1. Since

1

(a+ 5)2
=

b4

(5b2 + 1)2
≤ b4

(4b2 + 2b)2
=

b2

4(2b+ 1)2
,

it suffices to show that
b2

4(2b+ 1)2
+

2

(b+ 5)2
≤ 1

12
,

which is equivalent to the obvious inequality

(b− 1)2(b2 + 16b+ 1) ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

Remark. Similarly, we can prove the following refinement:

• Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1 ≥ an−1 ≥ an, a1a2 · · · an = 1.

If k ≥ 2 +
√

6, then

1

(a1 + k)2
+

1

(a2 + k)2
+ · · ·+ 1

(an + k)2
≤ n

(1 + k)2
,

with equality for a1 = a2 = · · · = an = 1.
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P 2.39. If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, a21 + a22 + · · ·+ a2n = n,

then
1

3− a1
+

1

3− a2
+ · · ·+ 1

3− an
≤ n

2
.

(Vasile C., 2007)

Solution. From

n = a21 + (a22 + · · ·+ a2n−1) + a2n ≥ a21 + (n− 2) + 0,

we get

a1 ≤
√

2.

Replacing a1, a2, . . . , an by
√
a1,
√
a2, . . . ,

√
an , we have to prove that

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s),

where

2 ≥ a1 ≥ · · · ≥ an−1 ≥ 1 ≥ an, s =
a1 + a2 + · · ·+ an

n
= 1,

f(u) =
1√
u− 3

, u ∈ [0, 2].

For u ∈ [0, 1], we have

f ′′(u) =
3(1−

√
u)

4u
√
u(3−

√
u)3
≥ 0.

Therefore, f is convex on [0, s]. According to the LHCF-OV Theorem and Note 1 (case m =
n− 1), it suffices to show that h(x, y) ≥ 0 for x, y ≥ 0 so that x+ y = 2. Since

g(u) =
f(u)− f(1)

u− 1
=

−1

2(3−
√
u)(1 +

√
u)

and

h(x, y) =
g(x)− g(y)

x− y
=

2−
√
x−√y

2(
√
x+
√
y)(1 +

√
x)(1 +

√
y)(3−

√
x)(3−√y)

,

we need to show that √
x+
√
y ≤ 2.

Indeed, we have √
x+
√
y ≤

√
2(x+ y) = 2.

This completes the proof. The equality holds for a1 = a2 = · · · = an = 1.
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P 2.40. Let a1, a2, . . . , an be nonnegative real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1 + a2 + · · ·+ an = n.

Prove that

a31 + a32 + · · ·+ a3n − n ≥ (n− 1)2

[(
n− a1
n− 1

)3

+

(
n− a2
n− 1

)3

+ · · ·+
(
n− an
n− 1

)3

− n

]
.

(Vasile C., 2010)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) = u3 − (n− 1)2
(
n− u
n− 1

)3

, u ≥ 0.

For u ≥ 1, we have

f ′′(u) =
6n(u− 1)

n− 1
≥ 0.

Therefore, f(u) is convex for u ≥ s. Thus, by the RHCF-OV Theorem (case m = n − 1), it
suffices to show that f(x) + f(y) ≥ 2f(1) for x, y ≥ 0 so that x+ y = 2. We have

f(x) + f(y)− 2f(1) = x3 + y3 − 2− (n− 1)2

[(
n− x
n− 1

)3

+

(
n− y
n− 1

)3

− 2

]

= 6(1− xy)− 6(n− 1)2
[
1− (n− x)(n− y)

(n− 1)2

]
= 0.

This completes the proof. The equality holds for

a1 ≤ 1, a2 = · · · = an−1 = 1, an = 2− a1.



Chapter 3

Partially Convex Function Method

3.1 Theoretical Basis

The following statement is known as the Right Partially Convex Function Theorem (RPCF-
Theorem).

Right Partially Convex Function Theorem (Vasile Cı̂rtoaje, 2012). Let f be a real function
defined on an interval I and convex on [s, s0], where s, s0 ∈ I, s < s0. In addition, f is decreasing
on I≤s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if

f(x) + (n− 1)f(y) ≥ nf(s)

for all x, y ∈ I so that x ≤ s ≤ y and x+ (n− 1)y = ns.

Proof. For

a1 = x, a2 = a3 = · · · = an = y,

the inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ f(s)

becomes

f(x) + (n− 1)f(y) ≥ nf(s);

therefore, the necessity is obvious.
The proof of sufficiency is based on Lemma below. According to this lemma, it suffices to

consider that a1, a2, . . . , an ∈ J, where

J = I≤s0 .

Because f(u) is convex on J≥s, the desired inequality follows from the RHCF Theorem (see
Chapter 1) applied to the interval J.

205
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Lemma. Let f be a real function defined on an interval I. In addition, f is decreasing on I≤s0,
and f(u) ≥ f(s0) for u ∈ I, where s, s0 ∈ I, s < s0. If the inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s)

holds for all a1, a2, . . . , an ∈ I≤s0 so that a1+a2+· · ·+an = ns, then it holds for all a1, a2, . . . , an ∈
I so that a1 + a2 + · · ·+ an = ns.

Proof. For i = 1, 2, . . . , n, define the numbers

bi =

{
ai, ai ≤ s0

s0, ai > s0.

Clearly, bi ∈ I≤s0 and bi ≤ ai. Since f(u) ≥ f(s0) for u ∈ I≥s0 , it follows that f(bi) ≤ f(ai) for
i = 1, 2, . . . , n. Therefore,

b1 + b2 + · · ·+ bn ≤ a1 + a2 + · · ·+ an = ns

and
f(b1) + f(b2) + · · ·+ f(bn) ≤ f(a1) + f(a2) + · · ·+ f(an).

Thus, it suffices to show that

f(b1) + f(b2) + · · ·+ f(bn) ≥ nf(s)

for all b1, b2, . . . , bn ∈ I≤s0 so that b1 + b2 + · · · + bn ≤ ns. By hypothesis, this inequality is true
for b1, b2, . . . , bn ∈ I≤s0 and b1 + b2 + · · ·+ bn = ns. Since f(u) is decreasing on I≤s0 , the more we
have f(b1) + f(b2) + · · ·+ f(bn) ≥ nf(s) for b1, b2, . . . , bn ∈ I≤s0 and b1 + b2 + · · ·+ bn ≤ ns.

Similarly, we can prove the Left Partially Convex Function Theorem (LPCF-Theorem).

Left Partially Convex Function Theorem (Vasile Cı̂rtoaje, 2012). Let f be a real function
defined on an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s. In addition, f is increasing
on I≥s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f(x) + (n− 1)f(y) ≥ nf(s)

for all x, y ∈ I so that x ≥ s ≥ y and x+ (n− 1)y = ns.

From the RPCF-Theorem and the LPCF-Theorem, we find the PCF-Theorem (Partially Con-
vex Function Theorem).

Partially Convex Function Theorem (Vasile Cı̂rtoaje, 2012). Let f be a real function defined
on an interval I and convex on [s0, s] or [s, s0], where s0, s ∈ I. In addition, f is decreasing on
I≤s0 and increasing on I≥s0. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
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holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f(x) + (n− 1)f(y) ≥ nf(s)

for all x, y ∈ I so that x+ (n− 1)y = ns.

Note 1. Let us denote

g(u) =
f(u)− f(s)

u− s
, h(x, y) =

g(x)− g(y)

x− y
.

As shown in Note 1 from Chapter 1, we may replace the hypothesis condition in the RPCF-
Theorem and the LPCF-Theorem), namely

f(x) + (n− 1)f(y) ≥ nf(s),

by the condition

h(x, y) ≥ 0 for all x, y ∈ I so that x+ (n− 1)y = ns.

Note 2. Assume that f is differentiable on I, and let

H(x, y) =
f ′(x)− f ′(y)

x− y
.

As shown in Note 2 from Chapter 1, the inequalities in the RPCF-Theorem and the LPCF-
Theorem hold true by replacing the hypothesis

f(x) + (n− 1)f(y) ≥ nf(s)

with the more restrictive condition

H(x, y) ≥ 0 for all x, y ∈ I so that x+ (n− 1)y = ns.

Note 3. The desired inequalities in the RPCF-Theorem and the LPCF-Theorem become equal-
ities for

a1 = a2 = · · · = an = s.

In addition, if there exist x, y ∈ I so that

x+ (n− 1)y = ns, f(x) + (n− 1)f(y) = nf(s), x 6= y,

then the equality holds also for

a1 = x, a2 = · · · = an = y

(or any cyclic permutation). Notice that these equality conditions are equivalent to

x+ (n− 1)y = ns, h(x, y) = 0

(x < y for the RPCF-Theorem, and x > y for the LPCF-Theorem).
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Note 4. From the proof of the RPCF-Theorem, it follows that this theorem is also valid in the
case when f is defined on I \ {u0}, where u0 ∈ I>s0 . Similarly, the LPCF-Theorem is also valid
in the case when f is defined on I \ {u0}, where u0 ∈ I<s0 .

Note 5. The RPCF-Theorem holds true by replacing the condition
f is decreasing on I≤s0

with
ns− (n− 1)s0 ≤ inf I.

More precisely, the following theorem holds:

Theorem 1. Let f be a function defined on a real interval I, convex on [s, s0] and satisfying

min
u∈I≥s

f(u) = f(s0),

where
s, s0 ∈ I, s < s0, ns− (n− 1)s0 ≤ inf I.

If
f(x) + (n− 1)f(y) ≥ nf(s)

for all x, y ∈ I so that x ≤ s ≤ y and x+ (n− 1)y = ns, then

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf

(
x1 + x2 + · · ·+ xn

n

)
for all x1, x2, . . . , xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns .

In order to prove Theorem 1, we define the function

f0(u) =

{
f(u), u ≤ s0, u ∈ I

f(s0), u ≥ s0, u ∈ I,

which is convex on I≥s. Taking into account that f0(s) = f(s) and f0(u) ≤ f(u) for all u ∈ I, it
suffices to prove that

f0(x1) + f0(x2) + · · ·+ f0(xn) ≥ nf0(s)

for all x1, x2, . . . , xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns. According to the HCF-Theorem and
Note 5 from Chapter 1, we only need to show that

f0(x) + (n− 1)f0(y) ≥ nf0(s)

for all x, y ∈ I so that x ≤ s ≤ y and x+ (n− 1)y = ns. Since

y − s0 =
ns− x
n− 1

− s0 =
ns− (n− 1)s0 − x

n− 1
≤ ns− (n− 1)s0 − inf I

n− 1
≤ 0,

the inequality f0(x) + (n− 1)f0(y) ≥ nf0(s) turns into f(x) + (n− 1)f(y) ≥ nf(s), which holds
(by hypothesis) for all x, y ∈ I so that x ≤ s ≤ y and x+ (n− 1)y = ns.

Similarly, the LPCF-Theorem holds true by replacing the condition
f is increasing on I≥s0
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with

ns− (n− 1)s0 ≥ sup I.

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval I, convex on [s0, s] and satisfying

min
u∈I≤s

f(u) = f(s0),

where

s, s0 ∈ I, s > s0, ns− (n− 1)s0 ≥ sup I.

If

f(x) + (n− 1)f(y) ≥ nf(s)

for all x, y ∈ I so that x ≥ s ≥ y and x+ (n− 1)y = ns, then

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf

(
x1 + x2 + · · ·+ xn

n

)
for all x1, x2, . . . , xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns.

The proof of Theorem 2 is similar to the proof of Theorem 1.

Note 6. From the proof of Theorem 1, it follows that Theorem 1 is also valid in the case in
which f is defined on I \ {u0}, where u0 is an interior point of I so that u0 /∈ [s, s0]. Similarly,
Theorem 2 is also valid in the case in which f is defined on I \ {u0}, where u0 is an interior point
of I so that u0 /∈ [s0, s].

Note 7. In the same manner, we can extend weighted Jensen’s inequality to right and left
partially convex functions establishing the WRPCF-Theorem, the WLPCF-Theorem and the
WPCF-Theorem (Vasile Cı̂rtoaje, 2014).

WRPCF-Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1, p = min{p1, p2, . . . , pn},

and let f be a real function defined on an interval I and convex on [s, s0], where s, s0 ∈ I, s < s0.
In addition, f is decreasing on I≤s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

p1f(a1) + p2f(a2) + · · ·+ pnf(an) ≥ f(p1a1 + p2a2 + · · ·+ pnan)

holds for all a1, a2, . . . , an ∈ I satisfying

p1a1 + p2a2 + · · ·+ pnan = s,

if and only if

pf(x) + (1− p)f(y) ≥ f(s)

for all x, y ∈ I so that x ≤ s ≤ y and px+ (1− p)y = s.
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WLPCF-Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1, p = min{p1, p2, . . . , pn},

and let f be a real function defined on an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s.
In addition, f is increasing on I≥s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

p1f(a1) + p2f(a2) + · · ·+ pnf(an) ≥ f(p1a1 + p2a2 + · · ·+ pnan)

holds for all a1, a2, . . . , an ∈ I satisfying

p1a1 + p2a2 + · · ·+ pnan = s,

if and only if
pf(x) + (1− p)f(y) ≥ f(s)

for all x, y ∈ I so that x ≥ s ≥ y and px+ (1− p)y = s.
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3.2 Applications

3.1. If a, b, c are real numbers so that a+ b+ c = 3, then

16a− 5

32a2 + 1
+

16b− 5

32b2 + 1
+

16c− 5

32c2 + 1
≤ 1.

3.2. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

18a− 5

12a2 + 1
+

18b− 5

12b2 + 1
+

18c− 5

12c2 + 1
+

18d− 5

12d2 + 1
≤ 4.

3.3. If a, b, c, d, e, f are real numbers so that a+ b+ c+ d+ e+ f = 6, then

5a− 1

5a2 + 1
+

5b− 1

5b2 + 1
+

5c− 1

5c2 + 1
+

5d− 1

5d2 + 1
+

5e− 1

5e2 + 1
+

5f − 1

5f 2 + 1
≤ 4.

3.4. If a1, a2, . . . , an (n ≥ 3) are real numbers so that a1 + a2 + · · ·+ an = n, then

n(n+ 1)− 2a1
n2 + (n− 2)a21

+
n(n+ 1)− 2a2
n2 + (n− 2)a22

+ · · ·+ n(n+ 1)− 2an
n2 + (n− 2)a2n

≤ n.

3.5. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

a(a− 1)

3a2 + 4
+
b(b− 1)

3b2 + 4
+
c(c− 1)

3c2 + 4
+
d(d− 1)

3d2 + 4
≥ 0.

3.6. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

1

3a2 − 3a+ 4
+

1

3b2 − 3b+ 4
+

1

3c2 − 3c+ 4
+

1

3d2 − 3d+ 4
≤ 1.

3.7. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

1

4a2 − 5a+ 4
+

1

4b2 − 5b+ 4
+

1

4c2 − 5c+ 4
+

1

4d2 − 5d+ 4
≤ 4

3
.

3.8. If a, b, c, d are real numbers so that a+ b+ c+ d = 0, then

a+ 1

a2 + 3
+

b+ 1

b2 + 3
+

c+ 1

c2 + 3
+

d+ 1

d2 + 3
≤ 4

3
.
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3.9. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n, where

k ≥ n

2
√
n− 1

.

Then,
a1(a1 − 1)

(a1 + k)2
+
a2(a2 − 1)

(a2 + k)2
+ · · ·+ an(an − 1)

(an + k)2
≥ 0.

3.10. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ 1 +
n√
n− 1

,

then
a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a2n − 1

(an + k)2
≥ 0.

3.11. Let a1, a2, a3, a4, a5 be real numbers so that a1 + a2 + a3 + a4 + a5 ≥ 5. If

k ∈
[

1

6
,

25

14

]
,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≤ 5

k + 4
.

3.12. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+a2+a3+a4+a5 ≥ 5. If k ∈ [k1, k2],
where

k1 =
29−

√
761

10
≈ 0.1414, k2 =

25

14
≈ 1.7857,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≤ 5

k + 4
.

3.13. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an ≥ n. If k > 1,
then

1

ak1 + a2 + · · ·+ an
+

1

a1 + ak2 + · · ·+ an
+ · · ·+ 1

a1 + a2 + · · ·+ akn
≤ 1.

3.14. Let a1, a2, . . . , a5 be nonnegative numbers so that a1 + a2 + a3 + a4 + a5 ≥ 5. If

k ∈
[

4

9
,

61

5

]
,

then ∑ a1
ka21 + a2 + a3 + a4 + a5

≤ 5

k + 4
.



Partially Convex Function Method 213

3.15. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an ≥ n. If k > 1,
then

a1
ak1 + a2 + · · ·+ an

+
a2

a1 + ak2 + · · ·+ an
+ · · ·+ an

a1 + a2 + · · ·+ akn
≤ 1.

3.16. Let a1, a2, . . . , an be nonnegative real numbers so that a1 +a2 + · · ·+an ≤ n. If k ≥ 1− 1

n
,

then
1− a1

ka21 + a2 + · · ·+ an
+

1− a2
a1 + ka22 + · · ·+ an

+ · · ·+ 1− an
a1 + a2 + · · ·+ ka2n

≥ 0.

3.17. Let a1, a2, . . . , an be nonnegative real numbers so that a1 +a2 + · · ·+an ≤ n. If k ≥ 1− 1

n
,

then
1− a1

1− a1 + ka21
+

1− a2
1− a2 + ka22

+ · · ·+ 1− an
1− an + ka2n

≥ 0.

3.18. Let a1, a2, . . . , an be positive real numbers so that a1 +a2 + · · ·+an = n. If 0 < k ≤ n

n− 1
,

then
a
k/a1
1 + a

k/a2
2 + · · ·+ ak/ann ≤ n.

3.19. If a, b, c, d, e are nonzero real numbers so that a+ b+ c+ d+ e = 5, then(
7− 5

a

)2

+

(
7− 5

b

)2

+

(
7− 5

c

)2

+

(
7− 5

d

)2

+

(
7− 5

e

)2

≥ 20.

3.20. If If a1, a2, . . . , a7 are real numbers so that a1 + a2 + · · ·+ a7 = 7, then

(a21 + 2)(a22 + 2) · · · (a27 + 2) ≥ 37.

3.21. Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If k ≥ n2

4(n− 1)
, then

(a21 + k)(a22 + k) · · · (a2n + k) ≥ (1 + k)n.

3.22. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 10, then

(a21 − a1 + 1)(a22 − a2 + 1) · · · (a2n − an + 1) ≥ 1.
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3.23. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 26, then

(a21 − a1 + 2)(a22 − a2 + 2) · · · (a2n − an + 2) ≥ 2n.

3.24. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(1− a+ a4)(1− b+ b4)(1− c+ c4) ≥ 1.

3.25. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(1− a+ a3)(1− b+ b3)(1− c+ c3)(1− d+ d3) ≥ 1.

3.26. If a, b, c, d, e are nonzero real numbers so that a+ b+ c+ d+ e = 5, then

5

(
1

a2
+

1

b2
+

1

c2
+

1

d2
+

1

e2

)
+ 45 ≥ 14

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
.

3.27. If a, b, c are positive real numbers so that abc = 1, then

7− 6a

2 + a2
+

7− 6b

2 + b2
+

7− 6c

2 + c2
≥ 1.

3.28. If a, b, c are positive real numbers so that abc = 1, then

1

a+ 5bc
+

1

b+ 5ca
+

1

c+ 5ab
≤ 1

2
.

3.29. If a, b, c are positive real numbers so that abc = 1, then

1

4− 3a+ 4a2
+

1

4− 3b+ 4b2
+

1

4− 3c+ 4c2
≤ 3

5
.

3.30. If a, b, c are positive real numbers so that abc = 1, then

1

(3a+ 1)(3a2 − 5a+ 3)
+

1

(3b+ 1)(3b2 − 5b+ 3)
+

1

(3c+ 1)(3c2 − 5c+ 3)
≤ 3

4
.

3.31. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If p, q ≥ 0 so
that p+ 4q ≥ n− 1, then

1− a1
1 + pa1 + qa21

+
1− a2

1 + pa2 + qa22
+ · · ·+ 1− an

1 + pan + qa2n
≥ 0.
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3.32. If a, b, c are positive real numbers so that abc = 1, then

1− a
17 + 4a+ 6a2

+
1− b

17 + 4b+ 6b2
+

1− c
17 + 4c+ 6c2

≥ 0.

3.33. If a1, a2, . . . , a8 are positive real numbers so that a1a2 · · · a8 = 1, then

1− a1
(1 + a1)2

+
1− a2

(1 + a2)2
+ · · ·+ 1− a8

(1 + a8)2
≥ 0.

3.34. Let a, b, c be positive real numbers so that abc = 1. If k ∈
[
−13

3
√

3
,

13

3
√

3

]
, then

a+ k

a2 + 1
+
b+ k

b2 + 1
+
c+ k

c2 + 1
≤ 3(1 + k)

2
.

3.35. If a, b, c are positive real numbers and 0 < k ≤ 2 + 2
√

2, then

a3

ka2 + bc
+

b3

kb2 + ca
+

c3

kc2 + ab
≥ a+ b+ c

k + 1
.

3.36. If a, b, c, d, e are positive real numbers so that abcde = 1, then

2

(
1

a+ 1
+

1

b+ 1
+ · · ·+ 1

e+ 1

)
≥ 3

(
1

a+ 2
+

1

b+ 2
+ · · ·+ 1

e+ 2

)
.

3.37. If a1, a2, . . . , a14 are positive real numbers so that a1a2 · · · a14 = 1, then

3

(
1

2a1 + 1
+

1

2a2 + 1
+ · · ·+ 1

2a14 + 1

)
≥ 2

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

a14 + 1

)
.

3.38. Let a1, a2, . . . , a8 be positive real numbers so that a1a2 · · · a8 = 1. If k > 1, then

(k + 1)

(
1

ka1 + 1
+

1

ka2 + 1
+ · · ·+ 1

ka8 + 1

)
≥ 2

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

a8 + 1

)
.

3.39. If a1, a2, . . . , a9 are positive real numbers so that a1a2 · · · a9 = 1, then

1

2a1 + 1
+

1

2a2 + 1
+ · · ·+ 1

2a9 + 1
≥ 1

a1 + 2
+

1

a2 + 2
+ · · ·+ 1

a9 + 2
.
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3.40. If a1, a2, . . . , an are real numbers so that

a1, a2, . . . , an ≤ π, a1 + a2 + · · ·+ an = π,

then
cos a1 + cos a2 + · · ·+ cos an ≤ n cos

π

n
.

3.41. If a1, a2, . . . , an (n ≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−1

n− 2
, a1 + a2 + · · ·+ an = n,

then
a21

a21 − a1 + 1
+

a22
a22 − a2 + 1

+ · · ·+ a2n
a2n − an + 1

≤ n.

3.42. If a1, a2, . . . , an (n ≥ 3) are nonzero real numbers so that

a1, a2, . . . , an ≥
−n
n− 2

, a1 + a2 + · · ·+ an = n,

then
1

a21
+

1

a22
+ · · ·+ 1

a2n
≥ 1

a1
+

1

a2
+ · · ·+ 1

an
.

3.43. If a1, a2, . . . , an ≥ −1 so that a1 + a2 + · · ·+ an = n, then

(n+ 1)

(
1

a21
+

1

a22
+ · · ·+ 1

a2n

)
≥ 2n+ (n− 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

3.44. If a1, a2, . . . , an (n ≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−(3n− 2)

n− 2
, a1 + a2 + · · ·+ an = n,

then
1− a1

(1 + a1)2
+

1− a2
(1 + a2)2

+ · · ·+ 1− an
(1 + an)2

≥ 0.

3.45. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If n ≥ 3 and

k ≥ 2− 2

n
, then

1− a1
(1− ka1)2

+
1− a2

(1− ka2)2
+ · · ·+ 1− an

(1− kan)2
≥ 0.
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3.46. If a, b, c are positive real numbers such that abc = 1, then

a

(a+ 1)(a+ 25)
+

b

(b+ 1)(b+ 25)
+

c

(c+ 1)(c+ 25)
≤ 3

52
.

3.47. Let a1, a2, . . . , an ( n ≥ 3)be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If p ≤ −4 and q = (p+ 1)

(
p+

n

n− 1

)
, then

1

a21 + pa1 + q
+

1

a22 + pa2 + q
+ · · ·+ 1

a2n + pan + q
≤ n

1 + p+ q
.

3.48. Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If p ∈ [−4,−2)U

(
−2,

2

n− 2

]
and q =

n2p2 + 4(n2 − n+ 1)(p+ 1)

4(n− 1)
, then

1

a21 + pa1 + q
+

1

a22 + pa2 + q
+ · · ·+ 1

a2n + pan + q
≤ n

1 + p+ q
.
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3.3 Solutions

P 3.1. If a, b, c are real numbers so that a+ b+ c = 3, then

16a− 5

32a2 + 1
+

16b− 5

32b2 + 1
+

16c− 5

32c2 + 1
≤ 1.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) =
5− 16u

32u2 + 1
, u ∈ R.

From

f ′(u) =
16(32u2 − 20u− 1)

(32u2 + 1)2
,

it follows that f is increasing on (
−∞, 5−

√
33

16

]
∪ [s0,∞)

and decreasing on [
5−
√

33

16
, s0

]
,

where

s0 =
5 +
√

33

16
≈ 0.6715.

Also, from
lim

u→−∞
f(u) = 0

and
f(s0) < 0,

it follows that f(u) ≥ f(s0) for u ∈ R. In addition, for u ∈ [s0, 1], we have

1

64
f ′′(u) =

−512u3 + 480u2 + 48u− 5

(32u2 + 1)3

=
512u2(1− u) + 32u(1− u) + (16u− 5)

(32u2 + 1)3
> 0,

hence f is convex on [s0, s]. According to the LPCF-Theorem, we only need to show that
f(x) + 2f(y) ≥ 3f(1) for all real x, y so that x+ 2y = 3. Using Note 1, it suffices to prove that
h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.
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Indeed, we have

g(u) =
32(2u− 1)

3(32u2 + 1)
,

h(x, y) =
64(1 + 16x+ 16y − 32xy)

3(32x2 + 1)(32y2 + 1)
=

64(4x− 5)2

3(32x2 + 1)(32y2 + 1)
≥ 0.

Thus, the proof is completed. From x+ 2y = 3 and h(x, y) = 0, we get

x =
5

4
, y =

7

8
.

Therefore, in accordance with Note 3, the equality holds for a = b = c = 1, and also for

a =
5

4
, b = c =

7

8

(or any cyclic permutation).

P 3.2. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

18a− 5

12a2 + 1
+

18b− 5

12b2 + 1
+

18c− 5

12c2 + 1
+

18d− 5

12d2 + 1
≤ 4.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
5− 18u

12u2 + 1
, u ∈ R.

From

f ′(u) =
6(36u2 − 20u− 3)

(12u2 + 1)2
,

it follows that f is increasing on (
−∞, 5−

√
52

18

]
∪ [s0,∞)

and decreasing on [
5−
√

52

18
, s0

]
, s0 =

5 +
√

52

18
≈ 0.678.

Also, from
lim

u→−∞
f(u) = 0
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and
f(s0) < 0,

it follows that f(u) ≥ f(s0) for u ∈ R. In addition, for u ∈ [s0, 1], we have

1

24
f ′′(u) =

−216u3 + 180u2 + 54u− 5

(12u2 + 1)3

=
216u2(1− u) + 36u(1− u) + (18u− 5)

(32u2 + 1)3
> 0,

hence f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we only need to show
that h(x, y) ≥ 0 for x, y ∈ R so that x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
=

6(2u− 1)

12u2 + 1
,

h(x, y) =
g(x)− g(y)

x− y
=

12(1 + 6x+ 6y − 12xy)

(12x2 + 1)(12y2 + 1)
=

12(2x− 3)2

(12x2 + 1)(12y2 + 1)
≥ 0.

Thus, the proof is completed. From x + 3y = 4 and h(x, y) = 0, we get x = 3/2 and y = 5/6.
Therefore, in accordance with Note 3, the equality holds for a = b = c = d = 1, and also for

a =
3

2
, b = c = d =

5

6

(or any cyclic permutation).

P 3.3. If a, b, c, d, e, f are real numbers so that a+ b+ c+ d+ e+ f = 6, then

5a− 1

5a2 + 1
+

5b− 1

5b2 + 1
+

5c− 1

5c2 + 1
+

5d− 1

5d2 + 1
+

5e− 1

5e2 + 1
+

5f − 1

5f 2 + 1
≤ 4.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) + f(f) ≥ 4f(s), s =
a+ b+ c+ d+ e+ f

6
= 1,

where

f(u) =
1− 5u

5u2 + 1
, u ∈ R.

From

f ′(u) =
5(5u2 − 2u− 1)

(5u2 + 1)2
,

it follows that f is increasing on (
−∞, 1−

√
6

5

]
∪ [s0,∞)
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and decreasing on [
1−
√

6

5
, s0

]
, s0 =

1 +
√

6

5
≈ 0.69.

Also, from
lim

u→−∞
f(u) = 0

and
f(s0) < 0,

it follows that f(u) ≥ f(s0) for u ∈ R. In addition, for u ∈ [s0, 1], we have

1

24
f ′′(u) =

−216u3 + 180u2 + 54u− 5

(12u2 + 1)3

=
216u2(1− u) + 36u(1− u) + (18u− 5)

(32u2 + 1)3
> 0,

hence f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we only need to show
that h(x, y) ≥ 0 for x, y ∈ R so that x+ 5y = 6. We have

g(u) =
f(u)− f(1)

u− 1
=

5(2u− 1)

3(5u2 + 1)
,

h(x, y) =
g(x)− g(y)

x− y
=

5(2 + 5x+ 5y − 10xy)

3(5x2 + 1)(5y2 + 1)
=

10(x− 2)2

3(5x2 + 1)(5y2 + 1)
≥ 0.

In accordance with Note 3, the equality holds for a = b = c = d = e = f = 1, and also for

a = 2, b = c = d = e = f =
4

5

(or any cyclic permutation).

P 3.4. If a1, a2, . . . , an (n ≥ 3) are real numbers so that a1 + a2 + · · ·+ an = n, then

n(n+ 1)− 2a1
n2 + (n− 2)a21

+
n(n+ 1)− 2a2
n2 + (n− 2)a22

+ · · ·+ n(n+ 1)− 2an
n2 + (n− 2)a2n

≤ n.

(Vasile C., 2008)

Solution. The desired inequality is true for a1 >
n(n+ 1)

2
since

n(n+ 1)− 2a1
n2 + (n− 2)a21

< 0

and
n(n+ 1)− 2ai
n2 + (n− 2)a2i

<
n

n− 1
, i = 2, 3, . . . , n.
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The last inequalities are equivalent to

n(n− 2)a2i + 2(n− 1)ai + n > 0,

which are true because

n(n− 2)a2i + 2(n− 1)ai + n ≥ (n− 1)a2i + 2(n− 1)ai + n > (n− 1)(ai + 1)2 ≥ 0.

Consider further that

a1, a2, . . . , an ≤
n(n+ 1)

2
,

and rewrite the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
2u− n(n+ 1)

(n− 2)u2 + n2
, u ∈ I =

(
−∞, n(n+ 1)

2

]
.

We have
f ′(u)

2(n− 2)
=
n2 + n(n+ 1)u− u2

[(n− 2)u2 + n2]2

and
f ′′(u)

2(n− 2)
=

f1(u)

[(n− 2)u2 + n2]3
,

where
f1(u) = 2(n− 2)u3 − 3n(n+ 1)(n− 2)u2 − 2n2(2n− 3)u+ n3(n+ 1).

From the expression of f ′, it follows that f is decreasing on (−∞, s0] and increasing on

[
s0,

n(n+ 1)

2

]
,

where
s0 =

n

2

(
n+ 1−

√
n2 + 2n+ 5

)
∈ (−1, 0);

therefore,
min
u∈I

f(u) = f(s0).

On the other hand, for −1 ≤ u ≤ 1, we have

f1(u) > −2(n− 2)− 3n(n+ 1)(n− 2)− 2n2(2n− 3) + n3(n+ 1)

= n2(n− 3)2 + 4(n+ 1) > 0,

hence f ′′(u) > 0. Since [s0, s] ⊂ [−1, 1], f is convex on [s0, s]. By the LPCF-Theorem and Note
1, we only need to show that h(x, y) ≥ 0 for x, y ∈ R and x+ (n− 1)y = n, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

Indeed, we have

g(u) =
(n− 2)u+ n

(n− 2)u2 + n2
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and

h(x, y)

n− 2
=

n2 − n(x+ y)− (n− 2)xy

[(n− 2)x2 + n2][(n− 2)y2 + n2]

=
(n− 1)(n− 2)y2

[(n− 2)x2 + n2][(n− 2)y2 + n2]
≥ 0.

The proof is completed. By Note 3, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = n, a2 = · · · = an = 0

(or any cyclic permutation).

P 3.5. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

a(a− 1)

3a2 + 4
+
b(b− 1)

3b2 + 4
+
c(c− 1)

3c2 + 4
+
d(d− 1)

3d2 + 4
≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
u2 − u
3u2 + 4

, u ∈ R.

From

f ′(u) =
3u2 + 8u− 4

(3u2 + 4)2
,

it follows that f is increasing on

(
−∞, −4− 2

√
7

3

]
∪ [s0,∞) and decreasing on

[
−4− 2

√
7

3
, s0

]
,

where

s0 =
−4 + 2

√
7

3
≈ 0.43.

Since

lim
u→−∞

f(u) =
1

3

and f(s0) < 0, it follows that
min
u∈R

f(u) = f(s0).

For u ∈ [0, 1], we have

1

2
f ′′(u) =

−9u3 − 36u2 + 36u+ 14

(3u2 + 4)3

=
9u2(1− u) + 45u(1− u) + (16− 9u)

(3u2 + 4)3
> 0.
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Therefore, f is convex on [0, 1], hence on [s0, s]. According to the LPCF-Theorem and Note 1,
we only need to show that h(x, y) ≥ 0 for x, y ∈ R so that x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
=

u

3u2 + 4
,

h(x, y) =
g(x)− g(y)

x− y
=

4− 3xy

(3x2 + 4)(3y2 + 4)

=
(x− 2)2

(3x2 + 4)(3y2 + 4)
≥ 0.

The proof is completed. From x + 3y = 4 and h(x, y) = 0, we get x = 2 and y = 2/3. By Note
3, the equality holds for a = b = c = d = 1, and also for

a = 2, b = c = d =
2

3

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

a1(a1 − 1)

4(n− 1)a21 + n2
+

a2(a2 − 1)

4(n− 1)a22 + n2
+ · · ·+ an(an − 1)

4(n− 1)a2n + n2
≥ 0,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
n

2
, a2 = a3 = · · · = an =

n

2(n− 1)

(or any cyclic permutation).

P 3.6. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

1

3a2 − 3a+ 4
+

1

3b2 − 3b+ 4
+

1

3c2 − 3c+ 4
+

1

3d2 − 3d+ 4
≤ 1.

(Vasile C., 2015)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
−1

3u2 − 3u+ 4
, u ∈ R.

From

f ′(u) =
3(2u− 1)

(3u2 − 3u+ 4)2
,
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it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
1

2
< 1 = s.

For u ∈ [s0, s] = [1/2, 1], we have

f ′′(u) =
3(−6u2 + 6u+ 5)

(3u2 − 3u+ 4)3
>

18u(1− u)

(3u2 − 3u+ 4)3
≥ 0.

Therefore, f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we only need to
show that h(x, y) ≥ 0 for x, y ∈ R so that x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
=

3u

4(3u2 − 3u+ 4)
,

h(x, y) =
g(x)− g(y)

x− y
=

3(4− 3xy)

4(3x2 − 3x+ 4)(3y2 − 3y + 4)

=
3(3y − 2)2

4(3x2 − 3x+ 4)(3y2 − 3y + 4)
≥ 0.

From x+ 3y = 4 and h(x, y) = 0, we get

x = 2, y =
2

3
.

In accord with Note 3, the equality holds for a = b = c = d = 1, and also for a = 2 and

b = c = d =
2

3
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If k =
n2

4(n− 1)
, then

1

a21 − a1 + k
+

1

a22 − a2 + k
+ · · ·+ 1

a2n − an + k
≤ n

k
,

with equality for a1 = a2 = · · · = an = 1, and also for a1 =
n

2
and a2 = a3 = · · · = an =

n

2(n− 1)
(or any cyclic permutation).

P 3.7. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

1

4a2 − 5a+ 4
+

1

4b2 − 5b+ 4
+

1

4c2 − 5c+ 4
+

1

4d2 − 5d+ 4
≤ 4

3
.

(Vasile C., 2015)



Partially Convex Function Method 227

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
−1

4u2 − 5u+ 4
, u ∈ R.

From

f ′(u) =
2(8u− 5)

(4u2 − 5u+ 4)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
5

8
< 1 = s.

For u ∈ [s0, s] = [5/8, 1], we have

f ′′(u) =
4(−48u2 + 60u− 9)

(4u2 − 5u+ 4)3
>

4(−48u2 + 60u− 12)

(4u2 − 5u+ 4)3

=
48(−4u2 + 5u− 1)

(4u2 − 5u+ 4)3
=

48(1− u)(4u− 1)

(4u2 − 5u+ 4)3
≥ 0.

Therefore, f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we only need to
show that h(x, y) ≥ 0 for x, y ∈ R so that x+ 3y = 4. We have

g(u) =
f(u)− f(1)

u− 1
=

4u− 1)

3(4u2 − 5u+ 4)
,

h(x, y) =
g(x)− g(y)

x− y
=

4(x+ y)− 16xy + 11

3(4x2 − 5x+ 4)(4y2 − 5y + 4)

=
(4y − 3)2

(4x2 − 5x+ 4)(4y2 − 5y + 4)
≥ 0.

From x+ 3y = 4 and h(x, y) = 0, we get

x =
7

4
, y =

3

4
.

In accord with Note 3, the equality holds for a = b = c = d = 1, and also for a =
7

4
and

b = c = d =
3

4
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If k = 1− 2(n− 1)

n2
, then

1

a21 − 2ka1 + 1
+

1

a22 − 2ka2 + 1
+ · · ·+ 1

a2n − 2kan + 1
≤ n

2(1− k)
,

with equality for a1 = a2 = · · · = an = 1, and also for a1 =
3n2 − 6n+ 4

n2
and a2 = a3 = · · · =

an =
n2 − 2n+ 4

n2
(or any cyclic permutation).
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P 3.8. If a, b, c, d are real numbers so that a+ b+ c+ d = 0, then

a+ 1

a2 + 3
+

b+ 1

b2 + 3
+

c+ 1

c2 + 3
+

d+ 1

d2 + 3
≤ 4

3
.

(Marius Stanean, 2024)

Solution 1. Assume that a ≤ b ≤ c ≤ d and write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s),

where s = (a+ b+ c+ d)/4 and f(u) =
−u− 1

u2 + 3
.

Case 1: a ≥ −3. Let I = [−3,∞) and s0 = 1. Since

f ′(u) =
(u− 1)(u+ 3)

(u2 + 3)2
, f ′′(u) =

2(3 + 9u− 3u2 − u3)
(u2 + 3)3

,

f is convex on [s, s0] and decreasing on [−3, s0]. In addition, f(u) ≥ f(s0) for u ∈ I. So, by
RPCF-Theorem, it suffices to prove the required inequality for b = c = d. It is easy to show that
the inequality reduces to a2(a+ 3)2 ≥ 0.

Case 2: a ≤ −3 and b ≤ 0. We have

f(a) + f(b) + f(c) + f(d) > 0 + f(0) + f(1) + f(1) = 0− 1

3
− 1

2
− 1

2
=
−4

3
= 4f(s).

Case 3: a ≤ −3 and b ≥ 0. Using the Cauchy-Schwarz inequality, we have

f(a) + f(b) + f(c) + f(d) +
3

2
=
−a− 1

a2 + 3
+

(b− 1)2

2(b2 + 3)
+

(c− 1)2

2(c2 + 3)
+

(d− 1)2

2(d2 + 3)

≥ −a− 1

a2 + 3
+

(b+ c+ d− 3)2

2(b2 + c2 + d2) + 18
≥ −a− 1

a2 + 3
+

(b+ c+ d− 3)2

2(b+ c+ d)2 + 18

=
−a− 1

a2 + 3
+

(a+ 3)2

2(a2 + 9)
=

a2

3(a2 + 3)(a2 + 9)
+

1

6
>

1

6
,

hence

f(a) + f(b) + f(c) + f(d) >
1

6
− 3

2
=
−4

3
= 4f(s).

The equality occurs for a = b = c = d = 0, and also for a = −3 and b = c = d = 1 (or any cyclic
permutation).

Solution 2 (by Nguyen Ngoc Phuc). Let a2 = max{a2, b2, c2, d2}. Using the Cauchy-Schwarz
inequality, we have

b+ 1

b2 + 3
+

c+ 1

c2 + 3
+

d+ 1

d2 + 3
− 3

2
= − (b− 1)2

2(b2 + 3)
− (c− 1)2

2(c2 + 3)
− (d− 1)2

2(d2 + 3)

= −(b− 1)2 + (c− 1)2 + (d− 1)2

2(a2 + 3)
≤ −[(b− 1) + (c− 1) + (d− 1)]2

6(a2 + 3)
=
−(a+ 3)2

6(a2 + 3)
,

therefore

a+ 1

a2 + 3
+

b+ 1

b2 + 3
+

c+ 1

c2 + 3
+

d+ 1

d2 + 3
≤ a+ 1

a2 + 3
− (a+ 3)2

6(a2 + 3)
+

3

2
=
−1

6
+

3

2
=

4

3
.
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P 3.9. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n, where

k ≥ n

2
√
n− 1

.

Then,
a1(a1 − 1)

(a1 + k)2
+
a2(a2 − 1)

(a2 + k)2
+ · · ·+ an(an − 1)

(an + k)2
≥ 0.

(Vasile C., 2008)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
u(u− 1)

(u+ k)2
, u ∈ I = R \ {−k}.

From

f ′(u) =
(2k + 1)u− k

(u+ k)3
,

it follows that f is increasing on (−∞,−k) ∪ [s0,∞) and decreasing on (−k, s0], where

s0 =
k

2k + 1
< 1 = s.

Since
lim

u→−∞
f(u) = 1

and f(s0) < 0, we have
min
u∈I

f(u) = f(s0).

From
1

2
f ′′(u) =

k(k + 2)− (2k + 1)u

(u+ k)4
,

it follows that f is convex on

[
0,
k(k + 2)

2k + 1

]
, hence on [s0, 1]. According to the LPCF-Theorem,

Note 4 and Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ∈ I which satisfy x+(n−1)y = n,
where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

Indeed, we have

g(u) =
u

(u+ k)2

and

h(x, y) =
k2 − xy

(x+ k)2(y + k)2
≥

n2

4(n−1) − xy
(x+ k)2(y + k)2

=
[2(n− 1)y − n]2

4(n− 1)(x+ k)2(y + k)2
≥ 0.
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The equality holds for a1 = a2 = · · · = an = 1. If k =
n

2
√
n− 1

, then the equality holds also for

a1 =
n

2
, a2 = · · · = an =

n

2(n− 1)

(or any cyclic permutation).

P 3.10. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ 1 +
n√
n− 1

,

then
a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a2n − 1

(an + k)2
≥ 0.

(Vasile C., 2008)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
u2 − 1

(u+ k)2
, u ∈ I = R \ {−k}.

From

f ′(u) =
2(ku+ 1)

(u+ k)3
,

it follows that f is increasing on (−∞,−k) ∪ [s0,∞) and decreasing on (−k, s0], where

s0 =
−1

k
< 0 = s, s0 > −1.

Since
lim

u→−∞
f(u) = 1

and f(s0) < 0, we have
min
u∈I

f(u) = f(s0).

For u ∈ [−1, 1], we have

f ′′(u) =
2(k2 − 3− 2ku)

(u+ k)4
≥ 2(k2 − 3− 2k)

(u+ k)4
=

2(k + 1)(k − 3)

(u+ k4
≥ 0,

hence f is convex on [s0, 1]. According to the LPCF-Theorem, Note 4 and Note 1, it suffices to
show that h(x, y) ≥ 0 for x, y ∈ I which satisfy x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1

(u+ k)2
,
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h(x, y) =
g(x)− g(y)

x− y
=

(k − 1)2 − 1− x− y − xy
(x+ k)2(y + k)2

≥ 0,

since

(k − 1)2 − 1− x− y − xy ≥ n2

n− 1
− 1− x− y − xy =

[(n− 1)y − 1]2

n− 1
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1 +
n√
n− 1

, then the equality holds also

for

a1 = n− 1, a2 = · · · = an =
1

n− 1

(or any cyclic permutation).

P 3.11. Let a1, a2, a3, a4, a5 be real numbers so that a1 + a2 + a3 + a4 + a5 ≥ 5. If

k ∈
[

1

6
,

25

14

]
,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≤ 5

k + 4
.

(Vasile C., 2006)

Solution. We see that

ka2i − ai + (a1 + a2 + a3 + a4 + a5) >
1

6
a2i − ai +

3

2
=

(a1 − 3)2

6
≥ 0

for all i ∈ {1, 2, . . . , n}. Since each term of the left hand side of the inequality decreases by
increasing any number ai, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5,

when the desired inequality can be written as

f(a1) + f(a2) + f(a3) + f(a4) + f(a5) ≥ 5f(s), s =
a1 + a2 + a3 + a4 + a5

5
= 1,

where

f(u) =
−1

ku2 − u+ 5
, u ∈ R.

From

f ′(u) =
2ku− 1

(ku2 − u+ 5)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
1

2k
.
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We have

f ′′(u) =
2g(u)

(ku2 − u+ 5)3
, g(u) = −3k2u2 + 3ku+ 5k − 1.

For
1

2
≤ k ≤ 25

14
,

we have

s0 =
1

2k
≤ 1 = s,

and for u ∈ [s0, s], that is
1

2k
≤ u ≤ 1,

we have
(1− u)(2ku− 1) ≥ 0,

−2ku2 ≥ (2k + 1)u+ 1,

−2k2u2 ≥ k(2k + 1)u+ k,

therefore

g(u) ≥ 3

2
[k(2k + 1)u+ k] + 3ku+ 5k − 1 =

−3k(2k − 1)u+ 13k − 2

2

≥ −3k(2k − 1) + 13k − 2

2
= −3k2 + 8k − 1 = 3k(2− k) + (2k − 1) > 0.

Consequently, f is convex on [s0, s].

For
1

6
≤ k ≤ 1

2
,

we have

s0 =
1

2k
≥ 1 = s,

and for u ∈ [s, s0], that is

1 ≤ u ≤ 1

2k
,

we have

g(u) = −3k2u2 + 3ku+ 5k − 1 ≥ 3ku(1− k) + 5k − 1

≥ 3k(1− k) + 5k − 1 = −3k2 + 8k − 1

> −6k2 + 7k − 1 = (1− k)(6k − 1) ≥ 0.

Consequently, f is convex on [s, s0].
In both cases, by the PCF-Theorem, it suffices to show that

1

kx2 − x+ 5
+

4

ky2 − y + 5
≤ 5

k + 4

for
x+ 4y = 5, x, y ∈ R.
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Write this inequality as follows:

1

k + 4
− 1

kx2 − x+ 5
+ 4

[
1

k + 4
− 1

ky2 − y + 5

]
≥ 0,

(x− 1)(kx+ k − 1)

kx2 − x+ 5
+

4(y − 1)(ky + k − 1)

ky2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x,

the inequality is equivalent to

(x− 1)

(
kx+ k − 1

kx2 − x+ 5
− ky + k − 1

ky2 − y + 5

)
≥ 0,

5(x− 1)2h(x, y)

4(kx2 − x+ 5)(ky2 − y + 5)
≥ 0,

where

h(x, y) = −k2xy − k(k − 1)(x+ y) + 6k − 1

= 4k2y2 − k(2k + 3)y − 5k2 + 11k − 1

=

(
2ky − 2k + 3

4

)2

+
(25− 14k)(6k − 1)

16
≥ 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k =
1

6
, then the equality holds also for

a1 = −5, a2 = a3 = a4 = a5 =
5

2

(or any cyclic permutation). If k =
25

14
, then the equality holds also for

a1 =
79

25
, a2 = a3 = a4 = a5 =

23

50

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an ≤ n. If k ∈ [k1, k2], where

k1 =
(n− 1)(

√
53n2 − 54n+ 101− 5n+ 11)

2(7n2 + 14n− 5)
,

k2 =
2n2 − 2n+ 1 +

√
(n− 1)(3n3 − 4n2 + 3n− 1)

2(n2 − n+ 1)
,

then ∑ 1

ka21 + a2 + · · ·+ an
≤ n

k + n− 1
,



234 Vasile Ĉırtoaje

with equality for a1 = a2 = · · · = an = 1. If k = k1, then the equality holds also for

a1 = −n, a2 = · · · = an =
2n

n− 1

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
(2k − 1)(n− 1) + 1

2k
, a2 = · · · = an =

2k + n− 2

2k(n− 1)

(or any cyclic permutation).

P 3.12. Let a1, a2, . . . , a5 be nonnegative numbers so that a1 + a2 + a3 + a4 + a5 ≥ 5. If
k ∈ [k1, k2], where

k1 =
29−

√
761

10
≈ 0.1414, k2 =

25

14
≈ 1.7857,

then ∑ 1

ka21 + a2 + a3 + a4 + a5
≤ 5

k + 4
.

(Vasile C., 2006)

Solution. Since all terms of the left hand side of the inequality decrease by increasing any
number ai, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5.

The proof is similar to the one of the preceding P 3.11. Having in view P 3.11, it suffices to
consider the case

k ∈
[
k1,

1

6

]
,

when

s0 =
1

2k
> 1 = s.

For u ∈ [s, s0], that is

1 ≤ u ≤ 1

2k
,

f is convex because

g(u) = −3k2u2 + 3ku+ 5k − 1 ≥ 3ku(1− k) + 5k − 1

≥ 3k(1− k) + 5k − 1 = −3k2 + 8k − 1

> −15

4
k2 + 87k − 1 =

(2− k)(15k − 2)

4
> 0.

Thus, by the RPCF-Theorem, it suffices to show that

1

kx2 − x+ 5
+

4

ky2 − y + 5
≤ 5

k + 4
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for

x+ 4y = 5, 0 ≤ x ≤ 1 ≤ y ≤ 5

4
.

As shown at P 3.11, this inequality is true if h(x, y) ≥ 0, where

h(x, y) = −k2xy − k(k − 1)(x+ y) + 6k − 1.

We have

h(x, y) = 4k2y2 − k(2k + 3)y − 5k2 + 11k − 1

= (5− 4y)(A− k2y) +B = x(A− k2y) +B,

where

A =
3k(1− k)

4
, B =

−5k2 + 29k − 4

4
.

Since B ≥ 0, it suffices to show that A− k2y ≥ 0. Indeed, we have

A− k2y ≥ 3k(1− k)

4
− 5k2

4
=
k(3− 8k)

4
> 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = a3 = a4 = a5 =
5

4

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
79

25
, a2 = a3 = a4 = a5 =

23

50

(or any cyclic permutatio

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1+a2+ · · ·+an ≤ n. If k ∈ [k1, k2],
where

k1 =
n2 + n− 1−

√
n4 + 2n3 − 5n2 + 2n+ 1

2n
,

k2 =
2n2 − 2n+ 1 +

√
(n− 1)(3n3 − 4n2 + 3n− 1)

2(n2 − n+ 1)
,

then ∑ 1

ka21 + a2 + · · ·+ an
≤ n

k + n− 1
,

with equality for a1 = a2 = · · · = an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = · · · = an =
n

n− 1

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
(2k − 1)(n− 1) + 1

2k
, a2 = · · · = an =

2k + n− 2

2k(n− 1)

(or any cyclic permutation).
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P 3.13. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≥ n. If k > 1,
then

1

ak1 + a2 + · · ·+ an
+

1

a1 + ak2 + · · ·+ an
+ · · ·+ 1

a1 + a2 + · · ·+ akn
≤ 1.

(Vasile C., 2006)

Solution. It suffices to consider the case a1 +a2 + · · ·+an = n, when the desired inequality can
be written as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−1

uk − u+ n
, u ∈ [0, n].

From

f ′(u) =
kuk−1 − 1

(uk − u+ n)2
,

it follows that f is decreasing on [0, s0] and increasing on [s0, n], where

s0 = k
1

1−k < 1 = s.

We will show that f is convex on [s0, 1]. For u ∈ [s0, 1], we have

f ′′(u) =
−k(k + 1)u2k−2 + k(k + 3)uk−1 + nk(k − 1)uk−2 − 2

(uk − u+ n)3
>

g(u)

(uk − u+ n)3
,

where
g(u) = −k(k + 1)u2k−2 + k(k + 3)uk−1 − 2.

Denoting
t = kuk−1, 1 ≤ t ≤ k,

we get

kg(u) = −(k + 1)t2 + k(k + 3)t− 2k

= (k + 1)(t− 1)(k − t) + (k − 1)(t+ k) > 0.

By the LPCF-Theorem, it suffices to show that

1

xk − x+ n
+

n− 1

yk − y + n
≤ 1

for x ≥ 1 ≥ y ≥ 0 and x + (n − 1)y = n. Since this inequality is trivial for x = y = 1, assume
next that x > 1 > y ≥ 0, and write the desired inequality as follows:

xk − x+ n ≥ yk − y + n

yk − y + 1
,

xk − x ≥ (n− 1)(y − yk)

yk − y + 1
,
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xk − x
x− 1

≥ y − yk

(1− y)(yk − y + 1)
.

Let h(x) =
xk − x
x− 1

, x > 1. By the weighted AM-GM inequality, we have

h′(x) =
(k − 1)xk + 1− kxk−1

(x− 1)2
> 0.

Therefore, h is increasing. Since

x− 1 = (n− 1)(1− y) ≥ 1− y, x ≥ 2− y > 1,

we get

h(x) ≥ h(2− y) =
(2− y)k + y − 2

1− y
.

Thus, it suffices to show that

(2− y)k + y − 2 ≥ y − yk

yk − y + 1
,

which is equivalent to

(2− y)k + y − 1 ≥ 1

yk − y + 1
.

Using the substitution
t = 1− y, 0 < t ≤ 1,

the inequality becomes

(1 + t)k − t ≥ 1

(1− t)k + t
,

(1− t2)k + t(1 + t)k ≥ 1 + t2 + t(1− t)k.

By Bernoulli’s inequality,

(1− t2)k + t(1 + t)k ≥ 1− kt2 + t(1 + kt) = 1 + t.

So, we only need to show that
1 + t ≥ 1 + t2 + t(1− t)k,

which is equivalent to the obvious inequality

t(1− t)
[
1− (1− t)k−1

]
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

Remark. Using this result, we can formulate the following statement:

• Let x1, x2, . . . , xn be nonnegative real numbers so that x1 +x2 + · · ·+xn ≥ n. If k > 1, then

xk1 − x1
xk1 + x2 + · · ·+ xn

+
xk2 − x2

x1 + xk2 + · · ·+ xn
+ · · ·+ xkn − xn

x1 + x2 + · · ·+ xkn
≥ 0.
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This inequality is equivalent to

1

xk1 + x2 + · · ·+ xn
+

1

x1 + xk2 + · · ·+ xn
+ · · ·+ 1

x1 + x2 + · · ·+ xkn
≤ n

x1 + x2 + · · ·+ xn
.

Using the substitutions

s =
x1 + x2 + · · ·+ xn

n
, s ≥ 1,

and
ai =

xi
s
, i = 1, 2, . . . , n,

which yields a1 + a2 + · · ·+ an = n, the desired inequality becomes∑ 1

sk−1ak1 + a2 + · · ·+ an
≤ 1.

Since sk−1 ≥ 1, it suffices to show that∑ 1

ak1 + a2 + · · ·+ an
≤ 1,

which follows immediately from the inequality in P 3.13.

Since x1x2 · · · xn ≥ 1 involves x1 + x2 + · · · + xn ≥ n, the inequality is also true under the
more restrictive condition x1x2 · · ·xn ≥ 1. For n = 3 and k = 5/2, we get the inequality from
IMO-2005:

• If x, y, z are nonnegative real numbers so that xyz ≥ 1, then

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0.

P 3.14. Let a1, a2, . . . , a5 be nonnegative numbers so that a1 + a2 + a3 + a4 + a5 ≥ 5. If

k ∈
[

4

9
,

61

5

]
,

then ∑ a1
ka21 + a2 + a3 + a4 + a5

≤ 5

k + 4
.

(Vasile C., 2006)

Solution. Using the substitution

x1 =
a1
s
, x2 =

a2
s
, x3 =

a3
s
, x4 =

a4
s
, x5 =

a5
s
,

where

s =
a1 + a2 + a3 + a4 + a5

5
≥ 1,
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we need to show that x1 + x2 + x3 + x4 + x5 = 5 involves

x1
ksx21 + x2 + x3 + x4 + x5

+ · · ·+ x5
x1 + x2 + x3 + x4 + ksx25

≤ 5

k + 4
.

Since s ≥ 1, it suffices to prove the inequality for s = 1; that is, to show that

a1
ka21 − a1 + 5

+
a2

ka22 − a1 + 5
+ · · ·+ a5

ka25 − an + 5
≤ 5

k + 4

for
a1 + a2 + a3 + a4 + a5 = 5.

Write the desired inequality as

f(a1) + f(a2) + f(a3) + f(a4) + f(a5) ≥ 5f(s),

where

s =
a1 + a2 + a3 + a4 + a5

5
= 1

and

f(u) =
−u

ku2 − u+ 5
, u ∈ [0, 5].

From

f ′(u) =
ku2 − 5

(ku2 − u+ 5)2
,

it follows that f is decreasing on [0, s0] and increasing on [s0, 5], where

s0 =

√
5

k
.

We have

f ′′(u) =
2g(u)

(u2 − u+ 5)3
, g(u) = −k2u3 + 15ku− 5, g′(u) = 3k(5− ku2).

Case 1:
4

9
≤ k ≤ 5. We have

s0 =

√
5

k
≥ 1 = s.

For u ∈ [1, s0], the derivative g′ is nonnegative, g is increasing, hence

g(u) ≥ g(1) = −k2 + 15k − 5 =

(
k − 4

9

)
(5− k) +

86k − 25

9
> 0.

Consequently, f ′′(u) > 0 for u ∈ [1, s0], hence f is convex on [s, s0].

Case 2: 5 ≤ k ≤ 61

5
. We have

s0 =

√
5

k
< 1 = s.
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For u ∈ [s0, 1], we have g′(u) ≤ 0, g(u) is decreasing, hence

g(u) ≥ g(1) = −k2 + 15k − 5 = (k − 1)(13− k) + k + 8 > 0.

Consequently, f ′′(u) > 0 for u ∈ [s0, 1], hence f is convex on [s0, s].

In both cases, by the PCF-Theorem, it suffices to show that

x

kx2 − x+ 5
+

4y

ky2 − y + 5
≤ 5

k + 4

for
x+ 4y = 5, x, y ≥ 0.

Write this inequality as follows:

1

k + 4
− x

kx2 − x+ 5
+ 4

[
1

k + 4
− y

ky2 − y + 5

]
≥ 0,

(x− 1)(kx− 5)

kx2 − x+ 5
+

4(y − 1)(ky − 5)

ky2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x,

the inequality is equivalent to

(x− 1)

(
kx− 5

kx2 − x+ 5
− ky − 5

ky2 − y + 5

)
≥ 0,

(x− 1)2h(x, y)

(kx2 − x+ 5)(ky2 − y + 5)
≥ 0,

where

h(x, y) = −k2xy + 5k(x+ y) + 5k − 5

= 4k2y2 − 5k(k + 3)y + 5(6k − 1).

We need to show that h(x, y) ≥ 0 for k ∈
[

4

9
,

61

5

]
. For k ∈

[
4

9
, 1

]
, we have

h(x, y) = (5− 4y)

(
−k2y +

15k

4

)
+

5(9k − 4)

4

=
kx(15− 4ky)

4
+

5(9k − 4)

4

=
kx(kx+ 15− 5k)

4
+

5(9k − 4)

4
≥ 0,

while for k ∈
[
1,

61

5

]
, we have

h(x, y) =

(
2ky − 5k + 15

4

)2

+
(61− 5k)(k − 1)

16
≥ 0.



Partially Convex Function Method 241

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k =
4

9
, then the equality holds also for

a1 = 0, a2 = a3 = a4 = a5 =
5

4

(or any cyclic permutation). If k =
61

5
, then the equality holds also for

a1 =
115

61
, a2 = a3 = a4 = a5 =

95

122

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an ≤ n. If k ∈ [k1, k2], where

k1 =
n− 1

2n− 1
,

k2 =
n2 + 2n− 2 + 2

√
(n− 1)(2n2 − 1)

n
,

then ∑ a1
ka21 + a2 + · · ·+ an

≤ n

k + n− 1
,

with equality for a1 = a2 = · · · = an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = a3 = a4 = a5 =
n

n− 1

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
n(k − n+ 2)

2k
, a2 = · · · = an =

n(k + n− 2)

2k(n− 1)

(or any cyclic permutation).

P 3.15. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≥ n. If k > 1,
then

a1
ak1 + a2 + · · ·+ an

+
a2

a1 + ak2 + · · ·+ an
+ · · ·+ an

a1 + a2 + · · ·+ akn
≤ 1.

(Vasile C., 2006)

Solution. Using the substitution

x1 =
a1
s
, x2 =

a2
s
, . . . , xn =

an
s
,

where

s =
a1 + a2 + · · ·+ an

n
≥ 1,
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we need to show that x1 + x2 + · · ·+ xn = n involves

x1
sk−1xk1 + x2 + · · ·+ xn

+ · · ·+ xn
x1 + x2 + · · ·+ sk−1xkn

≤ 1.

Since sk−1 ≥ 1, it suffices to prove the inequality for s = 1; that is, to show that

a1
ak1 − a1 + n

+
a2

ak2 − a2 + n
+ · · ·+ an

akn − an + n
≤ 1

for
a1 + a2 + · · ·+ an = n.

Case 1: 1 < k ≤ n+ 1. By Bernoulli’s inequality, we have

ak1 ≥ 1 + k(a1 − 1), ak1 − a1 + n ≥ (k − 1)a1 + n− k + 1.

Thus, it suffices to show that ∑ a1
(k − 1)a1 + n− k + 1

≤ 1.

This is an equality for k = n− 1. If 1 < k < n+ 1, then the inequality is equivalent to∑ 1

(k − 1)a1 + n− k + 1
≥ 1,

which follows from the the AM-HM inequality∑ 1

(k − 1)a1 + n− k + 1
≥ n2∑

[(k − 1)a1 + n− k + 1]
.

Case 2: k > n+ 1. Write the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−u

uk − u+ n
, u ∈ [0, n].

We have

f ′(u) =
(k − 1)uk − n
(uk − u+ n)2

and

f ′′(u) =
f1(u)

(uk − u+ n)3
,

where
f1(u) = k(k − 1)uk−1(uk − u+ n)− 2(kuk−1 − 1)[(k − 1)uk − n].

From the expression of f ′, it follows that f is decreasing on [0, s0] and increasing on [s0, n], where

s0 =

(
n

k − 1

)1/k

< 1 = s.
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For u ∈ [s0, 1], we have
(k − 1)uk − n ≥ (k − 1)sk0 − n = 0,

hence

f1(u) ≥ k(k − 1)uk−1(uk − u+ n)− 2kuk−1[(k − 1)uk − n]

= kuk−1[−(k − 1)(uk + u) + n(k + 1)]

≥ kuk−1[−2(k − 1) + 2(k + 1)] = 4kuk−1 > 0.

Since f ′′(u) > 0, it follows that f is convex on [s0, s]. By the LPCF-Theorem, we need to show
that

f(x) + (n− 1)f(y) ≥ nf(1)

for
x ≥ 1 ≥ y ≥ 0, x+ (n− 1)y = n.

Consider the nontrivial case where x > 1 > y ≥ 0 and write the required inequality as follows:

x

xk − x+ n
+

(n− 1)y

yk − y + n
≤ 1,

xk − x+ n ≥ x(yk − y + n)

yk − ny + n
,

xk − x ≥ (n− 1)y(y − yk)

yk − ny + n
.

Since y < 1 and yk − ny + n > yk − y + 1, it suffices to show that

xk − x ≥ (n− 1)(y − yk)

yk − y + 1
,

which has been proved at P 3.13.
The equality holds for a1 = a2 = · · · = an = 1.

P 3.16. Let a1, a2, . . . , an be nonnegative real numbers so that a1+a2+· · ·+an ≤ n. If k ≥ 1− 1

n
,

then
1− a1

ka21 + a2 + · · ·+ an
+

1− a2
a1 + ka22 + · · ·+ an

+ · · ·+ 1− an
a1 + a2 + · · ·+ ka2n

≥ 0.

(Vasile C., 2006)

Solution. Let

s =
a1 + a2 + · · ·+ an

n
, s ≤ 1.

We have three cases to consider.

Case 1: s ≤ 1

n
. The inequality is trivial because

ai ≤ a1 + a2 + · · ·+ an = ns ≤ 1



244 Vasile Ĉırtoaje

for i = 1, 2, . . . , n.

Case 2:
1

n
< s < 1. Without loss of generality, assume that

a1 ≤ · · · ≤ aj < 1 ≤ aj+1 · · · ≤ an, j ∈ {1, 2, . . . , n}.

Clearly, there are b1, b2, . . . , bn so that b1 + b2 + · · ·+ bn = n and

a1 ≤ b1 ≤ 1, . . . , aj ≤ bj ≤ 1, bj+1 = aj+1, . . . , bn = an.

Write the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ 0,

where

f(u) =
1− u

ku2 − u+ ns
, u ∈ [0, ns].

For u ∈ [0, 1], we have

f ′(u) =
k[(1− u)2 − 1] + (1− ns)

(ku2 − u+ ns)2
< 0,

hence f is strictly decreasing on [0, 1] and

f(b1) ≤ f(a1), . . . , f(bj) ≤ f(aj), f(bj+1) = f(aj+1), . . . , f(bn) = f(an).

Since
f(b1) + f(b2) + · · ·+ f(bn) ≤ f(a1) + f(a2) + · · ·+ f(an),

it suffices to show that f(b1) + f(b2) + · · ·+ f(bn) ≥ 0 for b1 + b2 + · · ·+ bn = n. This inequality
is proved at Case 3.

Case 3: s = 1. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1− u

ku2 − u+ n
, u ∈ [0, n].

From

f ′(u) =
k[(u− 1)2 − 1]− (n− 1)

(ku2 − u+ n)2
,

it follows that f is decreasing on [0, s0] and increasing on [s0, n], where

s0 = 1 +

√
1 +

n− 1

k
> 1 = s, s0 < n.

We will show that f is convex on [1, s0]. We have

f ′′(u) =
2g(u)

(ku2 − u+ n)3
,
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where

g(u) = −k2u3 + 3k2u2 + 3k(n− 1)u− kn− n+ 1, g′(u) = 3k(−ku2 + 2ku+ n− 1).

For u ∈ [1, s0], we have g′(u) ≥ 0, g is increasing, therefore

g(u) ≥ g(1) = 2k2 + (2n− 3)k − n+ 1

≥ 2(n− 1)2

n2
+

(2n− 3)(n− 1)

n
− n+ 1

=
(n2 − 1)(n− 2)

n2
≥ 0,

f ′′(u) ≥ 0, f(u) is convex for u ∈ [s, s0]. By the RPCF-Theorem, it suffices to show that

1− x
kx2 − x+ n

+
(n− 1)(1− y)

ky2 − y + n
≥ 0

for 0 ≤ x ≤ 1 ≤ y and x+ (n− 1)y = n. Since (n− 1)(1− y) = x− 1, we have

1− x
kx2 − x+ n

+
(n− 1)(1− y)

ky2 − y + n
= (x− 1)

(
− 1

kx2 − x+ n
+

1

ky2 − y + n

)
=

(x− 1)(x− y)(kx+ ky − 1)

(kx2 − x+ n)(ky2 − y + n)

=
n(x− 1)2(kx+ ky − 1)

(n− 1)(kx2 − x+ n)(ky2 − y + n)
≥ 0,

because

k(x+ y)− 1 ≥ n− 1

n
(x+ y)− 1 =

(n− 2)x

n
≥ 0.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1. If k = 1 − 1

n
, then the

equality holds also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

Remark. For k = 1, we get the following statement:

• If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n, then

1− a1
a21 + a2 + · · ·+ an

+
1− a2

a1 + a22 + · · ·+ an
+ · · ·+ 1− an

a1 + a2 + · · ·+ a2n
≥ 0.

with equality for a1 = a2 = · · · = an = 1.

P 3.17. Let a1, a2, . . . , an be nonnegative real numbers so that a1+a2+· · ·+an ≤ n. If k ≥ 1− 1

n
,

then
1− a1

1− a1 + ka21
+

1− a2
1− a2 + ka22

+ · · ·+ 1− an
1− an + ka2n

≥ 0.

(Vasile C., 2006)
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Solution. The proof is similar to the one of the preceding P 3.16. For the case 3, we need to
show that

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1− u

1− u+ ku2
, u ∈ [0, n].

From

f ′(u) =
ku(u− 2)

(1− u+ ku2)2
,

it follows that f is decreasing on [0, s0] and increasing on [s0, n], where

s0 = 2 > s.

We will show that f is convex on [1, s0]. For u ∈ [1, s0], we have

f ′′(u) =
2kg(u)

(1− u+ ku2)3
, g(u) = −ku3 + 3ku2 − 1.

Since
g′(u) = 3ku(2− u) ≥ 0,

g is increasing, g(u) ≥ g(1) = 2k−1 ≥ 0, hence f ′′(u) ≥ 0 for u ∈ [1, s0]. By the RPCF-Theorem,
it suffices to show that

1− x
1− x+ kx2

+
(n− 1)(1− y)

1− y + ky2
≥ 0

for 0 ≤ x ≤ 1 ≤ y and x+ (n− 1)y = n. Since (n− 1)(1− y) = x− 1, we have

1− x
1− x+ kx2

+
(n− 1)(1− y)

1− y + ky2
= (1− x)

(
1

1− x+ kx2
− 1

1− y + ky2

)
=

(1− x)(y − x)(kx+ ky − 1)

(1− x+ kx2)(1− y + ky2)

=
n(x− 1)2(kx+ ky − 1)

(n− 1)(1− x+ kx2)(1− y + ky2)
.

Since

k(x+ y)− 1 ≥ n− 1

n
(x+ y)− 1 =

(n− 2)x

n
≥ 0,

the conclusion follows. The equality holds for a1 = a2 = · · · = an = 1. If k = 1 − 1

n
, then the

equality holds also for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).
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P 3.18. Let a1, a2, . . . , an be positive real numbers so that a1+a2+· · ·+an = n. If 0 < k ≤ n

n− 1
,

then
a
k/a1
1 + a

k/a2
2 + · · ·+ ak/ann ≤ n.

(Vasile C., 2006)

Solution. According to the power mean inequality, we have(
a
p/a1
1 + a

p/a2
2 + · · ·+ a

p/an
n

n

)1/p

≥

(
a
q/a1
1 + a

q/a2
2 + · · ·+ a

q/an
n

n

)1/q

for all p ≥ q > 0. Thus, it suffices to prove the desired inequality for

k =
n

n− 1
, 1 < k ≤ 2.

Rewrite the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = −uk/u, u ∈ I = (0, n).

We have
f ′(u) = ku

k
u
−2(lnu− 1),

f ′′(u) = ku
k
u
−4[u+ (1− lnu)(2u− k + k lnu)].

For n = 2, when k = 2 and I = (0, 2), f is convex on [1, 2) because

1− lnu > 0, 2u− k + k lnu = 2u− 2 + 2 lnu ≥ 2u− 2 ≥ 0.

Therefore, we may apply the RHCF-Theorem. Consider now that n ≥ 3. From the expression
of f ′, it follows that f is decreasing on (0, s0] and increasing on [s0, n), where

s0 = e > 1 = s.

In addition, we claim that f is convex on [1, s0]. Indeed, since

1− lnu ≥ 0, 2u− k + k lnu ≥ 2− k > 0,

we have f ′′ > 0 for u ∈ [1, s0]. Therefore, by the RHCF-Theorem (for n = 2) and the RPCF-
Theorem (for n ≥ 3), we only need to show that

xk/x + (n− 1)yk/y ≤ n

for
0 < x ≤ 1 ≤ y, x+ (n− 1)y = n.

We have
k

x
≥ k > 1.
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Also, from
k

y
=

n

(n− 1)y
>

n

x+ (n− 1)y
= 1,

k

y
=

n

(n− 1)y
≤ 2

y
≤ 2,

we get

0 <
k

y
− 1 ≤ 1.

Therefore, by Bernoulli’s inequality, we have

xk/x + (n− 1)yk/y − n =
1(

1
x

)k/x + (n− 1)y · yk/y−1 − n

≤ 1

1 + k
x

(
1
x
− 1
) + (n− 1)y

[
1 +

(
k

y
− 1

)
(y − 1)

]
− n

=
x2

x2 − kx+ k
− (k − 1)x2 − (2− k)x

=
−x(x− 1)2[(k − 1)x+ k(2− k)]

x2 − kx+ k
≤ 0.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1.

P 3.19. If a, b, c, d, e are nonzero real numbers so that a+ b+ c+ d+ e = 5, then(
7− 5

a

)2

+

(
7− 5

b

)2

+

(
7− 5

c

)2

+

(
7− 5

d

)2

+

(
7− 5

e

)2

≥ 20.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where

f(u) =

(
7− 5

u

)2

, u ∈ I = R \ {0}.

From

f ′(u) =
10(7u− 5)

u3
,

it follows that f is increasing on (−∞, 0) ∪ [s0,∞) and decreasing on (0, s0], where

s0 =
5

7
< 1 = s.

Since

lim
u→−∞

f(u) = 49
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and f(s0) = 0, we have
min
u∈I

f(u) = f(s0).

Also, f is convex on [s0, s] = [5/7, 1] because

f ′′(u) =
10(15− 14u)

u4
> 0.

According to the LPCF-Theorem and Note 4, we only need to show that

f(x) + 4f(y) ≥ 5f(1)

for all nonzero real x, y so that x + 4y = 5. Using Note 1, it suffices to prove that h(x, y) ≥ 0,
where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

We have

g(u) = 5

(
9

u
− 5

u2

)
,

h(x, y) =
5(5x+ 5y − 9xy)

x2y2
=

5(6y − 5)2

x2y2
≥ 0.

In accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also for

a =
5

3
, b = c = d = e =

5

6

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonzero real numbers so that a1 +a2 + · · ·+an = n. If k =
n

n+
√
n− 1

,

then (
1− k

a1

)2

+

(
1− k

a2

)2

+ · · ·+
(

1− k

an

)2

≥ n(1− k)2,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
n

1 +
√
n− 1

, a2 = a3 = · · · = an =
n

n− 1 +
√
n− 1

(or any cyclic permutation).

P 3.20. If a1, a2, . . . , a7 are real numbers so that a1 + a2 + · · ·+ a7 = 7, then

(a21 + 2)(a22 + 2) · · · (a27 + 2) ≥ 37.

(Vasile C., 2007)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(a7) ≥ 7f(s), s =
a1 + a2 + · · ·+ a7

7
= 1,

where
f(u) = ln(u2 + 2), u ∈ R.

From

f ′(u) =
2u

u2 + 2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞], where

s0 = 0.

From

f ′′(u) =
2(2− u2)
(u2 + 2)2

,

it follows that f ′′(u) > 0 for u ∈ [0, 1], therefore f is convex on [s0, s]. By the LPCF-Theorem,
it suffices to prove that

f(x) + 6f(y) ≥ 7f(1)

for x, y ∈ R so that x+ 6y = 7. The inequality can be written as g(y) ≥ 0, where

g(y) = ln [(7− 6y)2 + 2] + 6 ln (y2 + 2)− 7 ln 3, y ∈ R.

From

g′(y) =
4(6y − 7)

12y2 − 28y + 17
+

12y

y2 + 2

=
28(6y3 − 13y2 + 9y − 2)

(12y2 − 28y + 17)(y2 + 2)

=
28(2y − 1)(3y − 2)(y − 1)

(12y2 − 28y + 17)(y2 + 2)
,

it follows that g is decreasing on

(
−∞, 1

2

]
∪
[

2

3
, 1

]
and increasing on

[
1

2
,
2

3

]
∪ [1,∞); therefore,

g ≥ min{g(1/2), g(1)}.

Since g(1) = 0, we only need to show that g(1/2) ≥ 0; that is, to show that x = 4 and y = 1/2
involve

(x2 + 2)(y2 + 2)6 ≥ 37.

Indeed, we have

(x2 + 2)(y2 + 2)6 − 37 = 37

(
37

211
− 1

)
=

139 · 37

211
> 0.

The equality holds for a1 = a2 = · · · = a7 = 1.
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P 3.21. Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If k ≥ n2

4(n− 1)
, then

(a21 + k)(a22 + k) · · · (a2n + k) ≥ (1 + k)n.

(Vasile C., 2007)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = ln(u2 + k), u ∈ R.

From

f ′(u) =
2u

u2 + k
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞], where

s0 = 0.

From

f ′′(u) =
2(k − u2)
(u2 + k)2

,

it follows that f ′′(u) ≥ 0 for u ∈ [0, 1], therefore f is convex on [s0, s]. By the LPCF-Theorem
and Note 2, it suffices to prove that H(x, y) ≥ 0 for x, y ∈ R so that x+ (n− 1)y = n, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.

We have

1

2
H(x, y) =

k − xy
(x2 + k)(y2 + k)

≥ n2 − 4(n− 1)xy

4(n− 1)(x2 + k)(y2 + k)
,

=
[x+ (n− 1)y]2 − 4(n− 1)xy

4(n− 1)(x2 + k)(y2 + k)

=
[x− (n− 1)y)]2

4(n− 1)(x2 + k)(y2 + k)
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

P 3.22. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 10, then

(a21 − a1 + 1)(a22 − a2 + 1) · · · (a2n − an + 1) ≥ 1.

(Vasile C., 2007)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1

where
f(u) = ln(u2 − u+ 1), u ∈ R.

From

f ′(u) =
2u− 1

u2 − u+ 1
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
1

2
< 1 = s.

In addition, from

f ′′(u) =
1 + 2u(1− u)

(u2 − u+ 1)2
,

it follows that f ′′(u) > 0 for u ∈ [s0, 1], hence f is convex on [s0, s]. According to LPCF-Theorem,
we only need to show that

f(x) + (n− 1)f(y) ≥ nf(1)

for all real x, y so that x+ (n− 1)y = n. Write this inequality as g(x) ≥ 0, where

g(x) = ln(x2 − x+ 1) + (n− 1) ln(y2 − y + 1), y =
n− x
n− 1

.

Since y′(x) =
−1

n− 1
, we have

g′(x) =
2x− 1

x2 − x+ 1
+ (n− 1)y′

2y − 1

y2 − y + 1
=

2x− 1

x2 − x+ 1
− 2y − 1

y2 − y + 1

=
(x− y)(1 + x+ y − 2xy)

(x2 − x+ 1)(y2 − y + 1)
=

(x− 1)[2x2 − (n+ 2)x+ 2n− 1]

(n− 1)2(x2 − x+ 1)(y2 − y + 1)
.

Because 2x2− (n+ 2)x+ 2n− 1 > 0 for n ≤ 10, we have g′(x) ≤ 0 for x ∈ (−∞, 1] and g′(x) ≥ 0
for x ∈ [1,∞). Therefore, since g(x) is decreasing on (−∞, 1] and increasing on [1,∞), we have

g(x) ≥ g(1) = 0.

The equality occurs for a1 = a2 = · · · = an = 1.

Remark 1. The inequality holds also for n = 11, n = 12 and n = 13, when the equation

2x2 − (n+ 2)x+ 2n− 1 = 0

has two positive roots, namely

x1 =
n+ 2−

√
n2 − 12(n− 1)

4
, x2 =

n+ 2 +
√
n2 − 12(n− 1)

4
,
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satisfying 1 < x1 < x2. Thus, g(x) is decreasing on (−∞, 1] ∪ [x1, x2] and increasing on [1, x1] ∪
[x2,∞). Therefore, it suffices to show that

min{g(1), g(x2)} ≥ 0.

We have g(1) = 0. For n = 13, we have

x2 = 5, y2 =
13− x2

12
=

2

3
,

hence

g(x2) = ln(x22 − x2 + 1) + (n− 1) ln(y22 − y2 + 1) = ln 21 + 12 · ln 7

9
= ln

713

323
> 0.

For n = 14, the inequality does not hold.

Remark 2. By replacing a1, a2, . . . , an respectively with 1 − a1, 1 − a2, . . . , 1 − an, we get the
following statement:

• Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = 0. If n ≤ 13, then

(1− a1 + a21)(1− a2 + a22) · · · (1− an + a2n) ≥ 1,

with equality for a1 = a2 = · · · = an = 0.

P 3.23. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 26, then

(a21 − a1 + 2)(a22 − a2 + 2) · · · (a2n − an + 2) ≥ 2n.

(Vasile C., 2007)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = ln(u2 − u+ 2), u ∈ R.

From

f ′(u) =
2u− 1

u2 − u+ 2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
1

2
< 1 = s.

In addition, from

f ′′(u) =
3 + 2u(1− u)

(u2 − u+ 2)2
,
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it follows that f ′′(u) > 0 for u ∈ [s0, 1], hence f is convex on [s0, s]. According to LPCF-Theorem,
we only need to show that

f(x) + (n− 1)f(y) ≥ nf(1)

for all real x, y so that x+ (n− 1)y = n. Write this inequality as g(x) ≥ 0, where

g(x) = ln(x2 − x+ 2) + (n− 1) ln(y2 − y + 2), y =
n− x
n− 1

.

Since y′(x) =
−1

n− 1
, we have

g′(x) =
2x− 1

x2 − x+ 2
+ (n− 1)y′

2y − 1

y2 − y + 2
=

2x− 1

x2 − x+ 2
− 2y − 1

y2 − y + 2

=
(x− y)(3 + x+ y − 2xy)

(x2 − x+ 2)(y2 − y + 2)
=

(x− 1)[2x2 − (n+ 2)x+ 4n− 3]

(n− 1)2(x2 − x+ 1)(y2 − y + 1)
.

Because 2x2− (n+ 2)x+ 4n− 3 > 0 for n ≤ 26, we have g′(x) ≤ 0 for x ∈ (−∞, 1] and g′(x) ≥ 0
for x ∈ [1,∞). Therefore, since g(x) is decreasing on (−∞, 1] and increasing on [1,∞), we have

g(x) ≥ g(1) = 0.

The equality occurs for a1 = a2 = · · · = an = 1.

Remark 1. The inequality holds also for 27 ≤ n ≤ 38, when the equation

2x2 − (n+ 2)x+ 4n− 3 = 0

has two positive roots, namely

x1 =
n+ 2−

√
n2 − 28(n− 1)

4
, x2 =

n+ 2 +
√
n2 − 28(n− 1)

4
,

satisfying 1 < x1 < x2. Thus, g(x) is decreasing on (−∞, 1] ∪ [x1, x2] and increasing on [1, x1] ∪
[x2,∞). Therefore, it suffices to show that

min{g(1), g(x2)} ≥ 0.

We have g(1) = 0 and g(x2) > 0 for 27 ≤ n ≤ 38. For n = 39, the inequality does not hold.

Remark 2. By replacing a1, a2, . . . , an respectively with 1 − a1, 1 − a2, . . . , 1 − an, we get the
following statement:

• Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = 0. If n ≤ 38, then

(2− a1 + a21)(2− a2 + a22) · · · (2− an + a2n) ≥ 2n,

with equality for a1 = a2 = · · · = an = 0.



Partially Convex Function Method 255

P 3.24. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(1− a+ a4)(1− b+ b4)(1− c+ c4) ≥ 1.

Solution. Write the inequality as

f(a) + f(b) + f(c) ≥ 3f(s), s =
a+ b+ c

3
= 1,

where

f(u) = ln(1− u+ u4), u ∈ [0, 3].

From

f ′(u) =
4u3 − 1

1− u+ u4
,

it follows that f is decreasing on [0, s0] and increasing on [s0, 3], where

s0 =
1
3
√

4
< 1 = s.

Also, f is convex on [s0, 1] because

f ′′(u) =
−4u6 − 4u3 + 12u2 − 1

(1− u+ u4)2
≥ −4u2 − 4u2 + 12u2 − 1

(1− u+ u4)2
=

4u2 − 1

(1− u+ u4)2
> 0.

According to the LPCF-Theorem, we only need to show that

f(x) + 2f(y) ≥ 3f(1)

for all x, y ≥ 0 so that x+ 2y = 3. Using Note 2, it suffices to prove that H(x, y) ≥ 0, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.

We have

H(x, y) =
(x+ y)(x− y)2 − 1 + 4(x2 + y2 + xy)− 2xy(x+ y)− 4x3y3

(1− x+ x4)(1− y + y4)

≥ −1 + 4(x2 + y2 + xy)− 2xy(x+ y)− 4x3y3

(1− x+ x4)(1− y + y4)

=
h(x, y)

(1− x+ x4)(1− y + y4)
,

where

h(x, y) = −1 + 2(x+ y)[2(x+ y)− xy]− 4xy − 4x3y3.

From 3 = x+ 2y ≥ 2
√

2xy and (1− x)(1− y) ≤ 0, we get

xy ≤ 9

8
, x+ y ≥ 1 + xy.
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Therefore,

h(x, y) ≥ −1 + 2(1 + xy)[2(1 + xy)− xy]− 4xy − 4x3y3

= 3 + 2xy + 2x2y2 − 4x3y3 ≥ 3 + 2xy + 2x2y2 − 5x2y2

= 3 + 2xy − 3x2y2 ≥ 3 + 2xy − 4xy = 3− 2xy > 0.

The proof is completed. The equality holds for a = b = c = 1.

P 3.25. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(1− a+ a3)(1− b+ b3)(1− c+ c3)(1− d+ d3) ≥ 1.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where
f(u) = ln(1− u+ u3), u ∈ [0, 4].

From

f ′(u) =
3u2 − 1

1− u+ u3
,

it follows that f is decreasing on [0, s0] and increasing on [s0, 4], where

s0 =
1√
3
< 1 = s.

In addition, f is convex on [s0, 1] because

f ′′(u) =
−3u4 + 6u− 1

(1− u+ u3)2
≥ −3u+ 6u− 1

(1− u+ u3)2
=

3u− 1

(1− u+ u3)2
> 0.

According to the LPCF-Theorem, we only need to show that

f(x) + 3f(y) ≥ 4f(1)

for all x, y ≥ 0 so that x+ 3y = 4. Using Note 2, it suffices to prove that H(x, y) ≥ 0, where

H(x, y) =
f ′(x)− f ′(y)

x− y
.

We have

H(x, y) =
(x− y)2 + 3(x+ y)− 1− 3x2y2

(1− x+ x3)(1− y + y3)
≥ 3(x+ y)− 1− 3x2y2

(1− x+ x3)(1− y + y3)
.
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From 4 = x+ 3y ≥ 2
√

3xy and (1− x)(1− y) ≤ 0, we get

xy ≤ 4

3
, x+ y ≥ 1 + xy.

Therefore,

3(x+ y)− 1− 3x2y2 ≥ 3(1 + xy)− 1− 3x2y2

≥ 3(1 + xy)− 1− 4xy = 2− xy > 0,

hence H(x, y) > 0. The equality holds for a = b = c = d = 1.

P 3.26. If a, b, c, d, e are nonzero real numbers so that a+ b+ c+ d+ e = 5, then

5

(
1

a2
+

1

b2
+

1

c2
+

1

d2
+

1

e2

)
+ 45 ≥ 14

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
.

(Vasile C., 2013)

Solution. Write the desired inequality as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where

f(u) =
5

u2
− 14

u
+ 9, u ∈ I = R \ {0}.

From

f ′(u) =
2(7u− 5)

u3
,

it follows that f is increasing on (−∞, 0) ∪ [s0,∞) and decreasing on (0, s0], where

s0 =
5

7
< 1 = s.

Since
lim

u→−∞
f(u) = 9

and f(s0) < f(1) = 0, we have
min
u∈I

f(u) = f(s0).

From

f ′′(u) =
2(15− 14u)

u4
,

it follows that f is convex on [s0, 1]. By the LPCF-Theorem, Note 4 and Note 1, it suffices to
show that h(x, y) ≥ 0 for all x, y ∈ I which satisfy x+ 4y = 5, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.
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Indeed, we have

g(u) =
9

u
− 5

u2
,

h(x, y) =
5x+ 5y − 9xy

x2y2
=

(6y − 5)2

x2y2
≥ 0.

In accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also for

a =
5

3
, b = c = d = e =

5

6

(or any cyclic permutation).

P 3.27. If a, b, c are positive real numbers so that abc = 1, then

7− 6a

2 + a2
+

7− 6b

2 + b2
+

7− 6c

2 + c2
≥ 1.

(Vasile C., 2008)

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that
f(x) + f(y) + f(z) ≥ 3f(s),

where

s =
x+ y + z

3
= 0

and

f(u) =
7− 6eu

2 + e2u
, u ∈ R.

From

f ′(u) =
2(3eu + 2)(eu − 3)

(2 + e2u)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln 3 > s.

We have

f ′′(u) =
2t · h(t)

(2 + t2)3
, h(t) = −3t4 + 14t3 + 36t2 − 28t− 12, t = eu.

We will show that h(t) > 0 for t ∈ [1, 3], hence f is convex on [0, s0]. We have

h(t) = 3(t2 − 1)(9− t2) + 14t3 + 6t2 − 28t+ 15

≥ 14t3 + 6t2 − 28t+ 15

= 14t2(t− 1) + 14(t− 1)2 + 6t2 + 1 > 0.
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By the RPCF-Theorem, we only need to prove that

f(x) + 2f(y) ≥ 3f(0)

for all real x, y so that x + 2y = 0. That is, to show that the original inequality holds for b = c
and a = 1/c2. Write this inequality as

c2(7c2 − 6)

2c4 + 1
+

2(7− 6c)

2 + c2
≥ 1,

(c− 1)2(c− 2)2(5c2 + 6c+ 3) ≥ 0.

By Note 3, the equality holds for a = b = c = 1, and also for

a =
1

4
, b = c = 2

(or any cyclic permutation).

P 3.28. If a, b, c are positive real numbers so that abc = 1, then

1

a+ 5bc
+

1

b+ 5ca
+

1

c+ 5ab
≤ 1

2
.

(Vasile C., 2008)

Solution. Write the inequality as

a

a2 + 5
+

b

b2 + 5
+

c

c2 + 5
≤ 1

2
.

Using the substitution
a = ex, b = ey, c = ez,

we need to show that
f(x) + f(y) + f(z) ≥ 3f(s),

where

s =
x+ y + z

3
= 0

and

f(u) =
−eu

e2u + 5
, u ∈ R.

From

f ′(u) =
eu(e2u − 5)

(e2u + 5)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
ln 5

2
> 0 = s.



260 Vasile Ĉırtoaje

Also, from

f ′′(u) =
eu(−e4u + 30e2u − 25)

(e2u + 5)3
,

it follows that f is convex on [s, s0], because u ∈ [0, s0] involves eu ∈ [1,
√

5 ] and e2u ∈ [1, 5],
hence

−e4u + 30e2u − 25 = e2u(5− e2u) + 25(e2u − 1) > 0.

By the RPCF-Theorem, we only need to prove the original inequality for b = c and a = 1/c2.
Write this inequality as

c2

5c4 + 1
+

2c

c2 + 5
≤ 1

2
,

(c− 1)2(5c4 − 10c3 − 2c2 + 6c+ 5) ≥ 0,

(c− 1)2[5(c− 1)4 + 2c(5c2 − 16c+ 13)] ≥ 0.

The equality holds for a = b = c = 1.

P 3.29. If a, b, c are positive real numbers so that abc = 1, then

1

4− 3a+ 4a2
+

1

4− 3b+ 4b2
+

1

4− 3c+ 4c2
≤ 3

5
.

(Vasile Cı̂rtoaje, 2008)

Solution. Let
a = ex, b = ey, c = ez.

We need to show that
f(x) + f(y) + f(z) ≥ 3f(s),

where

s =
x+ y + z

3
= 0

and

f(u) =
−1

4− 3eu + 4e2u
, u ∈ R.

From

f ′(u) =
eu(8eu − 3)

(4− 3eu + 4e2u)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln
3

8
< 0 = s.

We claim that f is convex on [s0, 0]. Since

f ′′(u) =
eu(−64e3u + 36e2u + 55eu − 12)

(4− 3eu + 4e2u)3
,
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we need to show that

−64t3 + 36t2 + 55t− 12 ≥ 0,

where

t = eu ∈
[

3

8
, 1

]
.

Indeed, we have

−64t3 + 36t2 + 55t− 12 > −72t3 + 36t2 + 48t− 12

= 12(1− t)(6t2 + 3t− 1) ≥ 0.

By the LPCF-Theorem, we only need to prove the original inequality for b = c and a = 1/c2.
Write this inequality as follows:

c4

4c4 − 3c2 + 4
+

2

4− 3c+ 4c2
≤ 3

5
,

28c6 − 21c5 − 48c4 + 27c3 + 42c2 − 36c+ 8 ≥ 0,

(c− 1)2(28c4 + 35c3 − 6c2 − 20c+ 8) ≥ 0.

It suffices to show that

7(4c4 + 5c3 − c2 − 3c+ 1) ≥ 0.

Indeed,

4c4 + 5c3 − c2 − 3c+ 1 = c2(2c− 1)2 + 9c3 − 2c2 − 3c+ 1

and

9c3 − 2c2 − 3c+ 1 = c(3c− 1)2 + (2c− 1)2 > 0.

The equality holds for a = b = c = 1.

Remark. Since

1

4− 3a+ 4a2
≥ 1

4− 3a+ 4a2 + (1− a)2
=

1

5(1− a+ a2)
,

we get the following known inequality

1

1− a+ a2
+

1

1− b+ b2
+

1

1− c+ c2
≤ 3.

P 3.30. If a, b, c are positive real numbers so that abc = 1, then

1

(3a+ 1)(3a2 − 5a+ 3)
+

1

(3b+ 1)(3b2 − 5b+ 3)
+

1

(3c+ 1)(3c2 − 5c+ 3)
≤ 3

4
.
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Solution. Let
a = ex, b = ey, c = ez.

We need to show that
f(x) + f(y) + f(z) ≥ 3f(s),

where

s =
x+ y + z

3
= 0

and

f(u) =
−1

(3eu + 1)(3e2u − 5eu + 3)
, u ∈ R.

From

f ′(u) =
(3eu − 2)(9eu − 2)

(3eu + 1)2(3e2u − 5eu + 3)2
,

it follows that f is increasing on (−∞, s1] ∪ [s0,∞) and decreasing on [s1, s0], where

s1 = ln 2− ln 9, s0 = ln 2− ln 3, s1 < s0 < 0 = s.

Since

lim
u→−∞

f(u) = f(s0) =
−1

3
,

we get
min
u∈R

f(u) = f(s0).

We claim that f is convex on [s0, 0]. We have

f ′′(u) =
t · h(t)

(3t+ 1)3(3t2 − 5t+ 3)3
,

where

t = eu ∈
[

2

3
, 1

]
, h(t) = −729t5 + 1188t4 − 648t3 + 387t2 − 160t+ 12.

For t ∈ [2/3, 1], we have h(t) > 0, hence f is convex on [s0, 0]. Indeed,

h(t) > −729t5 + 1188t4 − 648t3 + 387t2 − 160t− 12 = (3t− 2)h1(t),

h1(t) = −234t4 + 234t3 − 60t2 + 89t+ 6 > t(−243t3 + 234t2 − 60t+ 89)

> 3t(−81t3 + 78t2 − 20t+ 23) = 3t(1− t)(23 + 3t+ 81t2) ≥ 0.

By the LPCF-Theorem, we only need to prove the original inequality for b = c ≤ 1 and a = 1/c2.
Write this inequality as follows:

c6

(c2 + 3)(3c4 − 5c2 + 3)
+

2

(3c+ 1)(3c2 − 5c+ 3)
≤ 3

4
.

Since
c2 + 3 ≥ 2(c+ 1)

and
3c4 − 5c2 + 3 ≥ c(3c2 − 5c+ 3),
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it suffices to prove that

c5

2(c+ 1)(3c2 − 5c+ 3)
+

2

(3c+ 1)(3c2 − 5c+ 3)
≤ 3

4
.

This is equivalent to the obvious inequality

(1− c)2(1 + 15c+ 5c2 − 14c3 − 6c4) ≥ 0.

The equality holds for a = b = c = 1.

P 3.31. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If p, q ≥ 0 so
that p+ 4q ≥ n− 1, then

1− a1
1 + pa1 + qa21

+
1− a2

1 + pa2 + qa22
+ · · ·+ 1− an

1 + pan + qa2n
≥ 0.

(Vasile C., 2008)

Solution. For q = 0, we get a known inequality (see Remark 2 from the proof of P 1.63).
Consider further that q > 0. Using the substitutions ai = exi for i = 1, 2, . . . , n, we need to show
that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

s =
x1 + x2 + · · ·+ xn

n
= 0

and

f(u) =
1− eu

1 + peu + qe2u
, u ∈ R.

From

f ′(u) =
eu(qe2u − 2qeu − p− 1)

(1 + peu + qe2u)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln r0 > 0 = s, r0 = 1 +

√
1 +

p+ 1

q
.

Also, we have

f ′′(u) =
t · h(t)

(1 + pt+ qt2)3
,

where

h(t) = −q2t4 + q(p+ 4q)t3 + 3q(p+ 2)t2 + (p− 4q + p2)t− p− 1, t = eu.

We will show that h(t) ≥ 0 for t ∈ [1, r0], hence f is convex on [0, s0]. We have

h′(t) = −4q2t3 + 3q(p+ 4q)t2 + 6q(p+ 2)t+ p− 4q + p2,
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h′′(t) = 6q[−2qt2 + (p+ 4q)t+ p+ 2].

Since

h′′(t) = 6q[2(−qt2 + 2qt+ p+ 1) + p(t− 1)] ≥ 12q(−qt2 + 2qt+ p+ 1) ≥ 0,

h′(t) is increasing,
h′(t) ≥ h′(1) = p2 + 9pq + 8q2 + p+ 8q > 0,

h is increasing, hence

h(t) ≥ h(1) = p2 + 4pq + 3q2 + 2q − 1 = (p+ 2q)2 − (q − 1)2

= (p+ q + 1)(p+ 3q − 1).

Since

p+ 3q − 1 ≥ p+ 3q − p+ 4q

n− 1
=
p+ 2q

2
> 0,

f ′′(u) > 0 for u ∈ [0, s0], therefore f is convex on [s, s0]. By the RPCF-Theorem, we only need
to prove the original inequality for

a2 = · · · = an := t, a1 = 1/tn−1, t ≥ 1.

Write this inequality as
tn−1(tn−1 − 1)

t2n−2 + ptn−1 + q
+

(n− 1)(1− t)
1 + pt+ qt2

≥ 0,

or
pA+ qB ≥ C,

where

A = tn−1(tn − nt+ n− 1),

B = t2n − tn+1 − (n− 1)(t− 1),

C = tn−1[(n− 1)tn + 1− ntn−1].

Since p + 4q ≥ n − 1 and C ≥ 0 (by the AM-GM inequality applied to n positive numbers), it
suffices to show that

pA+ qB ≥ (p+ 4q)C

n− 1
,

which is equivalent to
p[(n− 1)A− C] + q[(n− 1)B − 4C] ≥ 0.

This is true if
(n− 1)A− C ≥ 0

and
(n− 1)B − 4C ≥ 0

for t ≥ 1. By the AM-GM inequality, we have

(n− 1)A− C = ntn−1[tn−1 + n− 2− (n− 1)t] ≥ 0.
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For n = 3, we have
B = (t− 1)2(t4 + 2t3 + 2t2 + 2t+ 2),

C = t2(t− 1)2(2t+ 1),

B − 2C = (t− 1)2(t4 − 2t3 + 2t+ 2)

= (t− 1)2[(t− 1)2(t2 − 1) + 3] ≥ 0.

Consider further that
n ≥ 4.

Since
t− 1 ≤ tn−1(t− 1),

we have

B ≥ t2n − tn+1 − (n− 1)tn−1(t− 1)

= tn−1[tn+1 − t2 − (n− 1)t+ n− 1].

Thus, the inequality (n− 1)B − 4C ≥ 0 is true if

(n− 1)[tn+1 − t2 − (n− 1)t+ n− 1]− 4(n− 1)tn − 4− 4ntn−1 ≥ 0,

which is equivalent to g(t) ≥ 0, where

g(t) = (n− 1)tn+1 − 4(n− 1)tn + 4ntn−1 − (n− 1)t2 − (n− 1)2t+ n2 − 2n− 3.

We have

g′(t) = (n− 1)g1(t), g1(t) = (n+ 1)tn − 4ntn−1 + 4ntn−2 − 2t− n+ 1,

g′1(t) = n(n+ 1)tn−1 − 4n(n− 1)tn−2 + 4n(n− 2)tn−3 − 2.

Since
n(n+ 1)tn−1 + 4n(n− 2)tn−3 ≥ 4n

√
(n+ 1)(n− 2)tn−2,

we get

g′1(t) ≥ 4n
[√

(n+ 1)(n− 2)− n+ 1
]
tn−2 − 2

≥ 4n
[√

(n+ 1)(n− 2)− n+ 1
]
− 2

=
4n(n− 3)√

(n+ 1)(n− 2) + n− 1
− 2

>
4n(n− 3)

(n+ 1) + n− 1
− 2 = 2(n− 4) ≥ 0.

Therefore, g1(t) is increasing for t ≥ 1, g1(t) ≥ g1(1) = 0, g(t) is increasing for t ≥ 1, hence

g(t) ≥ g(1) = 0.

The equality holds for a1 = a2 = · · · = an = 1.
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Remark. For p = 0 and q = 1, we get the inequality (Vasile C., 2006)

1− a
1 + a2

+
1− b
1 + b2

+
1− c
1 + c2

+
1− d
1 + d2

+
1− e
1 + e2

≥ 0,

where a, b, c, d, e are positive real numbers so that abcde = 1. Replacing a, b, c, d, e by 1/a, 1/b, 1/c, 1/d, 1/e,
we get

1 + a

1 + a2
+

1 + b

1 + b2
+

1 + c

1 + c2
+

1 + d

1 + d2
+

1 + e

1 + e2
≤ 5,

where a, b, c, d, e are positive real numbers so that abcde = 1.
Notice that the inequality

1− a1
1 + a21

+
1− a2
1 + a22

+
1− a3
1 + a23

+
1− a4
1 + a24

+
1− a5
1 + a25

+
1− a6
1 + a26

≥ 0

is not true for all positive numbers a1, a2, a3, a4, a5, a6 satisfying a1a2a3a4a5a6 = 1. Indeed, for
a2 = a3 = a4 = a5 = a6 = 2, the inequality becomes

1− a1
1 + a21

− 1 ≥ 0,

which is false for a1 > 0.

P 3.32. If a, b, c are positive real numbers so that abc = 1, then

1− a
17 + 4a+ 6a2

+
1− b

17 + 4b+ 6b2
+

1− c
17 + 4c+ 6c2

≥ 0.

(Vasile C., 2008)

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that
f(x) + g(y) + g(z) ≥ 3f(s),

where

s =
x+ y + z

3
= 0

and

f(u) =
1− eu

1 + peu + qe2u
, u ∈ R,

with

p =
4

17
, q =

6

17
.

As we have shown in the proof of the preceding P 3.31, f is decreasing on (−∞, s0] and increasing
on [s0,∞), where

s0 = ln r0 > 0 = s, r0 = 1 +

√
1 +

p+ 1

q
= 1 +

√
9

2
.
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In addition, since p + 3q − 1 =
5

17
> 0 (see the proof of P 3.31), f is convex on [0, s0]. By the

RPCF-Theorem, we only need to prove the original inequality for b = c ≥ 1 and a = 1/c2. Write
this inequality as follows:

c2(c2 − 1)

c4 + pc2 + q
+

2(1− c)
1 + pc+ qc2

≥ 0,

pA+ qB ≥ C,

where
A = c2(c− 1)2(c+ 2),

B = (c− 1)2(c4 + 2c3 + 2c2 + 2c+ 2),

C = c2(c− 1)2(2c+ 1).

Indeed, we have

pA+ qB − C =
3(c− 1)2(c− 2)2(2c2 + 2c+ 1)

17
≥ 0.

In accordance with Note 3, the equality holds for a = b = c = 1, and also for

a =
1

4
, b = c = 2

(or any cyclic permutation).

P 3.33. If a1, a2, . . . , a8 are positive real numbers so that a1a2 · · · a8 = 1, then

1− a1
(1 + a1)2

+
1− a2

(1 + a2)2
+ · · ·+ 1− a8

(1 + a8)2
≥ 0.

(Vasile C., 2006)

Solution. Using the substitutions ai = exi for i = 1, 2, . . . , 8, we need to show that

f(x1) + f(x2) + · · ·+ f(x8) ≥ 8f(s),

where

s =
x1 + x2 + · · ·+ x8

8
= 0

and

f(u) =
1− eu

(1 + eu)2
, u ∈ R.

From

f ′(t) =
eu(eu − 3)

(1 + eu)3
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln 3 > 1 = s.
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We have

f ′′(u) =
eu(8eu − e2u − 3)

(1 + eu)4
.

For u ∈ [0, ln 3], that is eu ∈ [1, 3], we have

8eu − e2u − 3 > 8eu − 3eu − 7 = (eu − 1)(7− eu) ≥ 0;

therefore, f is convex on [s, s0]. By the RPCF-Theorem, we only need to prove the original
inequality for a2 = · · · = a8 := t and a1 = 1/t7, where t ≥ 1. For the nontrivial case t > 1, write
this inequality as follows:

t7(t7 − 1)

(t7 + 1)2
≥ 7(t− 1)

(t+ 1)2
.

t7(t7 − 1)(t+ 1)2

(t− 1)(t7 + 1)2
≥ 7,

t7(t6 + t5 + t4 + t3 + t2 + t+ 1)

(t6 − t5 + t4 − t3 + t2 − t+ 1)2
≥ 7.

Since

t6 − t5 + t4 − t3 + t2 − t+ 1 = t4(t2 − t+ 1)− (t− 1)(t2 + 1) < t4(t2 − t+ 1),

it suffices to show that
t6 + t5 + t4 + t3 + t2 + t+ 1

t(t2 − t+ 1)2
≥ 7,

which is equivalent to the obvious inequality

(t− 1)6 ≥ 0.

Thus, the proof is completed. The equality holds for a1 = a2 = · · · = a8 = 1.

Remark. The inequality

1− a1
(1 + a1)2

+
1− a2

(1 + a2)2
+ · · ·+ 1− a9

(1 + a9)2
≥ 0

is not true for all positive numbers a1, a2, . . . , a9 satisfying a1a2 · · · a9 = 1. Indeed, for a2 = a3 =
· · · = a9 = 3, the inequality becomes

1− a1
(1 + a1)2

− 1 ≥ 0,

which is false for a1 > 0.

P 3.34. Let a, b, c be positive real numbers so that abc = 1. If k ∈
[
−13

3
√

3
,

13

3
√

3

]
, then

a+ k

a2 + 1
+
b+ k

b2 + 1
+
c+ k

c2 + 1
≤ 3(1 + k)

2
.

(Vasile C., 2012)
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Solution. The inequality is equivalent to

k

(∑ 1

a2 + 1
− 3

2

)
≤
∑(

1

2
− a

a2 + 1

)
,

∑ (a− 1)2

a2 + 1
≥ k

(∑ 2

a2 + 1
− 3

)
. (*)

Thus, it suffices to prove it for |k| = 13

3
√

3
. On the other hand, replacing a, b, c by 1/a, 1/b, 1/c,

the inequality becomes ∑ (a− 1)2

a2 + 1
≥ k

(
3−

∑ 2

a2 + 1

)
. (**)

Based on (∗) and (∗∗), we only need to prove the desired inequality for

k =
13

3
√

3
.

Using the substitution
a = ex, b = ey, c = ez,

we need to show that
f(x) + g(y) + g(z) ≥ 3f(s),

where

s =
x+ y + z

3
= 0

and

f(u) =
−eu − k
e2u + 1

, u ∈ R.

From

f ′(t) =
e2u + 2keu − 1

(e2u + 1)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln r0 < 0 = s, r0 = −k +
√
k2 + 1 =

1

3
√

3
.

Also, we have

f ′′(u) =
t · h(t)

(1 + t2)3
,

where
h(t) = −t4 − 4kt3 + 6t2 + 4kt− 1, t = eu.

We will show that h(t) > 0 for t ∈ [r0, 1], hence f is convex on [s0, s]. Indeed, since

4kt =
52t

3
√

3
≥ 52

27
> 1,

we have

h(t) = −t4 + 6t2 − 1 + 4kt(1− t2) ≥ −t4 + 6t2 − 1 + (1− t2) = t2(5− t2) > 0.
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By the LPCF-Theorem, we only need to prove the original inequality for b = c := t and a = 1/t2,
where t > 0. Write this inequality as

t2(kt2 + 1)

t4 + 1
+

2(t+ k)

t2 + 1
≤ 3(1 + k)

2
,

3t6 − 4t5 + t4 + t2 − 4t+ 3− k(1− t2)3 ≥ 0,

(t− 1)2[(3 + k)t4 + 2(1 + k)t3 + 2t2 + 2(1− k)t+ 3− k] ≥ 0,

(t− 1)2
(
t− 2 +

√
3
)2 [

(27 + 13
√

3)t2 + 24(2 +
√

3)t+ 33 + 17
√

3
]
≥ 0.

The equality holds for a = b = c = 1. If k =
13

3
√

3
, then the equality holds also for

a = 7 + 4
√

3, b = c = 2−
√

3

(or any cyclic permutation). If k =
−13

3
√

3
, then the equality holds also for

a = 7− 4
√

3, b = c = 2 +
√

3

(or any cyclic permutation).

P 3.35. If a, b, c are positive real numbers and 0 < k ≤ 2 + 2
√

2, then

a3

ka2 + bc
+

b3

kb2 + ca
+

c3

kc2 + ab
≥ a+ b+ c

k + 1
.

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that abc = 1. On this hypothesis, we write the
inequality as follows:

a4

ka3 + 1
+

b4

kb3 + 1
+

b4

kb3 + 1
≥ a

k + 1
+

b

k + 1
+

c

k + 1
,

a4 − a
ka3 + 1

+
b4 − b
kb3 + 1

+
c4 − c
kc3 + 1

≥ 0.

Using the substitution
a = ex, b = ey, c = ez,

we need to show that
f(x) + g(y) + g(z) ≥ 3f(s),

where

s =
x+ y + z

3
= 0

and

f(u) =
e4u − eu

ke3u + 1
, u ∈ R.
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From

f ′(t) =
ke6u + 2(k + 2)e3u − 1

(ke3u + 1)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln r0 < 0, r0 =
3

√
−k − 2 +

√
(k + 1)(k + 4)

k
∈ (0, 1).

Also, we have

f ′′(u) =
t · h(t)

(kt3 + 1)3
,

where

h(t) = k2t9 − k(4k + 1)t6 + (13k + 16)t3 − 1, t = eu.

If h(t) > 0 for t ∈ [r0, 1], then f is convex on [s0, 0]. We will prove this only for k = 2+2
√

2, when
r0 ≈ 0.415 and h(t) ≥ 0 for t ∈ [t1, t2], where t1 ≈ 0.2345 and t2 ≈ 1.02. Since [r0, 1] ⊂ [t1, t2],
the conclusion follows. By the LPCF-Theorem, we only need to prove the original inequality for
b = c. Due to homogeneity, we may consider that b = c = 1. Thus, we need to show that

a3

ka2 + 1
+

2

a+ k
≥ a+ 2

k + 1
,

which is equivalent to the obvious inequality

(a− 1)2[a2 − (k − 2)a+ 2] ≥ 0.

For k = 2 + 2
√

2, this inequality has the form

(a− 1)2(a−
√

2)2 ≥ 0.

The equality holds for a = b = c. If k = 2 + 2
√

2, then the equality holds also for

a√
2

= b = c

(or any cyclic permutation).

P 3.36. If a, b, c, d, e are positive real numbers so that abcde = 1, then

2

(
1

a+ 1
+

1

b+ 1
+ · · ·+ 1

e+ 1

)
≥ 3

(
1

a+ 2
+

1

b+ 2
+ · · ·+ 1

e+ 2

)
.

(Vasile C., 2012)
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Solution. Write the inequality as

1− a
(a+ 1)(a+ 2)

+
1− b

(b+ 1)(b+ 2)
+

1− c
(c+ 1)(c+ 2)

+
1− d

(d+ 1)(d+ 2)
+

1− e
(e+ 1)(e+ 2)

≥ 0.

Using the substitution

a = ex, b = ey, c = ez, d = et, e = ew,

we need to show that
f(x) + f(y) + f(z) + f(t) + f(w) ≥ 5f(s),

where

s =
x+ y + z + t+ w

5
= 0

and

f(u) =
1− eu

(eu + 1)(eu + 2)
, u ∈ R.

From

f ′(u) =
eu(e2u − 2eu − 5)

(eu + 1)2(eu + 2)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln(1 +
√

6) < 2, s < s0.

Also, we have

f ′′(u) =
t · h(t)

(t+ 1)3(t+ 2)3
, t = eu,

where
h(t) = −t4 + 7t3 + 21t2 + 7t− 10.

We will show that h(t) > 0 for t ∈ [1, 2], hence f is convex on [0, s0]. We have

h(t) ≥ −2t3 + 7t3 + 21t2 + 7t− 10 = 5t3 + 21t2 + 7t− 10 > 0.

By the RPCF-Theorem, we only need to prove the original inequality for

b = c = d = e := t, a = 1/t4, t ≥ 1.

Write this inequality as
t4(t4 − 1)

(t4 + 1)(2t4 + 1)
≥ 4(t− 1)

(t+ 1)(t+ 2)
,

which is true if
t4(t+ 1)(t+ 2)(t3 + t2 + t+ 1) ≥ 4(t4 + 1)(2t4 + 1).

Since
(t4 + 1)(2t4 + 1) = 2t8 + 3t4 + 1 ≤ 2t4(t4 + 2),

it suffices to show that

(t+ 1)(t+ 2)(t3 + t2 + t+ 1) ≥ 8(t4 + 2).
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This inequality is equivalent to

t5 − 4t4 + 6t3 + 6t2 + 5t− 14 ≥ 0,

t(t− 1)4 + 10(t2 − 1) + 4(t− 1) ≥ 0.

The equality holds for a = b = c = d = e = 1.

P 3.37. If a1, a2, . . . , a14 are positive real numbers so that a1a2 · · · a14 = 1, then

3

(
1

2a1 + 1
+

1

2a2 + 1
+ · · ·+ 1

2a14 + 1

)
≥ 2

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

a14 + 1

)
.

(Vasile C., 2012)

Solution. Write the inequality as

1− a1
(a1 + 1)(2a1 + 1)

+
1− a2

(a2 + 1)(2a2 + 1)
+ · · ·+ 1− a14

(a14 + 1)(2a14 + 1)
≥ 0.

Using the substitutions ai = exi for i = 1, 2, . . . , 14, we need to show that

f(x1) + f(x2) + · · ·+ f(x14) ≥ 14f(s),

where

s =
x1 + x2 + · · ·+ x14

14
= 0

and

f(u) =
1− eu

(eu + 1)(2eu + 1)
, u ∈ R.

From

f ′(u) =
2eu(e2u − 2eu − 2)

(eu + 1)2(2eu + 1)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln(1 +
√

3) < 2, s < s0.

Also, we have

f ′′(u) =
2t · h(t)

(t+ 1)3(2t+ 1)3
, t = eu,

where
h(t) = −2t4 + 11t3 + 15t2 + 2t− 2.

We will show that h(t) > 0 for t ∈ [1, 2], hence f is convex on [0, s0]. We have

h(t) ≥ −4t3 + 11t3 + 15t2 + 2t− 2 = 7t3 + 15t2 + 2t− 2 > 0.

By the RPCF-Theorem, we only need to prove the original inequality for

a2 = a3 = · · · = a14 := t, a1 = 1/t13, t ≥ 1.



274 Vasile Ĉırtoaje

Write this inequality as
t13(t13 − 1)

(t13 + 1)(t13 + 2)
≥ 13(t− 1)

(t+ 1)(2t+ 1)
.

Since
(t13 + 1)(t13 + 2) = t26 + 3t13 + 2 ≤ t13(t13 + 5),

it suffices to show that
t13 − 1

t13 + 5
≥ 13(t− 1)

(t+ 1)(2t+ 1)
,

which is equivalent to
t13(t2 − 5t+ 7)− t2 − 34t+ 32 ≥ 0.

Substituting
t = 1 + x, x ≥ 0,

the inequality becomes

(1 + x)13(x2 − 3x+ 3)− x2 − 36x− 3 ≥ 0.

Since
(1 + x)13 ≥ 1 + 13x+ 78x2,

it suffices to show that

(78x2 + 13x+ 1)(x2 − 3x+ 3)− x2 − 36x− 3 ≥ 0.

This inequality, equivalent to
x2(78x2 − 221x+ 196) ≥ 0,

is true since
78x2 − 221x+ 196 ≥ 64x2 − 224x+ 196 = 4(4x− 7)2 ≥ 0.

The equality holds for a1 = a2 = · · · = a14 = 1.

P 3.38. Let a1, a2, . . . , a8 be positive real numbers so that a1a2 · · · a8 = 1. If k > 1, then

(k + 1)

(
1

ka1 + 1
+

1

ka2 + 1
+ · · ·+ 1

ka8 + 1

)
≥ 2

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

a8 + 1

)
.

(Vasile C., 2012)

Solution. Write the inequality as

1− a1
(a1 + 1)(ka1 + 1)

+
1− a2

(a2 + 1)(ka2 + 1)
+ · · ·+ 1− a8

(a8 + 1)(ka8 + 1)
≥ 0.

Using the substitutions ai = exi for i = 1, 2, . . . , 8, we need to show that

f(x1) + f(x2) + · · ·+ f(x8) ≥ 8f(s),
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where

s =
x1 + x2 + · · ·+ x8

8
= 0

and

f(u) =
1− eu

(eu + 1)(keu + 1)
, u ∈ R.

From

f ′(u) =
eu(ke2u − 2keu − k − 2)

(eu + 1)2(keu + 1)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln

(
1 +

√
2 +

2

k

)
< 2, s < s0.

Also, we have

f ′′(u) =
t · h(t)

(t+ 1)3(kt+ 1)3
, t = eu,

where
h(t) = −k2t4 + k(5k + 1)t3 + 3k(k + 3)t2 + (k2 − k + 2)t− k − 2.

We will show that h(t) > 0 for t ∈ [1, 2], hence f is convex on [0, s0]. We have

h(t) > −2k2t3 + k(5k + 1)t3 + 3k(k + 3)t2 + (k2 − k + 2)t− k − 2

= k(3k + 1)t3 + 3k(k + 3)t2 + (k2 − k + 2)t− k − 2

> 3k(k + 3) + (k2 − k + 2)− k − 2 > 0.

By the RPCF-Theorem, we only need to prove the original inequality for

a2 = a3 = · · · = a8 := t, a1 = 1/t7, t ≥ 1.

Write this inequality as
t7(t7 − 1)

(t7 + 1)(t7 + k)
≥ 7(t− 1)

(t+ 1)(kt+ 1)
.

Since
(t7 + 1)(t7 + k) = t14 + (k + 1)t7 + k ≤ t7(t7 + 2k + 1),

it suffices to show that
t7 − 1

t7 + 2k + 1
≥ 7(t− 1)

(t+ 1)(kt+ 1)
,

which is equivalent to
k(t− 1)P (t) +Q(t) ≥ 0,

where
P (t) = t(t+ 1)(t6 + t5 + t4 + t3 + t2 + t+ 1)− 14,

Q(t) = (t+ 1)(t7 − 1)− 7(t− 1)(t7 + 1).

Since (t− 1)P (t) ≥ 0 for t ≥ 1, it suffices to consider the case k = 1. So, we need to show that

t7 − 1

t7 + 3
≥ 7(t− 1)

(t+ 1)2
,
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which is equivalent to
t7(t2 − 5t+ 8)− t2 − 23t+ 20 ≥ 0.

Substituting
t = 1 + x, x ≥ 0,

the inequality becomes

(1 + x)7(x2 − 3x+ 4)− x2 − 25x− 4 ≥ 0.

Since
(1 + x)7 ≥ 1 + 7x+ 21x2,

it suffices to show that

(21x2 + 7x+ 1)(x2 − 3x+ 4)− x2 − 25x− 4 ≥ 0.

This inequality, equivalent to
x2(21x2 − 56x+ 63) ≥ 0.

is true since
21x2 − 56x+ 63 > 16x2 − 56x+ 49 = (4x− 7)2 ≥ 0.

The equality holds for a1 = a2 = · · · = a8 = 1.

P 3.39. If a1, a2, . . . , a9 are positive real numbers so that a1a2 · · · a9 = 1, then

1

2a1 + 1
+

1

2a2 + 1
+ · · ·+ 1

2a9 + 1
≥ 1

a1 + 2
+

1

a2 + 2
+ · · ·+ 1

a9 + 2
.

(Vasile C., 2012)

Solution. Write the inequality as

1− a1
(2a1 + 1)(a1 + 2)

+
1− a2

(2a2 + 1)(a2 + 2)
+ · · ·+ 1− a9

(2a9 + 1)(a9 + 2)
≥ 0.

Using the substitutions ai = exi for i = 1, 2, . . . , 9, we need to show that

f(x1) + f(x2) + · · ·+ f(x9) ≥ 9f(s),

where

s =
x1 + x2 + · · ·+ x9

9
= 0

and

f(u) =
1− eu

(2eu + 1)(eu + 2)
, u ∈ R.

From

f ′(u) =
eu(2e2u − 4eu − 7)

(2eu + 1)2(eu + 2)2
,
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it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln

(
1 +

3
√

2

2

)
< 2, s < s0.

Also, we have

f ′′(u) =
t · h(t)

(2t+ 1)3(t+ 2)3
, t = eu,

where
h(t) = −4t4 + 26t3 + 54t2 + 19t− 14.

We will show that h(t) > 0 for t ∈ [1, 2], hence f is convex on [0, s0]. We have

h(t) ≥ −8t3 + 26t3 + 54t2 + 19t− 14 = 18t3 + 54t2 + 19t− 14 > 0.

By the RPCF-Theorem, we only need to prove the original inequality for

a2 = a3 = · · · = a9 := t, a1 = 1/t8, t ≥ 1.

Write this inequality as
t8(t8 − 1)

(t8 + 2)(2t8 + 1)
≥ 8(t− 1)

(2t+ 1)(t+ 2)
.

Since
(t8 + 2)(2t8 + 1) = 2t16 + 5t8 + 2 ≤ t8(2t8 + 7),

it suffices to show that
t8 − 1

2t8 + 7
≥ 8(t− 1)

(2t+ 1)(t+ 2)
,

which is equivalent to
t8(2t2 − 11t+ 18)− 2t2 − 61t+ 54 ≥ 0.

Substituting
t = 1 + x, x ≥ 0,

the inequality becomes

(1 + x)8(2x2 − 7x+ 9)− 2x2 − 65x− 9 ≥ 0.

Since
(1 + x)8 ≥ 1 + 8x+ 28x2,

it suffices to show that

(28x2 + 8x+ 1)(2x2 − 7x+ 9)− 2x2 − 65x− 9 ≥ 0.

This inequality, equivalent to
x2(56x2 − 180x+ 196) ≥ 0.

is true since
56x2 − 180x+ 196 ≥ 49x2 − 196x+ 196 = 49(x− 2)2 ≥ 0.

The equality holds for a1 = a2 = · · · = a9 = 1.
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P 3.40. If a1, a2, . . . , an are real numbers so that

a1, a2, . . . , an ≤ π, a1 + a2 + · · ·+ an = π,

then
cos a1 + cos a2 + · · ·+ cos an ≤ n cos

π

n
.

(Vasile C., 2000

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
=
π

n
,

where
f(u) = − cosu, u ∈ I = [−(n− 2)π, π].

Let
s0 = 0 < s.

We see that f is increasing on [s0, π] = I≥s0 and f(u) ≥ f(s0) = −1 for u ∈ I. In addition, f is
convex on [s0, s]. Thus, by the LPCF-Theorem, we only need to prove that g(x) ≤ 0, where

g(x) = cos x+ (n− 1) cos y − n cos s, x+ (n− 1)y = π, π ≥ x ≥ s ≥ y ≥ 0.

Since y′ =
−1

n− 1
, we get

g′(x) = − sinx+ sin y = −2 sin
x− y

2
cos

x+ y

2
.

We have g′(x) ≤ 0 because

0 <
x+ y

2
≤ x+ (n− 1)y

2
=
π

2

and

0 ≤ x− y
2

<
π

2
.

From g′ ≤ 0, it follows that g is decreasing, hence g(x) ≤ g(s) = 0.

The equality holds for a1 = a2 = · · · = an =
π

n
. If n = 2, then the inequality is an identity.

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1, a2, . . . , an ≤ π,
a1 + a2 + · · ·+ an

n
= s, 0 < s ≤ π

4
,

then
cos a1 + cos a2 + · · ·+ cos an ≤ n cos s,

with equality for a1 = a2 = · · · = an = s.
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P 3.41. If a1, a2, . . . , an (n ≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−1

n− 2
, a1 + a2 + · · ·+ an = n,

then
a21

a21 − a1 + 1
+

a22
a22 − a2 + 1

+ · · ·+ a2n
a2n − an + 1

≤ n.

(Vasile Cı̂rtoaje, 2012)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1− u

u2 − u+ 1
, u ∈ I =

[
−1

n− 2
,
n2 − n− 1

n− 2

]
.

Let s0 = 2. We have s < s0 and
min
u∈I

f(u) = f(s0)

because

f(u)− f(2) =
1− u

u2 − u+ 1
+

1

3
=

(u− 2)2

3(u2 − u+ 1)
≥ 0.

From

f ′(u) =
u(u− 2)

(u2 − u+ 1)2
,

f ′′(u) =
2(3u2 − u3 − 1)

(u2 − u+ 1)3
=

2u2(2− u) + 2(u2 − 1)

(u2 − u+ 1)3
,

it follows that f is convex on [1, s0]. However, we can’t apply the RPCF-Theorem in its original
form because f is not decreasing on I≤s0 . According to Theorem 1, we may replace this condition
with ns− (n− 1)s0 ≤ inf I. Indeed, we have

ns− (n− 1)s0 = n− 2(n− 1) = −n+ 2 ≤ −1

n− 2
= inf I.

So, it suffices to show that f(x) + (n− 1)f(y) ≥ nf(1) for all x, y ∈ I so that

x+ (n− 1)y = n.

According to Note 1, we only need to show that h(x, y) ≥ 0, where

g(u) =
f(u)− f(1)

u− 1
, h(x, y) =

g(x)− g(y)

x− y
.

We have

g(u) =
−1

u2 − u+ 1
,

h(x, y) =
x+ y − 1

(x2 − x+ 1)(y2 − y + 1)
=

(n− 2)x+ 1

(n− 1)(x2 − x+ 1)(y2 − y + 1)
≥ 0.
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The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
−1

n− 2
, a2 = a3 = · · · = an =

n− 1

n− 2

(or any cyclic permutation).

P 3.42. If a1, a2, . . . , an (n ≥ 3) are nonzero real numbers so that

a1, a2, . . . , an ≥
−n
n− 2

, a1 + a2 + · · ·+ an = n,

then
1

a21
+

1

a22
+ · · ·+ 1

a2n
≥ 1

a1
+

1

a2
+ · · ·+ 1

an
.

(Vasile Cı̂rtoaje, 2012)

Solution. According to P 2.25-(a) in Volume 1, the inequality is true for n = 3. Assume further
that n ≥ 4 and write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1

u2
− 1

u
, u ∈ I =

[
−n
n− 2

,
n(2n− 3)

n− 2

]
\ {0}.

Let
s0 = 2, s < s0.

From

f(u)− f(2) =
1

u2
− 1

u
+

1

4
=

(u− 2)2

4u2
≥ 0,

it follows that
min
u∈I

f(u) = f(s0),

while from

f ′(u) =
u− 2

u3
, f ′′(u) =

2(3− u)

u4
,

it follows that f is convex on [s, s0]. However, we can’t apply the RPCF-Theorem because f is
not decreasing on I≤s0 . According to Theorem 1 and Note 6, we may replace this condition with
ns− (n− 1)s0 ≤ inf I. For n ≥ 4, we have

ns− (n− 1)s0 = n− 2(n− 1) = −n+ 2 ≤ −n
n− 2

= inf I.

So, according to Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ∈ I so that x+(n−1)y = n.
We have

g(u) =
f(u)− f(1)

u− 1
=
−1

u2
,
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h(x, y) =
g(x)− g(y)

x− y
=
x+ y

x2y2
=

(n− 2)x+ n

(n− 1)x2y2
≥ 0.

The proof is completed. By Note 3, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
−n
n− 2

, a2 = a3 = · · · = an =
n

n− 2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an ≥
−n
n− 2

so that a1 + a2 + · · ·+ an = n. If n ≥ 3 and k ≥ 0, then

1− a1
k + a21

+
1− a2
k + a22

+ · · ·+ 1− an
k + a2n

≥ 0,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
−n
n− 2

, a2 = a3 = · · · = an =
n

n− 2

(or any cyclic permutation).

P 3.43. If a1, a2, . . . , an ≥ −1 so that a1 + a2 + · · ·+ an = n, then

(n+ 1)

(
1

a21
+

1

a22
+ · · ·+ 1

a2n

)
≥ 2n+ (n− 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

(Vasile C., 2013)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
n+ 1

u2
− n− 1

u
, u ∈ I = [−1, 2n− 1] \ {0}.

Let

s0 =
2(n+ 1)

n− 1
∈ I, s < s0.

Since

f(u)− f(s0) =
[(n− 1)u− 2(n+ 1)]2

4(n+ 1)u2
≥ 0,

we have
min
u∈I

f(u) = f(s0).

From

f ′(u) =
(n− 1)u− 2(n+ 1)

u3
, f ′′(u) =

6(n+ 1)− 2(n− 1)u

u4
,
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it follows that f is convex on [1, s0]. Since f is not decreasing on I≤s0 , according to Theorem 1
and Note 6, we may replace this condition in RPCF-Theorem with ns − (n − 1)s0 ≤ inf I. We
have

ns− (n− 1)s0 = n− 2(n+ 1) = −n− 2 < −1 = inf I.

According to Note 1, we only need to show that h(x, y) ≥ 0 for −1 ≤ x ≤ 1 ≤ y and x+(n−1)y =
n. We have

g(u) =
f(u)− f(1)

u− 1
= −2

u
− n+ 1

u2

and

h(x, y) =
g(x)− g(y)

x− y
=

2xy + (n+ 1)(x+ y)

x2y2
=

(x+ 1)(n2 + n− 2x)

(n− 1)x2y2
≥ 0.

According to Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = −1, a2 = · · · = an =
n+ 1

n− 1

(or any cyclic permutation).

P 3.44. If a1, a2, . . . , an (n ≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−(3n− 2)

n− 2
, a1 + a2 + · · ·+ an = n,

then
1− a1

(1 + a1)2
+

1− a2
(1 + a2)2

+ · · ·+ 1− an
(1 + an)2

≥ 0.

(Vasile C., 2014)

Solution. According to P 2.25-(b) in Volume 1, the inequality is true for n = 3. Assume further
that n ≥ 4 and write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1− u

(1 + u)2
, u ∈ I =

[
−(3n− 2)

n− 2
,
4n2 − 7n+ 2

n− 2

]
\ {−1}.

Let
s0 = 3, s < s0.

From

f(u)− f(3) =
1− u

(1 + u)2
+

1

8
=

(u− 3)2

8(u+ 1)2
≥ 0,

it follows that
min
u∈I

f(u) = f(s0).
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From

f ′(u) =
u− 3

(u+ 1)3
, f ′′(u) =

2(5− u)

(u+ 1)4
,

it follows that f is convex on [1, s0]. We can’t apply the RPCF-Theorem in its original form
because f is not decreasing on I≤s0 . However, according to Theorem 1 and Note 6, we may
replace this condition with ns− (n− 1)s0 ≤ inf I. Indeed, for n ≥ 4, we have

ns− (n− 1)s0 = n− 3(n− 1) = −2n+ 3 ≤ −(3n− 2)

n− 2
= inf I.

According to Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ∈ I so that x ≤ 1 ≤ y and
x+ (n− 1)y = n. We have

g(u) =
f(u)− f(1)

u− 1
=

−1

(u+ 1)2
,

h(x, y) =
g(x)− g(y)

x− y
=

x+ y + 2

(x+ 1)2(y + 1)2
=

(n− 2)x+ 3n− 2

(n− 1)(x+ 1)2(y + 1)2
≥ 0.

In accordance with Note 3, the equality holds for a1 = a2 = · · · = an = 1, and also for

a1 =
−(3n− 2)

n− 2
, a2 = a3 = · · · = an =

n+ 2

n− 2

(or any cyclic permutation).

P 3.45. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n. If n ≥ 3

and k ≥ 2− 2

n
, then

1− a1
(1− ka1)2

+
1− a2

(1− ka2)2
+ · · ·+ 1− an

(1− kan)2
≥ 0.

(Vasile C., 2012)

Solution. According to P 3.99 in Volume 1, the inequality is true for n = 3. Assume further
that n ≥ 4 and write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
1− u

(1− ku)2
, u ∈ I = [0, n] \ {1/k}.

Let
s0 = 2− 1/k, 1 = s < s0.

Since

f(u)− f(s0) =
1− u

(1− ku)2
+

1

4k(k − 1)
=

(ku− 2k + 1)2

4k(k − 1)(1− ku)2
≥ 0,
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we have
min
u∈I

f(u) = f(s0).

From

f ′(u) =
ku− 2k + 1

(ku− 1)3
, f ′′(u) =

2k(−ku+ 3k − 2)

(1− ku)4
,

it follows that f is convex on [1, s0]. We can’t apply the RPCF-Theorem because f is not
decreasing on I≤s0 . According to Theorem 1 and Note 6, we may replace this condition with
ns− (n− 1)s0 ≤ inf I. Indeed, we have

ns− (n− 1)s0 ≤ n− (n− 1) · 3n− 4

2(n− 1)
=

4− n
2
≤ 0 = inf I.

So, it suffices to show that f(x) + (n − 1)f(y) ≥ nf(1) for all x, y ∈ I so that x ≤ 1 ≤ y and
x+ (n− 1)y = n. According to Note 1, we only need to show that h(x, y) ≥ 0, where

g(u) =
f(u)− f(1)

u− 1
, h(x, y) =

g(x)− g(y)

x− y
.

Since

g(u) =
−1

(1− ku)2
, h(x, y) =

k[k(x+ y)− 2]

(1− kx)2(1− ky)2
,

we need to show that k(x+ y)− 2 ≥ 0. Indeed, we have

k(x+ y)− 2

2
≥ (n− 1)(x+ y)

n
− 1 =

(n− 1)(x+ y)

n
− x+ (n− 1)y

n
=

(n− 2)x

n
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 2− 2

n
, then the equality also holds for

a1 = 0, a2 = a3 = · · · = an =
n

n− 1

(or any cyclic permutation).

P 3.46. If a, b, c are positive real numbers such that abc = 1, then

a

(a+ 1)(a+ 25)
+

b

(b+ 1)(b+ 25)
+

c

(c+ 1)(c+ 25)
≤ 3

52
.

(Vasile C., 2022)

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that

f(x) + f(y) + f(z) ≥ 3f(s), s =
x+ y + z

3
= 0,
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where

f(u) =
−eu

e2u + 26eu + 25
, u ∈ I = R.

From

f ′(u) =
eu(e2u − 25)

(e2u + 26eu + 25)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln 5.

Also, we have

f ′′(u) =
v · h(v)

(e2u + 26eu + 25)3
,

where
h(v) = −v4 + 26v3 + 150v2 + 650v − 625, v = eu.

For v ∈ [1, 5], we have

h(v) = v3(26− v) + 150v2 + 25v + 625(v − 1) > 0,

hence f(u) is convex on [s, s0]. By the RPCF-Theorem, we only need to prove the original
inequality for

b = c := t, a = 1/t2, t > 0,

that is,
t2

25t4 + 26t2 + 1
+

2t

t2 + 26t+ 25
≤ 3

52
.

Since
25t4 + 26t2 + 1 = 24t4 + (t4 + 1) + 26t2 ≥ 24t4 + 28t2 = 4t2(6t2 + 7),

it suffices to show that
1

4(6t2 + 7)
+

2t

t2 + 26t+ 25
≤ 3

52
,

which is equivalent to
2t

t2 + 26t+ 25
≤ 9t2 + 4

26(6t2 + 7)
,

9t4 − 78t3 + 229t2 − 260t+ 100 ≥ 0,

(t− 1)2(3t− 10)2 ≥ 0.

The equality holds for a = b = c = 1.

P 3.47. Let a1, a2, . . . , an ( n ≥ 3) be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If p ≤ −2(n− 1)

n− 2
and q ≥ q0 = (p+ 1)

(
p+

n

n− 1

)
, then

1

a21 + pa1 + q
+

1

a22 + pa2 + q
+ · · ·+ 1

a2n + pan + q
≤ n

1 + p+ q
.

(Vasile C., 2023)
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Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−1

u2 + pu+ q
, u ∈ [0, n].

Let s0 = −p/2, s0 > s = 1. We have

f ′(u) =
2u+ p

(u2 + pu+ q)2
=

2(u− s0)
(u2 + pu+ q)2

,

f ′′(u) =
2A(u)

(u2 + pu+ q)3
, A(u) = q − p2 − 3pu− 3u2.

From the expression of f ′(u), it follows that f is decreasing for u ≤ s0 and increasing for u ≥ s0,
hence f(u) ≥ f(s0) for all real u. On the other hand, since A(u) is concave, A(u) has the
maximum value for u = s0 and

A(1) = q−p2−3p−3 ≥ q0−p2−3p−3 =
−(n− 2)p− 2n+ 3

n− 1
≥ 2(n− 1)− 2n+ 3

n− 1
=

1

n− 1
> 0,

we have A(u) > 0 for all u ∈ [1, s0], hence f is convex on [s, s0]. If s0 ≥ n, we may apply
RHCF-Theorem from chapter 1 (because f is convex on [s, n]) , and if s0 < n, we may apply
RPCF-Theorem (because f(u) is decreasing on [0, s0] and f(u) ≥ f(s0) for all u ∈ [0, n]). In
both cases, it suffices to show that h(x, y) ≥ 0 for 0 ≤ x ≤ 1 ≤ y such that x + (n − 1)y = n.
We have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1 + p

(1 + p+ q)(u2 + pu+ q)
,

h(x, y) =
g(x)− g(y)

x− y
=

q − p(p+ 1)− (p+ 1)(x+ y)− xy
(1 + p+ q)(x2 + px+ q)(y2 + py + q)

≥ q0 − p(p+ 1)− (p+ 1)(x+ y)− xy
(1 + p+ q)(x2 + px+ q)(y2 + py + q)

=
x[x− p(n− 2)− 2(n− 1)]

(n− 1)(1 + p+ q)(x2 + px+ q)(y2 + py + q)
≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1. In addition, if q = q0, then the equality also

occurs for a1 = 0 and a2 = a3 = · · · = an =
n

n− 1
(or any cyclic permutation).

P 3.48. Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If p ∈
[
−2(n− 1)

n− 2
,−2

)
∪
(
−2,

2

n− 2

]
and q ≥ q0 =

n2p2 + 4(n2 − n+ 1)(p+ 1)

4(n− 1)
, then

1

a21 + pa1 + q
+

1

a22 + pa2 + q
+ · · ·+ 1

a2n + pan + q
≤ n

1 + p+ q
.

(Vasile C., 2023)



Partially Convex Function Method 287

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f(u) =
−1

u2 + pu+ q
, u ∈ [0, n].

We have

f ′(u) =
2u+ p

(u2 + pu+ q)2
=

2(u− s0)
(u2 + pu+ q)2

,

f ′′(u) =
2A(u)

(u2 + pu+ q)3
, A(u) = q − p2 − 3pu− 3u2.

Let s0 = −p/2. From f ′(u), it follows that f is decreasing for u ≤ s0 and increasing for u ≥ s0,
hence f(u) ≥ f(s0) for all real u. On the other hand, since A(u) is concave, A(u) has the
maximum value for u = s0 and

A(1) ≥ q0 − p2 − 3pu− 3u2 =
(n− 2)2(p+ 2)2

4(n− 1)
> 0,

we have A(u) > 0 for all u between 1 and s0, hence f is convex on the interval between s = 1
and s0.

Case 1: p ∈
(
−2,

2

n− 2

]
. Since s0 < s, f is convex on [s0, s]. If s0 ≤ 0, we may apply

LHCF-Theorem from chapter 1 (because f i convex on [0, s]), and if s0 > 0, we may apply LPCF-
Theorem (because f is convex on [s0, s], f(u) is increasing on [s0, n] and f(u) ≥ f(s0) for all u ∈
[0, n]). In both cases, it suffices to show that h(x, y) ≥ 0 for x ≥ 1 ≥ y such that x+(n−1)y = n.
As shown in the preceding P 3.47, we need to show that q0− p(p+ 1)− (p+ 1)(x+ y)− xy ≥ 0,
which is equivalent to

(n− 1)y2 + [(n− 2)p− 2]y +
[(n− 2)p− 2]2

4(n− 1)
≥ 0,

[2(n− 1)y + (n− 2)p− 2]2 ≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1. In addition, if q = q0, then the equality

also occurs for a1 = n − 1 +
(n− 2)p

2
and a2 = a3 = · · · = an =

2− (n− 2)p

2(n− 1)
(or any cyclic

permutation).

Case 2: p ∈
[
−2(n− 1)

n− 2
,−2

)
. Since s < s0, f is convex on [s, s0]. In addition, f(u) is

decreasing on [0, s0] and f(u) ≥ f(s0) for all u ∈ [0, n]. So, we may apply RPCF-Theorem. By
Note 1, it suffices to show that h(x, y) ≥ 0 for x ≤ 1 ≤ y such that x+ (n− 1)y = n. As shown
in the preceding P 3.47, we need to show that q0 − p(p+ 1)− (p+ 1)(x+ y)− xy ≥ 0, which is
equivalent to

[2(n− 1)y + (n− 2)p− 2]2 ≥ 0.
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The equality holds for a1 = a2 = · · · = an = 1. In addition, if q = q0, then the equality

also occurs for a1 = n − 1 +
(n− 2)p

2
and a2 = a3 = · · · = an =

2− (n− 2)p

2(n− 1)
(or any cyclic

permutation).



Chapter 4

Partially Convex Function Method for
Ordered Variables

4.1 Theoretical Basis

The following statement is known as Right Partially Convex Function Theorem for Ordered
Variables (RPCF-OV Theorem).

RPCF-OV Theorem (Vasile Cı̂rtoaje, 2014). Let f be a real function defined on an interval
I and convex on [s, s0], where s, s0 ∈ I, s < s0. In addition, f is decreasing on I≤s0 and
f(u) ≥ f(s0) for u ∈ I. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I so that x ≤ s ≤ y and x+ (n−m)y = (1 + n−m)s.

Proof. For
a1 = x, a2 = · · · = am = s, am+1 = · · · = an = y,

the inequality
f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s)

becomes
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s);

therefore, the necessity is obvious. By Lemma from Chapter 3, to prove the sufficiency, it suffices
to consider that a1, a2, . . . , an ∈ J, where

J = I≤s0 .

289
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Because f is convex on J≥s, the desired inequality follows from HCF-OV Theorem applied to the
interval J.

Similarly, we can prove Left Partially Convex Function Theorem for Ordered Variables (LPCF-
OV Theorem).

LPCF-OV Theorem. Let f be a real function defined on an interval I and convex on [s0, s],
where s0, s ∈ I, s0 < s. In addition, f is increasing on I≥s0 and f(u) ≥ f(s0) for u ∈ I. The
inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I so that x ≥ s ≥ y and x+ (n−m)y = (1 + n−m)s.

The RPCF-OV Theorem and the LPCF-OV Theorems are respectively generalizations of the
RPCF Theorem and LPCF Theorem, because the last theorems can be obtained from the first
theorems for m = 1.

Note 1. Let us denote

g(u) =
f(u)− f(s)

u− s
, h(x, y) =

g(x)− g(y)

x− y
.

We may replace the hypothesis condition in the RPCF-OV Theorem and the LPCF-OV Theorem,
namely

f(x) +mf(y) ≥ (1 +m)f(s),

by the condition

h(x, y) ≥ 0 for all x, y ∈ I so that x+my = (1 +m)s.

Note 2. Assume that f is differentiable on I, and let

H(x, y) =
f ′(x)− f ′(y)

x− y
.

The desired inequality of Jensen’s type in the RPCF-OV Theorem and the LPCF-OV Theorem
holds true by replacing the hypothesis

f(x) +mf(y) ≥ (1 +m)f(s)

with the more restrictive condition

H(x, y) ≥ 0 for all x, y ∈ I so that x+my = (1 +m)s.
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Note 3. The desired inequalities in the RPCF-OV Theorem and the LPCF-OV Theorem become
equalities for

a1 = a2 = · · · = an = s.

In addition, if there exist x, y ∈ I so that

x+ (n−m)y = (1 + n−m)s, f(x) + (n−m)f(y) = (1 + n−m)f(s), x 6= y,

then the equality holds also for

a1 = x, a2 = · · · = am = s, am+1 = · · · = an = y

(or any cyclic permutation). Notice that these equality conditions are equivalent to

x+ (n−m)y = (1 + n−m)s, h(x, y) = 0

(x < y for RHCF-OV Theorem, and x > y for LHCF-OV Theorem).

Note 4. The RPCF-OV Theorem is also valid in the case where f is defined on I \ {u0}, where
u0 is an interior point of I so that u0 > s0. Similarly, LPCF Theorem is also valid in the case in
which f is defined on I \ {u0}, where u0 is an interior point of I so that u0 < s0.

Note 5. The RPCF-Theorem holds true by replacing the condition
f is decreasing on I≤s0

with
ns− (n− 1)s0 ≤ inf I.

More precisely, the following theorem holds:

Theorem 1. Let f be a function defined on a real interval I, convex on [s, s0] and satisfying

min
u∈I≥s

f(u) = f(s0),

where
s, s0 ∈ I, s < s0, (1 + n−m)s− (n−m)s0 ≤ inf I.

The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I so that x ≤ s ≤ y and x+ (n−m)y = (1 + n−m)s.

The proof of this theorem is similar to the one of Theorem 1 from chapter 3.
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Similarly, the LPCF-Theorem holds true by replacing the condition
f is increasing on I≥s0

with

ns− (n− 1)s0 ≥ sup I.

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval I, convex on [s0, s] and satisfying

min
u∈I≤s

f(u) = f(s0),

where
s, s0 ∈ I, s > s0, (1 + n−m)s− (n−m)s0 ≥ sup I.

The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I so that x ≥ s ≥ y and x+ (n−m)y = (1 + n−m)s.

Note 6. Theorem 1 is also valid in the case in which f is defined on I \ {u0}, where u0 is an
interior point of I so that u0 /∈ [s, s0]. Similarly, Theorem 2 is also valid in the case in which f
is defined on I \ {u0}, where u0 is an interior point of I so that u0 /∈ [s0, s].

Note 7. We can extend weighted Jensen’s inequality to right and left partially convex functions
with ordered variables establishing the WRPCF-OV Theorem and the WLPCF-OV Theorem
(Vasile Cı̂rtoaje, 2014).

WRPCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on [s, s0], where s, s0 ∈ int(I),
s < s0. In addition, f is decreasing on I≤s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

p1f(x1) + p2f(x2) + · · ·+ pnf(xn) ≥ f(p1x1 + p2x2 + · · ·+ pnxn)

holds for all x1, x2, . . . , xn ∈ I so that p1x1 + p2x2 + · · ·+ pnxn = s and

x1 ≤ x2 ≤ · · · ≤ xn, xm ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + kf(y) ≥ (1 + k)f(s)
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for all x, y ∈ I satisfying
x ≤ s ≤ y, x+ ky = (1 + k)s,

where

k =
pm+1 + pm+2 + · · ·+ pn

p1
.

WLPCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s.
In addition, f is increasing on I≥s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

p1f(x1) + p2f(x2) + · · ·+ pnf(xn) ≥ f(p1x1 + p2x2 + · · ·+ pnxn)

holds for all x1, x2, . . . , xn ∈ I so that p1x1 + p2x2 + · · ·+ pnxn = s and

x1 ≥ x2 ≥ · · · ≥ xn, xm ≥ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + kf(y) ≥ (1 + k)f(s)

for all x, y ∈ I satisfying
x ≥ s ≥ y, x+ ky = (1 + k)s,

where

k =
pm+1 + pm+2 + · · ·+ pn

p1
.

For the most commonly used case

p1 = p2 = · · · = pn =
1

n
,

the WRPCF-OV Theorem and the WLPCF-OV Theorem yield the RPCF-OV Theorem and the
LPCF-OV Theorem, respectively.
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4.2 Applications

4.1. If a, b, c, d are real numbers so that

a ≤ 1 ≤ b ≤ c ≤ d, a+ b+ c+ d = 4,

then
a

3a2 + 1
+

b

3b2 + 1
+

c

3c2 + 1
+

d

3d2 + 1
≤ 1.

4.2. If a, b, c, d are real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d, a+ b+ c+ d = 4,

then
16a− 5

32a2 + 1
+

16b− 5

32b2 + 1
+

16c− 5

32c2 + 1
+

16d− 5

32d2 + 1
≤ 4

3
.

4.3. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d ≥ e, a+ b+ c+ d+ e = 5,

then
18a− 5

12a2 + 1
+

18b− 5

12b2 + 1
+

18c− 5

12c2 + 1
+

18d− 5

12d2 + 1
+

18e− 5

12e2 + 1
≤ 5.

4.4. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d ≥ e, a+ b+ c+ d+ e = 5,

then
a(a− 1)

3a2 + 4
+
b(b− 1)

3b2 + 4
+
c(c− 1)

3c2 + 4
+
d(d− 1)

3d2 + 4
+
e(e− 1)

3e2 + 4
≥ 0.

4.5. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥ n+ 1

2
√
n

, then

a1(a1 − 1)

(a1 + k)2
+
a2(a2 − 1)

(a2 + k)2
+ · · ·+ a2n(a2n − 1)

(a2n + k)2
≥ 0.
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4.6. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥ 1 +
n+ 1√
n

, then

a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a22n − 1

(a2n + k)2
≥ 0.

4.7. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ 1 ≥ a2 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then
a
3/a1
1 + a

3/a2
2 + · · ·+ a3/ann ≤ n.

4.8. If a1, a2, . . . , a11 are real numbers so that

a1 ≥ a2 ≥ 1 ≥ a3 ≥ · · · ≥ a11, a1 + a2 + · · ·+ a11 = 11,

then
(1− a1 + a21)(1− a2 + a22) · · · (1− a11 + a211) ≥ 1.

4.9. If a1, a2, . . . , a8 are nonzero real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1 ≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then

5

(
1

a21
+

1

a22
+ · · ·+ 1

a28

)
+ 72 ≥ 14

(
1

a1
+

1

a2
+ · · ·+ 1

a8

)
.

4.10. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d, abcd = 1,

then
7− 6a

2 + a2
+

7− 6b

2 + b2
+

7− 6c

2 + c2
+

7− 6d

2 + d2
≥ 4

3
.

4.11. If a, b, c are positive real numbers so that

a ≤ b ≤ 1 ≤ c, abc = 1,

then
7− 4a

2 + a2
+

7− 4b

2 + b2
+

7− 4c

2 + c2
≥ 3.
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4.12. If a, b, c are positive real numbers so that

a ≥ 1 ≥ b ≥ c, abc = 1,

then
23− 8a

3 + 2a2
+

23− 8b

3 + 2b2
+

23− 8c

3 + 2c2
≥ 9.

4.13. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ 3q ≥ 1, then

1− a1
1 + pa1 + qa21

+
1− a2

1 + pa2 + qa22
+ · · ·+ 1− an

1 + pan + qa2n
≥ 0.

4.14. If a, b, c, d, e are real numbers so that

−2 ≤ a ≤ b ≤ 1 ≤ c ≤ d ≤ e, a+ b+ c+ d+ e = 5,

then
1

a2
+

1

b2
+

1

c2
+

1

d2
+

1

e2
≥ 1

a
+

1

b
+

1

c
+

1

d
+

1

e
.
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4.3 Solutions

P 4.1. If a, b, c, d are real numbers so that

a ≤ 1 ≤ b ≤ c ≤ d, a+ b+ c+ d = 4,

then
a

3a2 + 1
+

b

3b2 + 1
+

c

3c2 + 1
+

d

3d2 + 1
≤ 1.

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
−u

3u2 + 1
, u ∈ R.

From

f ′(u) =
3u2 − 1

(3u2 + 1)2
,

it follows that f is increasing on (−∞,−s0]∪[s0,∞) and decreasing on [−s0, s0], where s0 = 1/
√

3.
Since

lim
u→−∞

f(u) = 0

and f(s0) < 0, it follows that
min
u∈R

f(u) = f(s0).

From

f ′′(u) =
18u(1− u2)
(3u2 + 1)3

,

it follows that f is convex on [0, 1], hence on [s0, 1]. Therefore, we may apply the LPCF-OV
Theorem for n = 4 and m = 1. We only need to show that f(x) + f(y) ≥ 2f(1) for all real x, y
so that x+ y = 2. Using Note 1, it suffices to prove that h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

Indeed, we have

g(u) =
3u− 1

4(3u2 + 1)
,

h(x, y) =
3(1 + x+ y − 3xy)

4(3x2 + 1)(3y2 + 1)
=

9(1− xy)

4(3x2 + 1)(3y2 + 1)
≥ 0,

since
4(1− xy) = (x+ y)2 − 4xy = (x− y)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c = d = 1.
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Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1 ≤ 1 ≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
a1

3a21 + 1
+

a2
3a22 + 1

+ · · ·+ an
3a2n + 1

≤ n

4
,

with equality for a1 = a2 = · · · = an = 1.

P 4.2. If a, b, c, d are real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d, a+ b+ c+ d = 4,

then
16a− 5

32a2 + 1
+

16b− 5

32b2 + 1
+

16c− 5

32c2 + 1
+

16d− 5

32d2 + 1
≤ 4

3
.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) ≥ 4f(s), s =
a+ b+ c+ d

4
= 1,

where

f(u) =
5− 16u

32u2 + 1
, u ∈ R.

As shown in the proof of P 3.1, f is convex on [s0, 1], increasing for u ≥ s0 and

min
u∈R

f(u) = f(s0),

where

s0 =
5 +
√

33

16
≈ 0.6715.

Therefore, we may apply the LPCF-OV Theorem for n = 4 and m = 2. We only need to show
that f(x) + 2f(y) ≥ 3f(1) for all real x, y so that x+ 2y = 3. Using Note 1, it suffices to prove
that h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.

Indeed, we have

g(u) =
32(2u− 1)

3(32u2 + 1)
,

h(x, y) =
64(1 + 16x+ 16y − 32xy)

3(32x2 + 1)(32y2 + 1)
=

64(4x− 5)2

3(32x2 + 1)(32y2 + 1)
≥ 0.
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From x + 2y = 3 and h(x, y) = 0, we get x = 5/4 and y = 7/8. Therefore, in accordance with
Note 3, the equality holds for a = b = c = d = 1, and also for

a =
5

4
, b = 1, c = d =

7

8
.

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an (n ≥ 3) are real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1 ≥ an−1 ≥ an, a1 + a2 + · · ·+ an = n,

then
16a1 − 5

32a21 + 1
+

16a2 − 5

32a22 + 1
+ · · ·+ 16an − 5

32a2n + 1
≤ n

3
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
5

4
, a2 = · · · = an−2 = 1, an−1 = an =

7

8
.

P 4.3. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d ≥ e, a+ b+ c+ d+ e = 5,

then
18a− 5

12a2 + 1
+

18b− 5

12b2 + 1
+

18c− 5

12c2 + 1
+

18d− 5

12d2 + 1
+

18e− 5

12e2 + 1
≤ 5.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where

f(u) =
5− 18u

12u2 + 1
, u ∈ R.

As shown in the proof of P 3.2, f is convex on [s0, 1], increasing for u ≥ s0 and

min
u∈R

f(u) = f(s0),

where

s0 =
5 +
√

52

18
≈ 0.678.

Therefore, applying the LPCF-OV Theorem for n = 5 and m = 3, we only need to show that
f(x) + 3f(y) ≥ 4f(1) for all real x, y so that x+ 3y = 4. Using Note 1, it suffices to prove that
h(x, y) ≥ 0, where

h(x, y) =
g(x)− g(y)

x− y
, g(u) =

f(u)− f(1)

u− 1
.
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Indeed, we have

g(u) =
6(2u− 1)

12u2 + 1
,

h(x, y) =
12(1 + 6x+ 6y − 12xy)

(12x2 + 1)(12y2 + 1)
=

12(2x− 3)2

(12x2 + 1)(12y2 + 1)
≥ 0.

From x + 3y = 4 and h(x, y) = 0, we get x = 3/2 and y = 5/6. Therefore, in accordance with
Note 3, the equality holds for a = b = c = d = e = 1, and also for

a =
3

2
, b = 1, c = d = e =

5

6
.

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an (n ≥ 4) are real numbers so that

a1 ≥ · · · ≥ an−3 ≥ 1 ≥ an−2 ≥ an−1 ≥ an, a1 + a2 + · · ·+ an = n,

then
18a1 − 5

12a21 + 1
+

18a2 − 5

12a22 + 1
+ · · ·+ 18an − 5

12a2n + 1
≤ n,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
3

2
, a2 = · · · = an−3 = 1, an−2 = an−1 = an =

5

6
.

P 4.4. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1 ≥ c ≥ d ≥ e, a+ b+ c+ d+ e = 5,

then
a(a− 1)

3a2 + 4
+
b(b− 1)

3b2 + 4
+
c(c− 1)

3c2 + 4
+
d(d− 1)

3d2 + 4
+
e(e− 1)

3e2 + 4
≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where

f(u) =
u2 − u
3u2 + 4

, u ∈ R.

As shown in the proof of P 3.5, f is convex on [s0, 1], increasing for u ≥ s0 and

min
u∈R

f(u) = f(s0),
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where

s0 =
−4 + 2

√
7

3
≈ 0.43.

Therefore, we may apply the LPCF-OV Theorem for n = 5 and m = 2. We only need to show
that f(x) + 3f(y) ≥ 4f(1) for all real x, y so that x+ 3y = 4. Using Note 1, it suffices to prove
that h(x, y) ≥ 0. Indeed, we have

g(u) =
f(u)− f(1)

u− 1
=

u

3u2 + 4
,

h(x, y) =
g(x)− g(y)

x− y
=

4− 3xy

(3x2 + 4)(3y2 + 4)
=

(x− 2)2

(12x2 + 1)(12y2 + 1)
≥ 0.

From x+ 3y = 4 and h(x, y) = 0, we get x = 2 and y = 2/3. Therefore, in accordance with Note
3, the equality holds for

a = b = c = d = e = 1,

and also for

a = 2, b = 1, c = d = e =
2

3
.

Remark. Similarly, we can prove the following generalizations:

• If a1, a2, . . . , an (n ≥ 4) are real numbers so that

a1 ≥ · · · ≥ an−3 ≥ 1 ≥ an−2 ≥ an−1 ≥ an, a1 + a2 + · · ·+ an = n,

then
a1(a1 − 1)

3a21 + 4
+
a2(a2 − 1)

3a22 + 4
+ · · ·+ an(an − 1)

3a2n + 4
≥ 0,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 2, a2 = · · · = an−3 = 1, an−2 = an−1 = an =
2

3
.

• If a1, a2, . . . , an (n ≥ 3) are real numbers so that

a1 ≥ a2 ≥ 1 ≥ a3 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then

a1(a1 − 1)

4(n− 2)a21 + (n− 1)2
+

a2(a2 − 1)

4(n− 2)a22 + (n− 1)2
+ · · ·+ an(an − 1)

4(n− 2)a2n + (n− 1)2
≥ 0,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 =
n− 1

2
, a2 = 1, a3 = · · · = an =

n− 1

2(n− 2)
.
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P 4.5. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥ n+ 1

2
√
n

, then

a1(a1 − 1)

(a1 + k)2
+
a2(a2 − 1)

(a2 + k)2
+ · · ·+ a2n(a2n − 1)

(a2n + k)2
≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(a2n) ≥ 2nf(s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f(u) =
u(u− 1)

(u+ k)2
, u ∈ I = R \ {−k}.

As shown in the proof of P 3.8, f is convex on [s0, 1], increasing for u ≥ s0 and

min
u∈I

f(u) = f(s0),

where

s0 =
k

2k + 1
< 1.

Having in view Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and m = n.
We only need to show that f(x) +nf(y) ≥ (n+ 1)f(1) for x, y ∈ I so that x+ny = n+ 1. Using
Note 1, it suffices to prove that h(x, y) ≥ 0. We have

g(u) =
f(u)− f(1)

u− 1
=

u

(u+ k)2
,

h(x, y) =
g(x)− g(y)

x− y
=

k2 − xy
(x+ k)2(y + k)2

≥ 0,

because

k2 − xy ≥ (n+ 1)2

4n
− xy =

(x+ ny)2

4n
− xy =

(x− ny)2

4n
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k =
n+ 1

2
√
n

, then the equality holds also for

a1 =
n+ 1

2
, a2 = · · · = an = 1, an+1 = · · · = a2n =

n+ 1

2n
.
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P 4.6. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1 ≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥ 1 +
n+ 1√
n

, then

a21 − 1

(a1 + k)2
+

a22 − 1

(a2 + k)2
+ · · ·+ a22n − 1

(a2n + k)2
≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f(a1) + f(a2) + · · ·+ f(a2n) ≥ 2nf(s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f(u) =
u2 − 1

(u+ k)2
, u ∈ I = R \ {−k}.

As shown in the proof of P 3.9, f is convex on [s0, 1], increasing for u ≥ s0 and

min
u∈I

f(u) = f(s0),

where

s0 =
−1

k
∈ (−1, 0).

According to Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and m = n.
Thus, we only need to show that f(x) + nf(y) ≥ (n+ 1)f(1) for x, y ∈ I so that x+ ny = n+ 1.
Using Note 1, it suffices to prove that h(x, y) ≥ 0. We have

g(u) =
f(u)− f(1)

u− 1
=

u+ 1

(u+ k)2
,

h(x, y) =
g(x)− g(y)

x− y
=

(k − 1)2 − 1− x− y − xy
(x+ k)2(y + k)2

≥ 0,

because

(k − 1)2 − 1− x− y − xy ≥ (n+ 1)2

n
− 1− x− y − xy =

(ny − 1)2

n
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1 +
n+ 1√
n

, then the equality holds also for

a1 = n, a2 = · · · = an = 1, an+1 = · · · = a2n =
1

n
.
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P 4.7. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ 1 ≥ a2 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then
a
3/a1
1 + a

3/a2
2 + · · ·+ a3/ann ≤ n.

(Vasile C., 2012)

Solution. Rewrite the desired inequality as

f(a1) + f(a2) + · · ·+ f(an) ≥ nf(s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f(u) = −u3/u, u ∈ I = (0, n).

We have
f ′(u) = 3u

3
u
−2(lnu− 1),

f ′′(u) = 3u
3
u
−4g(t), g(t) = u+ (1− lnu)(2u− 3 + 3 lnu).

From the expression of f ′, it follows that f is decreasing on (0, s0] and increasing on [s0, n), where

s0 = e.

In addition, we claim that f ′′(u) ≥ for u ∈ [1, e]. If u ∈ [3/2, e], then

g(t) > (1− lnu)(2u− 3) ≥ 0.

Also,for u ∈ [1, 3/2], we have

g(t) = 3(u− 1) + (6− 2u− 3 lnu) lnu ≥ (6− 2u− 3 lnu) lnu ≥ 3

(
1− ln

3

2

)
lnu > 0.

Since f is convex on [1, s0], we may apply the RPCF-OV Theorem for m = n − 1. We only
need to show that f(x) + f(y) ≥ 2f(1) for all x, y > 0 so that x + y = 2. The inequality
f(x) + f(y) ≥ 2f(1) is equivalent to

x3/x + y3/y ≤ 2,

which is just the inequality in P 3.32 from Volume 2. The equality holds for

a1 = a2 = · · · = an = 1.

P 4.8. If a1, a2, . . . , a11 are real numbers so that

a1 ≥ a2 ≥ 1 ≥ a3 ≥ · · · ≥ a11, a1 + a2 + · · ·+ a11 = 11,

then
(1− a1 + a21)(1− a2 + a22) · · · (1− a11 + a211) ≥ 1.

(Vasile C., 2012)
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Solution. Rewrite the desired inequality as

f(a1) + f(a2) + · · ·+ f(a11) ≥ 11f(s), s =
a1 + a2 + · · ·+ a11

11
= 1,

where
f(u) = ln(1− u+ u2), u ∈ R.

From

f ′(u) =
2u− 1

1− u+ u2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = 1/2.

Also, from

f ′′(u) =
1 + 2u(1− u)

(1− u+ u2)2
,

it follows that f ′′(u) > 0 for u ∈ [s0, 1], hence f is convex on [s0, 1]. Therefore, applying the
LPCF-OV Theorem for n = 11 and m = 2, we only need to show that f(x) + 9f(y) ≥ 9f(1) for
all real x, y so that x+ 9y = 10. Using Note 2, it suffices to prove that H(x, y) ≥ 0, where

H(x, y) =
f ′(x)− f ′(y)

x− y
=

1 + x+ y − 2xy

(1− x+ x2)(1− y + y2)
.

Since
1 + x+ y − 2xy = 18y2 − 8y + 1 = 2y2 + (4y − 1)2 > 0,

the conclusion follows. The equality holds for a1 = a2 = · · · = a11 = 1.

Remark. By replacing a1, a2, . . . , a11 respectively with 1 − a1, 1 − a2, . . . , 1 − a11, we get the
following statement.

• If a1, a2, . . . , a11 are real numbers so that

a1 ≤ a2 ≤ 0 ≤ a3 ≤ · · · ≤ a11, a1 + a2 + · · ·+ a11 = 0,

then
(1− a1 + a21)(1− a2 + a22) · · · (1− a11 + a211) ≥ 1,

with equality for a1 = a2 = · · · = an = 0.

P 4.9. If a1, a2, . . . , a8 are nonzero real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1 ≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then

5

(
1

a21
+

1

a22
+ · · ·+ 1

a28

)
+ 72 ≥ 14

(
1

a1
+

1

a2
+ · · ·+ 1

a8

)
.

(Vasile C., 2012)
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Solution. Write the desired inequality as

f(a1) + f(a2) + · · ·+ f(a8) ≥ 8f(s), s =
a1 + a2 + · · ·+ a8

8
= 1,

where

f(u) =
5

u2
− 14

u
+ 9, u ∈ I = R \ {0}.

As shown in the proof of P 3.25, f is convex on [s0, 1], increasing for u ≥ s0 and

min
u∈I

f(u) = f(s0),

where

s0 =
5

7
.

Taking into account Note 4, we may apply the LPCF-OV Theorem for n = 8 and m = 4. We
only need to show that f(x) + 4f(y) ≥ 5f(1) for x, y ∈ I so that x + 4y = 5. Using Note 1, it
suffices to prove that h(x, y) ≥ 0. Indeed, we have

g(u) =
f(u)− f(1)

u− 1
=

9

u
− 5

u2
,

h(x, y) =
g(x)− g(y)

x− y
=

5(x+ y)− 9xy

x2y2

=
(x+ 4y)(x+ y)− 9xy

x2y2
=

(x− 2y)2

x2y2
≥ 0.

In accordance with Note 3, the equality holds for a1 = a2 = · · · = a8 = 1, and also for

a1 =
5

3
, a2 = a3 = a4 = 1, a5 = a6 = a7 = a8 =

5

6
.

P 4.10. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1 ≤ c ≤ d, abcd = 1,

then
7− 6a

2 + a2
+

7− 6b

2 + b2
+

7− 6c

2 + c2
+

7− 6d

2 + d2
≥ 4

3
.

(Vasile C., 2012)

Solution. Using the substitution

a = ex, b = ey, c = ez, d = ew,

we need to show that
f(x) + f(y) + f(z) + f(w) ≥ 4f(s),
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where

x ≤ y ≤ 0 ≤ z ≤ w, s =
x+ y + z + w

4
= 0,

f(u) =
7− 6eu

2 + e2u
, u ∈ R.

As shown in the proof of P 3.26, f is convex on [0, s0], is decreasing on (−∞, s0] and increasing
on [s0,∞), where

s0 = ln 3.

Therefore, we may apply the RPCF-OV Theorem for n = 4 and m = 2. We only need to show
that f(x) + 2f(y) ≥ 3f(0) for all real x, y so that x+ 2y = 0; that is, to prove that

7− 6a

2 + a2
+

2(7− 6d)

2 + d2
≥ 1

for a, d > 0 so that ad2 = 1. This is equivalent to

(d− 1)2(d− 2)2(5d2 + 6d+ 3) ≥ 0,

which is clearly true. In accordance with Note 3, the equality holds for a = b = c = d = 1, and
also for

a =
1

4
, b = 1, c = d = 2.

P 4.11. If a, b, c are positive real numbers so that

a ≤ b ≤ 1 ≤ c, abc = 1,

then
7− 4a

2 + a2
+

7− 4b

2 + b2
+

7− 4c

2 + c2
≥ 3.

(Vasile C., 2012)

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that
f(x) + f(y) + f(z) ≥ 3f(s),

where

x ≤ y ≤ 0 ≤ z, s =
x+ y + z

3
= 0,

f(u) =
7− 4eu

2 + e2u
, u ∈ R.

From

f ′(u) =
2eu(2eu + 1)(eu − 4)

(2 + e2u)2
,
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it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln 4.

Also, we have

f ′′(u) =
4t · h(t)

(2 + t2)3
, t = eu,

where
h(t) = −t4 + 7t3 + 12t2 − 14t− 4.

We will show that h(t) ≥ 0 for t ∈ [1, 4], hence f is convex on [0, s0]. Indeed,

h(t) = (t− 1)[t2(−t+ 6) + 18t+ 4] ≥ 0.

Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only need to show
that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0. That is, to prove that

7− 4a

2 + a2
+

7− 4b

2 + b2
≥ 2

for all a, b > 0 so that ab = 1. This is equivalent to

(a− 1)4 ≥ 0.

The equality holds for a = b = c = 1.

P 4.12. If a, b, c are positive real numbers so that

a ≥ 1 ≥ b ≥ c, abc = 1,

then
23− 8a

3 + 2a2
+

23− 8b

3 + 2b2
+

23− 8c

3 + 2c2
≥ 9.

(Vasile C., 2012)

Solution. Using the substitution

a = ex, b = ey, c = ez,

we need to show that
f(x) + f(y) + f(z) ≥ 3f(s),

where

x ≥ 1 ≥ y ≥ z, s =
x+ y + z

3
= 0,

f(u) =
23− 8eu

3 + 2e2u
, u ∈ R.

From

f ′(u) =
4eu(4eu + 1)(eu − 6)

(3 + 2e2u)2
,
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it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where s0 = ln 6. Also, we
have

f ′′(u) =
8t · h(t)

(3 + 2t2)3
, t = eu,

where
h(t) = −4t4 + 46t3 + 36t2 − 69t− 9.

We will show that h(t) ≥ 0 for t ∈ [1, 6], hence f is convex on [0, s0]. Indeed,

h(t) = (t− 1)(2t+ 3)[2t(−t+ 12) + 3] ≥ 0.

Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only need to show
that f(x) + f(y) ≥ 2f(0) for all real x, y so that x+ y = 0. That is, to prove that

23− 8a

3 + 2a2
+

23− 8b

3 + 2b2
≥ 6.

for all a, b > 0 so that ab = 1. This is equivalent to

(a− 1)4 ≥ 0.

The equality holds for a = b = c = 1.

P 4.13. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ 3q ≥ 1, then

1− a1
1 + pa1 + qa21

+
1− a2

1 + pa2 + qa22
+ · · ·+ 1− an

1 + pan + qa2n
≥ 0.

(Vasile C., 2012)

Solution. For q = 0, we need to show that p ≥ 1 involves

1− a1
1 + pa1

+
1− a2
1 + pa2

+ · · ·+ 1− an
1 + pan

≥ 0.

This is just the inequality from P 2.25. Consider next that q > 0. Using the substitutions
ai = exi for i = 1, 2, . . . , n, we need to show that

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(s),

where

x1 ≤ · · · ≤ xn−1 ≤ 0 ≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f(u) =
1− eu

1 + peu + qe2u
, u ∈ R.
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As shown in the proof of P 3.30, if p+ 3q − 1 ≥ 0, then f is convex on [0, s0], where

s0 = ln r0 > 0, r0 = 1 +

√
1 +

p+ 1

q
.

In addition, f is decreasing on (−∞, s0] and increasing on [s0,∞). Therefore, we may apply the
RPCF-OV Theorem for m = n− 1. We only need to show that f(x) + f(y) ≥ 2f(0) for all real
x, y so that x+ y = 0; that is, to prove that

1− a
1 + pa+ qa2

+
1− b

1 + pb+ qb2
≥ 0

for a, b > 0 so that ab = 1. This is equivalent to

(a− 1)2[(p− 1)a+ q(a2 + a+ 1)] ≥ 0,

which is true because

(p− 1)a+ q(a2 + a+ 1) ≥ (p− 1)a+ q(3a) = (p+ 3q − 1)a ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1.

P 4.14. If a, b, c, d, e are real numbers so that

−2 ≤ a ≤ b ≤ 1 ≤ c ≤ d ≤ e, a+ b+ c+ d+ e = 5,

then
1

a2
+

1

b2
+

1

c2
+

1

d2
+

1

e2
≥ 1

a
+

1

b
+

1

c
+

1

d
+

1

e
.

Solution. Write the inequality as

f(a) + f(b) + f(c) + f(d) + f(e) ≥ 5f(s), s =
a+ b+ c+ d+ e

5
= 1,

where

f(u) =
1

u2
− 1

u
, u ∈ I = [−2, 7] \ {0}.

Let
s0 = 2, s < s0.

From

f(u)− f(2) =
1

u2
− 1

u
+

1

4
=

(u− 2)2

4u2
≥ 0,

it follows that
min
u∈I

f(u) = f(s0),

while from

f ′(u) =
u− 2

u3
, f ′′(u) =

2(3− u)

u4
,
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it follows that f is convex on [s, s0]. We can’t apply the the RPCF-OV Theorem because f is
not decreasing on I≤s0 . According to Theorem 1 (applied for n = 5 and m = 2) and Note 6, we
may replace this condition with (1 + n−m)s− (n−m)s0 ≤ inf I. Indeed, we have

(1 + n−m)s− (n−m)s0 = 4− 6 = −2 = inf I.

So, according to Note 1, it suffices to show that h(x, y) ≥ 0 for all x, y ∈ I so that x + 3y = 4.
We have

g(u) =
f(u)− f(1)

u− 1
=
−1

u2
,

h(x, y) =
g(x)− g(y)

x− y
=
x+ y

x2y2
=

2(x+ 2)

3x2y2
≥ 0.

The proof is completed. By Note 3, the equality holds for a = b = c = d = e = 1, and also for

a = −2, b = 1, c = d = e = 2.
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Chapter 5

EV Method for Nonnegative Variables

5.1 Theoretical Basis

The Equal Variables Method is an effective tool for solving some difficult symmetric inequalities.

EV-Theorem (Vasile Cı̂rtoaje, 2005). Let x1, x2, . . . , xn (n ≥ 3) be nonnegative real numbers
such that x1 ≤ x2 ≤ · · · ≤ xn, and let f be a real-valued function, continuous on [0,∞) and
differentiable on (0,∞), so that the joined function

g(x) = f ′
(
x

1
k−1

)
is strictly convex on (0,∞). For fixed x1 + x2 + · · · + xn and xk1 + xk2 + · · · + xkn, where k 6= 1
(k = 0 means that the product x1x2 · · ·xn is fixed), the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the maximum value only for

x1 = x2 = · · · = xn−1 ≤ xn

and the minimum value only for x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

To prove the EV-Theorem, we need the EV-Lemma and the EV-Proposition below.

EV-Lemma. Let x, y, z be nonnegative real numbers such that x ≤ y ≤ z. For fixed x + y + z
and xk + yk + zk, where k 6= 1 (k = 0 means that the product xyz is fixed), the range of y is an
interval [m,M ]; in addition,

(1) y = m if and only if x = y ≤ z;
(2) y = M if and only if x = 0 or 0 < x ≤ y = z.

Proof. We may consider that x and z are functions of y. From

x′ + z′ = −1, xk−1x′ + zk−1z′ = −yk−1,

we get

x′ =
yk−1 − zk−1

zk−1 − xk−1
≤ 0, z′ =

yk−1 − xk−1

xk−1 − zk−1
≤ 0. (*)

315
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Let us define the nonnegative functions

f1(y) = y − x(y), f2(y) = z(y)− y. f3(y) = x(y).

Since
f ′1(y) = 1− x′(y) > 0, f ′2(y) = z′(y)− 1 < 0, f ′3(y) = x′(y) ≤ 0,

these functions are strictly increasing, decreasing and decreasing, respectively. Thus, the inequal-
ity f1(y) ≥ 0 (with f1 increasing) involves y ≥ m, where m is a root of the equation x(y) = y,
and the inequality f2(y) ≥ 0 (with f2 decreasing) involves involves y ≤ y2, where y2 is a root
of the equation z(y) = y. If x(y2) ≥ 0, then y2 is the maximum value M of y. Otherwise, the
maximum value of y is given by the inequality f3(y) ≥ 0 (with f3 decreasing), which involves
y ≤ M , where M is a root of the equation x(y) = 0. Therefore, y ∈ [m,M ], with y = m for
x = y, and y = M for either y = z or x = 0.

EV-Proposition. Let x, y, z be nonnegative real numbers such that x ≤ y ≤ z, and let f be a
real-valued function, continuous on [0,∞) and differentiable on (0,∞), so that the joined function

g(x) = f ′
(
x

1
k−1

)
is strictly convex on (0,∞). For fixed x+ y+ z and xk + yk + zk, where k 6= 1 (k = 0 means that
the product xyz is fixed), the sum

S3 = f(x) + f(y) + f(z)

has the maximum value only when x = y ≤ z, and the minimum value only when x = 0 or
0 < x ≤ y = z.

Proof. We may consider x and z as functions of y. Thus, we have

S3 = f(x(y)) + f(y) + f(z(y)) := F (y).

According to the EV-Lemma, it suffices to show that F is maximum for y = m and is minimum
for y = M . Using (*), we have

F ′(y) = x′f ′(x) + f ′(y) + z′f ′(z)

=
yk−1 − zk−1

zk−1 − xk−1
g(xk−1) + g(yk−1) +

yk−1 − xk−1

xk−1 − zk−1
g(zk−1),

which, for x < y < z, is equivalent to

F ′(y)

(yk−1 − xk−1)(yk−1 − zk−1)
=

g(xk−1)

(xk−1 − yk−1)(xk−1 − zk−1)

+
g(yk−1)

(yk−1 − zk−1)(yk−1 − xk−1)
+

g(zk−1)

(zk−1 − xk−1)(zk−1 − yk−1)
.

Since g is strictly convex, the right hand side is positive. Moreover, since

(yk−1 − xk−1)(yk−1 − zk−1) < 0,
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we have F ′(y) < 0 for y ∈ (m,M) (see the EV-Lemma), hence F is strictly decreasing on [m,M ].
Therefore, F is maximum for y = m (when x = y ≤ z) and is minimum for y = M (when x = 0
or 0 < x ≤ y = z).

Proof of the EV-Theorem. Since X = {x1, x2, . . . , xn} is defined as a compact set in R+
n , Sn

attains its minimum and maximum. For n = 3, the EV-Theorem follows immediately from the
EV-Proposition. To prove the theorem for n ≥ 4, we use the contradiction method.

(a) For the sake of contradiction, assume that the sum Sn has the maximum value when
x1 < xn−1. According to the EV-Proposition, the sum f(x1) + f(xn−1) + f(xn) increases by
replacing the set (x1, xn−1, xn) with the set (y1, yn−1, yn) such that y1 = yn−1 < yn and

y1 + yn−1 + yn = x1 + xn−1 + xn, y21 + y2n−1 + y2n = x21 + x2n−1 + x2n,

which is a contradiction.
(b) Similarly, we can prove that Sn is minimum for n ≥ 4 when either x1 = 0 or

0 < x1 ≤ x2 = · · · = xn.

Corollary 1. Let x1, x2, . . . , xn (n ≥ 3) be nonnegative real numbers such that x1 ≤ x2 ≤ · · · ≤
xn, and let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞), so that
the joined function

g(x) = f ′(x)

is strictly convex on (0,∞). For fixed x1 + x2 + · · ·+ xn and x21 + x22 + · · ·+ x2n, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the maximum value only when

x1 = x2 = · · · = xn−1 ≤ xn ,

and the minimum value only when x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn .

Corollary 2. Let x1, x2, . . . , xn (n ≥ 3) be positive real numbers such that x1 ≤ x2 ≤ · · · ≤ xn,
and let f be a real-valued function, continuous and differentiable on (0,∞), so that the joined
function

g(x) = f ′
(

1√
x

)
is strictly convex on (0,∞). For fixed x1 + x2 + · · ·+ xn and

1

x1
+

1

x2
+ · · ·+ 1

xn
, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the maximum value only when

x1 = x2 = · · · = xn−1 ≤ xn ,

and the minimum value only when

x1 ≤ x2 = x3 = · · · = xn .
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Corollary 3. Let x1, x2, . . . , xn (n ≥ 3) be nonnegative real numbers such that x1 ≤ x2 ≤ · · · ≤
xn, and let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞), so that
the joined function

g(x) = f ′(1/x)

is strictly convex on (0,∞). For fixed x1 + x2 + · · ·+ xn and x1x2 · · ·xn, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the maximum value only when

x1 = x2 = · · · = xn−1 ≤ xn,

and the minimum value only when x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Corollary 4.Suppose that x1, x2, . . . , xn (n ≥ 3) are nonnegative real numbers such that x1 ≤
x2 ≤ · · · ≤ xn, and the sums x1 + x2 + · · ·+ xn and xk1 + xk2 + · · ·+ xkn are fixed, where k is a real
number (k 6= 1).

(1) For k < 0, the product Pn = x1x2 · · ·xn has the maximum value only when

0 < x1 ≤ x2 = x3 = · · · = xn,

and the minimum value only when

0 < x1 = x2 = · · · = xn−1 ≤ xn.

(2) For k > 0, the product Pn = x1x2 · · ·xn has the maximum value only when

x1 = x2 = · · · = xn−1 ≤ xn,

and the minimum value only when x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Note 1. The EV-Theorem, Corollary 1 and Corollary 3 are also valid when x1, x2, . . . , xn > 0, f
is continuous and differentiable on (0,∞), f(0+) = ±∞ and the sum Sn has a global maximum
(minimum).

From the EV-Theorem and Note 1, we can obtain some interesting particular results, which
are useful in many applications.

Corollary 5. Suppose that x1, x2, . . . , xn are nonnegative real numbers such that x1 ≤ x2 ≤
· · · ≤ xn, and the sums x1 + x2 + · · · + xn and xk1 + xk2 + · · · + xkn are fixed, where k is a real
number. Let us denote

Sn = xm1 + xm2 + · · ·+ xmn .

Case 1 : k > 1.

(a) If m ∈ (0, 1) ∪ (k,∞), then Sn has the maximum value only for

0 ≤ x1 = x2 = · · · = xn−1 ≤ xn,
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and the minimum value only for either x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

(b) If m ∈ (−∞, 0), then Sn has the minimum value only for

0 < x1 = x2 = · · · = xn−1 ≤ xn,

and the maximum value (if there is a global maximum) only for

0 < x1 ≤ x2 = x3 = · · · = xn.

(c) If m ∈ (1, k), then Sn has the minimum value only for

0 ≤ x1 = x2 = · · · = xn−1 ≤ xn,

and the maximum value only for either x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Case 2 : 0 ≤ k < 1 (k = 0 means x1x2 · · ·xn = a1a2 · · · an ).

(a) If m ∈ (0, k) ∪ (1,∞), then Sn has the maximum value only for

0 ≤ x1 = x2 = · · · = xn−1 ≤ xn,

and the minimum value only for either x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

(b) If m ∈ (−∞, 0), then Sn has the minimum value only for

0 < x1 = x2 = · · · = xn−1 ≤ xn,

and the maximum value (if there is a global maximum) only for

0 < x1 ≤ x2 = x3 = · · · = xn.

(c) If m ∈ (k, 1), then Sn has the minimum value only for

0 ≤ x1 = x2 = · · · = xn−1 ≤ xn,

and the maximum value only for either x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Case 3 : k < 0.

(a) If m ∈ (k, 0) ∪ (1,∞), then Sn has the maximum value only for

0 < x1 = x2 = · · · = xn−1 ≤ xn,

and the minimum value only for

0 < x1 ≤ x2 = x3 = · · · = xn.

(b) If m ∈ (−∞, k) ∪ (0, 1), then Sn has the minimum value only for

0 < x1 = x2 = · · · = xn−1 ≤ xn,
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and the maximum value only for

0 < x1 ≤ x2 = x3 = · · · = xn.

Proof. We apply the EV-Theorem and Note 1 to the function

f(u) = m(m− 1)(m− k)um.

We have
f ′(u) = m2(m− 2)(m− k)um−1

and

g(x) = m2(m− 1)(m− k)x
m−1
k−1 , g′′(x) =

m2(m− 1)2(m− k)2

(k − 1)2
x

1+m−2k
k−1 .

Since g′′(x) > 0 for x > 0, g is strictly convex on (0,∞).

Corollary 6. Suppose that x1, x2, . . . , xn (n ≥ 3) are nonnegative real numbers such that
x1 ≤ x2 ≤ · · · ≤ xn, and the sums xp1 + xp2 + · · ·+ xpn and xq1 + xq2 + · · ·+ xqn are fixed, where

p, q ∈ {1, 2, 3}, p 6= q.

The symmetric sum

Sn =
∑

1≤i1<i2<i3≤n

xi1xi2xi3

has the maximum value only for

0 ≤ x1 = x2 = · · · = xn−1 ≤ xn,

and the minimum value only for x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Proof. Taking into account that

6
∑

1≤i1<i2<i3≤n

xi1xi2xi3 =
(∑

x1

)3
− 3

(∑
x1

)(∑
x21

)
+ 2

∑
x31,

Corollary 6 is a consequence of Corollary 5. For p = 2 and q = 3, according to this identity, the

sum
∑

1≤i1<i2<i3≤n

xi1xi2xi3 is maximum/minimum when
∑

x1 is maximum/minimum. Therefore,

we need to show that for fixed x21 + x22 + · · · + x2n and x31 + x32 + · · · + x3n, the sum
∑

x1 has

the maximum value when
0 ≤ x1 = x2 = · · · = xn−1 ≤ xn,

and the minimum value when either x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn. This result follows
by replacing x1, x2, . . . , xn with x21, x

2
2, . . . , x

2
n in Corollary 5, case k = 3/2 and m = 1/2.

Note 2. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(a) x1, x2, . . . , xn ≥ m ≥ 0, f is continuous on [m,∞) and differentiable on (m,∞), and

g(x) is strictly convex for x
1

k−1 > m; so, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)
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has the maximum value for x1 = x2 = · · · = xn−1 ≤ xn, and the minimum value for either
x1 = m or m < x1 ≤ x2 = x3 = · · · = xn;

(b) 0 ≤ x1, x2, . . . , xn ≤M , f is continuous on [0,M ] and differentiable on (0,M), and g(x)

is strictly convex for x
1

k−1 < M ; so, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the maximum value for either xn = M or x1 = x2 = · · · = xn−1 ≤ xn, and the minimum
value for x1 ≤ x2 = x3 = · · · = xn;

Note 3. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(a) x1, x2, . . . , xn > m ≥ 0, f is continuous and differentiable on (m,∞), f(m+) = ±∞,

g(x) is strictly convex for x
1

k−1 > m and the sum Sn has a global maximum (minimum);

(b) 0 ≤ x1, x2, . . . , xn < M , f is continuous and differentiable on [0,M), f(M−) = ±∞,

g(x) is strictly convex for x
1

k−1 < M and the sum Sn has a global maximum (minimum).

The following theorems are also true (see [25]).

Theorem 1. Let x1, x2, . . . , xn be nonnegative real numbers such that x1 ≤ x2 ≤ · · · ≤ xn, and
let m be a positive real number such that 1 < m ≤ 3 for n = 3, and n− 2 ≤ m ≤ n for n ≥ 4. If
n∑

i=1

1

(n−m)xi +m
= 1 and x1 + x2 + · · ·+ xn is fixed, then:

(1) the product Pn = x1x2 · · ·xn has the maximum value only when x1 = x2 = · · · = xn−1 ≤
xn;

(2) the product Pn = x1x2 · · ·xn has the minimum value only when x1 = 0 or 0 < x1 ≤
x2 = x3 = · · · = xn.

Theorem 2. Let x1, x2, . . . , xn be nonnegative real numbers such that x1 ≤ x2 ≤ · · · ≤ xn, and
let m be a positive real number such that 0 < m < 1 for n = 3, and 0 < m ≤ 1 for n ≥ 4. If
n∑

i=1

1

(n−m)xi +m
= 1 and x1 + x2 + · · ·+ xn is fixed, then:

(1) the product Pn = x1x2 · · ·xn has the maximum value only when x1 ≤ x2 = x3 = · · · = xn;

(2) the product Pn = x1x2 · · ·xn has the minimum value only when x1 = x2 = · · · = xn−1 ≤
xn .
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EV Method for Nonnegative Variables 323

5.2 Applications

5.1. If a, b, c, d are nonnegative real numbers so that

a+ b+ c+ d = a3 + b3 + c3 + d3 = 2,

then
7

4
≤ a2 + b2 + c2 + d2 ≤ 2.

5.2. If a1, a2, . . . , a9 are nonnegative real numbers so that

a1 + a2 + · · ·+ a9 = a21 + a22 + · · ·+ a29 = 3,

then

3 ≤ a31 + a32 + · · ·+ a39 ≤
14

3
.

5.3. If a, b, c, d are nonnegative real numbers so that

a+ b+ c+ d = a2 + b2 + c2 + d2 =
27

7
,

then
5427

1372
≤ a3 + b3 + c3 + d3 ≤ 1377

343
.

5.4. If a, b, c are positive real numbers so that abc = 1, then

a5 + b5 + c5 ≥
√

3(a7 + b7 + c7).

5.5. If a, b, c, d are positive real numbers so that abcd = 1, then

a3 + b3 + c3 + d3 ≥
√

4(a4 + b4 + c4 + d4).

5.6. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

bcd

11a+ 16
+

cda

11b+ 16
+

dab

11c+ 16
+

abc

11d+ 16
≤ 4

27
.

5.7. If a, b, c are real numbers, then

bc

3a2 + b2 + c2
+

ca

3b2 + c2 + a2
+

ab

3c2 + a2 + b2
≤ 3

5
.
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5.8. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a)
bc

a2 + 2
+

ca

b2 + 2
+

ab

c2 + 2
≤ 9

8
;

(b)
bc

a2 + 3
+

ca

b2 + 3
+

ab

c2 + 3
≤ 11

√
33− 45

24
;

(c)
bc

a2 + 4
+

ca

b2 + 4
+

ab

c2 + 4
≤ 3

5
.

5.9. If a, b, c, d are nonnegative real numbers so that

(3a+ 1)(3b+ 1)(3c+ 1)(3d+ 1) = 64,

then
abc+ bcd+ cda+ dab ≤ 1.

5.10. If a1, a2, . . . , an and p, q are nonnegative real numbers so that

a1 + a2 + · · ·+ an = p+ q, a31 + a32 + · · ·+ a3n = p3 + q3,

then
a21 + a22 + · · ·+ a2n ≤ p2 + q2.

5.11. If a, b, c are nonnegative real numbers, then

a
√
a2 + 4b2 + 4c2 + b

√
b2 + 4c2 + 4a2 + c

√
c2 + 4a2 + 4b2 ≥ (a+ b+ c)2.

5.12. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then

1

a+ b
+

1

b+ c
+

1

c+ a
≤ 3

2(a+ b+ c)
+
a+ b+ c

3
.

5.13. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3

a+ b+ c
+
a+ b+ c

6
.

5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a2 + b2 + c2 = 3,

then
1

a+ b
+

1

b+ c
+

1

c+ a
+
a+ b+ c

9
≥ 11

2(a+ b+ c)
.
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5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a+ b+ c = 4,

then
1

a+ b
+

1

b+ c
+

1

c+ a
≥ 15

8 + ab+ bc+ ca
.

5.16. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 1

a+ b+ c
+

2√
ab+ bc+ ca

.

5.17. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3−

√
3

a+ b+ c
+

2 +
√

3

2
√
ab+ bc+ ca

.

5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that

ab+ bc+ ca = 3.

If

0 ≤ k ≤ 9 + 5
√

3

6
≈ 2.943,

then
2

a+ b
+

2

b+ c
+

2

c+ a
≥ 9(1 + k)

a+ b+ c+ 3k
.

5.19. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 20

a+ b+ c+ 6
√
ab+ bc+ ca

.

5.20. If a, b, c are positive real numbers so that

7(a2 + b2 + c2) = 11(ab+ bc+ ca),

then
51

28
≤ a

b+ c
+

b

c+ a
+

c

a+ b
≤ 2.
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5.21. If a1, a2, . . . , an are nonnegative real numbers so that

a21 + a22 + · · ·+ a2n
n+ 3

=

(
a1 + a2 + · · ·+ an

n+ 1

)2

,

then
(n+ 1)(2n− 1)

2
≤ (a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≤ 3n2(n+ 1)

2(n+ 2)
.

5.22. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 3, then

abc+ bcd+ cda+ dab ≤ 1 +
176

81
abcd.

5.23. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 3, then

a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 +
3

4
abcd ≤ 1.

5.24. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 3, then

a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 +
4

3
(abcd)3/2 ≤ 1.

5.25. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 + 2(abcd)3/2 ≤ 6.

5.26. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

11(ab+ bc+ ca) + 4(a2b2 + b2c2 + c2a2) ≤ 45.

5.27. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

a2b2 + b2c2 + c2a2 + a3b3 + b3c3 + c3a3 ≥ 6abc.

5.28. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2(a2 + b2 + c2) + 5
(√

a+
√
b+
√
c
)
≥ 21.
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5.29. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then√
1 + 2a

3
+

√
1 + 2b

3
+

√
1 + 2c

3
≥ 3.

5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If

0 ≤ k ≤ 15,

then
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

k

(a+ b+ c)2
≥ 9 + k

4(ab+ bc+ ca)
.

5.31. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

24

(a+ b+ c)2
≥ 8

ab+ bc+ ca
.

5.32. If a, b, c are nonnegative real numbers, no two of which are zero, so that

k(a2 + b2 + c2) + (2k + 3)(ab+ bc+ ca) = 9(k + 1), 0 ≤ k ≤ 6,

then
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

9k

(a+ b+ c)2
≥ 3

4
+ k.

5.33. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
2

a2 + b2
+

2

b2 + c2
+

2

c2 + a2
≥ 8

a2 + b2 + c2
+

1

ab+ bc+ ca
;

(b)
2

a2 + b2
+

2

b2 + c2
+

2

c2 + a2
≥ 7

a2 + b2 + c2
+

6

(a+ b+ c)2
;

(c)
2

a2 + b2
+

2

b2 + c2
+

2

c2 + a2
≥ 45

4(a2 + b2 + c2) + ab+ bc+ ca
.

5.34. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
+

3

a2 + b2 + c2
≥ 4

ab+ bc+ ca
.
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5.35. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
3

a2 + ab+ b2
+

3

b2 + bc+ c2
+

3

c2 + ca+ a2
≥ 5

ab+ bc+ ca
+

4

a2 + b2 + c2
;

(b)
3

a2 + ab+ b2
+

3

b2 + bc+ c2
+

3

c2 + ca+ a2
≥ 1

ab+ bc+ ca
+

24

(a+ b+ c)2
;

(c)
1

a2 + ab+ b2
+

1

b2 + bc+ c2
+

1

c2 + ca+ a2
≥ 21

2(a2 + b2 + c2) + 5(ab+ bc+ ca)
.

5.36. Let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞), so that
f ′′′(u) ≥ 0 for u ∈ (0,∞). If a, b, c ≥ 0, then

f(a2 + 2bc) + f(b2 + 2ca) + f(c2 + 2ab) ≤ f(a2 + b2 + c2) + 2f(ab+ bc+ ca).

5.37. If a, b, c are the lengths of the side of a triangle, then

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
≤ 85

36(ab+ bc+ ca)
.

5.38. If a, b, c are the lengths of the side of a triangle so that a+ b+ c = 3, then

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
≤ 3(a2 + b2 + c2)

4(ab+ bc+ ca)
.

5.39. Let a, b, c ≥ 2

5
so that a+ b+ c = 3. Then,

1

3 + 2(a2 + b2)
+

1

3 + 2b2 + c2)
+

1

3 + 2(c2 + a2)
≤ 3

7
.

5.40. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2

2 + a2 + b2
+

2

2 + b2 + c2
+

2

2 + c2 + a2
≤ 99

63 + a2 + b2 + c2
.

5.41. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1

3 + a2 + b2
+

1

3 + b2 + c2
+

1

3 + c2 + a2
≤ 18

27 + a2 + b2 + c2
.
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5.42. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

5

3 + a2 + b2
+

5

3 + b2 + c2
+

5

3 + c2 + a2
≥ 27

6 + a2 + b2 + c2
.

5.43. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then∑ 3

3 + 2(a2 + b2 + c2)
≤ 296

218 + a2 + b2 + c2 + d2
.

5.44. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then

4

2 + a2 + b2
+

4

2 + b2 + c2
+

4

2 + c2 + a2
≥ 21

4 + a2 + b2 + c2
.

5.45. If a, b, c are nonnegative real numbers so that a2 + b2 + c2 = 3, then

1

10− (a+ b)2
+

1

10− (b+ c)2
+

1

10− (c+ a)2
≤ 1

2
.

5.46. If a, b, c are nonnegative real numbers, no two of which are zero, so that a4 + b4 + c4 = 3,
then

1

a5 + b5
+

1

b5 + c5
+

1

c5 + a5
≥ 3

2
.

5.47. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

√
a21 + 1 +

√
a22 + 1 + · · ·+

√
a2n + 1 ≥

√
2

(
1− 1

n

)
(a21 + a22 + · · ·+ a2n) + 2(n2 − n+ 1).

5.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then∑√
(3n− 4)a21 + n ≥

√
(3n− 4)(a21 + a22 + · · ·+ a2n) + n(4n2 − 7n+ 4).

5.49. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
a2 + 4 +

√
b2 + 4 +

√
c2 + 4 ≤

√
8

3
(a2 + b2 + c2) + 37.
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5.50. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
32a2 + 3 +

√
32b2 + 3 +

√
32c2 + 3 ≤

√
32(a2 + b2 + c2) + 219.

5.51. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

1

a1
+

1

a2
+ · · ·+ 1

an
+

2n
√
n− 1

a21 + a22 + · · ·+ a2n
≥ n+ 2

√
n− 1.

5.52. If a, b, c ∈ [0, 1], then

(1 + 3a2)(1 + 3b2)(1 + 3c2) ≥ (1 + ab+ bc+ ca)3.

5.53. If a, b, c are nonnegative real numbers so that a+ b+ c = ab+ bc+ ca, then

1

4 + 5a2
+

1

4 + 5b2
+

1

4 + 5c2
≥ 1

3
.

5.54. If a, b, c, d are positive real numbers so that a+ b+ c+ d = 4abcd, then

1

1 + 3a
+

1

1 + 3b
+

1

1 + 3c
+

1

1 + 3d
≥ 1.

5.55. If a1, a2, . . . , an are positive real numbers so that

a1 + a2 + · · ·+ an =
1

a1
+

1

a2
+ · · ·+ 1

an
,

then
1

1 + (n− 1)a1
+

1

1 + (n− 1)a2
+ · · ·+ 1

1 + (n− 1)an
≥ 1.

5.56. If a, b, c, d, e are nonnegative real numbers so that a4 + b4 + c4 + d4 + e4 = 5, then

7(a2 + b2 + c2 + d2 + e2) ≥ (a+ b+ c+ d+ e)2 + 10.

5.57. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(a21 + a22 + · · ·+ a2n)2 − n2 ≥ n(n− 1)

n2 − n+ 1

(
a41 + a42 + · · ·+ a4n − n

)
.
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5.58. If a1, a2, . . . , an are nonnegative real numbers so that a21 + a22 + · · ·+ a2n = n, then

a31 + a32 + · · ·+ a3n ≥

√
n2 − n+ 1 +

(
1− 1

n

)
(a61 + a62 + · · ·+ a6n).

5.59. If a, b, c are positive real numbers so that abc = 1, then

4

(
1

a
+

1

b
+

1

c

)
+

50

a+ b+ c
≥ 27.

5.60. If a, b, c are positive real numbers so that abc = 1, then

a3 + b3 + c3 + 15 ≥ 6

(
1

a
+

1

b
+

1

c

)
.

5.61. Let a1, a2, . . . , an be positive numbers so that a1a2 · · · an = 1. If k ≥ n− 1, then

ak1 + ak2 + · · ·+ akn + (2k − n)n ≥ (2k − n+ 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

5.62. Let a1, a2, . . . , an (n ≥ 3) be nonnegative numbers so that a1 + a2 + · · ·+ an = n, and let
k be an integer satisfying 2 ≤ k ≤ n+ 2. If

m =

(
n

n− 1

)k−1

− 1,

then
ak1 + ak2 + · · ·+ akn

n
− 1 ≥ m(1− a1a2 · · · an).

5.63. If a, b, c are positive real numbers so that
1

a
+

1

b
+

1

c
= 3, then

4(a2 + b2 + c2) + 9 ≥ 21abc.

5.64. If a1, a2, . . . , an are positive real numbers so that
1

a1
+

1

a2
+ · · ·+ 1

an
= n, then,

a1 + a2 + · · ·+ an − n ≤ en−1(a1a2 · · · an − 1),

where

en−1 =

(
1 +

1

n− 1

)n−1

.
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5.65. If a1, a2, . . . , an are positive real numbers, then

an1 + an2 + · · ·+ ann
a1a2 · · · an

+ n(n− 1) ≥ (a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

5.66. If a1, a2, . . . , an are nonnegative real numbers, then

(n− 1)(an1 + an2 + · · ·+ ann) + na1a2 · · · an ≥ (a1 + a2 + · · ·+ an)(an−11 + an−12 + · · ·+ an−1n ).

5.67. If a1, a2, . . . , an are nonnegative real numbers, then

(n− 1)(an+1
1 + an+1

2 + · · ·+ an+1
n ) ≥ (a1 + a2 + · · ·+ an)(an1 + an2 + · · ·+ ann − a1a2 · · · an).

5.68. If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an − n)

(
1

a1
+

1

a2
+ · · ·+ 1

an
− n

)
+ a1a2 · · · an +

1

a1a2 · · · an
≥ 2.

5.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then∣∣∣∣∣∣ 1√
a1 + a2 + · · ·+ an − n

− 1√
1
a1

+ 1
a2

+ · · ·+ 1
an
− n

∣∣∣∣∣∣ < 1.

5.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−11 + an−12 + · · ·+ an−1n +
n2(n− 2)

a1 + a2 + · · ·+ an
≥ (n− 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

5.71. If a, b, c are nonnegative real numbers, then

(a+ b+ c− 3)2 ≥ abc− 1

abc+ 1
(a2 + b2 + c2 − 3).

5.72. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

(a1a2 · · · an)
1√
n−1 (a21 + a22 + · · ·+ a2n) ≤ n.
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5.73. If a1, a2, . . . , an are positive real numbers such that a1 + a2 + · · ·+ an = n− 1, then

n

√
n− 1

a1a2 · · · an
≥ 4

√
a21 + a22 + · · ·+ a2n

n(n− 1)
.

5.74. If a1, a2, . . . , an are positive real numbers so that a31 + a32 + · · ·+ a3n = n, then

a1 + a2 + · · ·+ an ≥ n n+1
√
a1a2 · · · an.

5.75. Let a, b, c be nonnegative real numbers so that ab+ bc+ ca = 3. If

k ≥ 2− ln 4

ln 3
≈ 0.738,

then
ak + bk + ck ≥ 3.

5.76. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

k ≥ ln 9− ln 8

ln 3− ln 2
≈ 0.29,

then
ak + bk + ck ≥ ab+ bc+ ca.

5.77. If a1, a2, . . . , an (n ≥ 4) are nonnegative numbers so that a1 + a2 + · · ·+ an = n, then

1

n+ 1− a2a3 · · · an
+

1

n+ 1− a3a4 · · · a1
+ · · ·+ 1

n+ 1− a1a2 · · · an−1
≤ 1.

5.78. If a, b, c are nonnegative real numbers so that

a+ b+ c ≥ 2, ab+ bc+ ca ≥ 1,

then
3
√
a+

3
√
b+ 3
√
c ≥ 2.

5.79. If a, b, c, d are positive real numbers so that abcd = 1, then

(a+ b+ c+ d)4 ≥ 36
√

3 (a2 + b2 + c2 + d2).
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5.80. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 1, then

√
33a2 + 16 +

√
33b2 + 16 +

√
33c2 + 16 ≤ 9(a+ b+ c).

5.81. If a, b, c are positive real numbers so that a+ b+ c = 3, then

a2b2 + b2c2 + c2a2 ≤ 3
3
√
abc

.

5.82. If a1, a2, . . . , an (n ≤ 81) are nonnegative real numbers so that

a21 + a22 + · · ·+ a2n = a51 + a52 + · · ·+ a5n,

then
a61 + a62 + · · ·+ a6n ≤ n.

5.83. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1 +
√

1 + a3 + b3 + c3 ≥
√

3(a2 + b2 + c2).

5.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
a+ b+

√
b+ c+

√
c+ a ≤

√
16 +

2

3
(ab+ bc+ ca).

5.85. If a, b, c ∈ [0, 4] and ab+ bc+ ca = 4, then

√
a+ b+

√
b+ c+

√
c+ a ≤ 3 +

√
5.

5.86. If a, b, c are positive real numbers so that abc = 1, then

(a)
a+ b+ c

3
≥ 3

√
2 + a2 + b2 + c2

5
;

(b) a3 + b3 + c3 ≥
√

3(a4 + b4 + c4).

5.87. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 18) ≤ 10(a3 + b3 + c3 + d3 − 4).
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5.88. If a, b, c, d are nonnegative real numbers such that

a+ b+ c+ d = 4,

then

(a4 + b4 + c4 + d4)2 ≥ (a2 + b2 + c2 + d2)(a5 + b5 + c5 + d5).

5.89. If a, b, c, d are nonnegative real numbers such that

a+ b+ c+ d = 4,

then

13(a2 + b2 + c2 + d2)2 ≥ 12(a4 + b4 + c4 + d4) + 160.

5.90. If a1, a2, . . . , a8 are nonnegative real numbers, then

19(a21 + a22 + · · ·+ a28)
2 ≥ 12(a1 + a2 + · · ·+ a8)(a

3
1 + a32 + · · ·+ a38).

5.91. If a, b, c are nonnegative real numbers so that

5(a2 + b2 + c2) = 17(ab+ bc+ ca),

then

3

√
3

5
≤
√

a

b+ c
+

√
b

c+ a
+

√
c

a+ b
≤ 1 +

√
7√

2
.

5.92. If a, b, c are nonnegative real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc+ ca),

then
19

12
≤ a

b+ c
+

b

c+ a
+

c

a+ b
≤ 141

88
.

5.93. If a, b, c ∈ (0, 2] such that a+ b+ c = 3, then√
2(b+ c)

a
− 1 +

√
2(c+ a)

b
− 1 +

√
2(a+ b)

c
− 1 ≥ 9√

ab+ bc+ ca
.
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5.94. Let a, b, c and x, y, z be nonnegative real numbers such that

x3 + y3 + z3 = a3 + b3 + c3.

Then,
(a+ b+ c)(x+ y + z)

ab+ bc+ ca+ xy + yz + zx
≥ 3
√

3.

5.95. If a, b, c, d are positive numbers such that

a+ b+ c+ d =
1

a
+

1

b
+

1

c
+

1

d
,

then
ab+ ac+ ad+ bc+ bd+ cd+ 3abcd ≥ 9.

5.96. If a1, a2, a3, a4, a5 are nonnegative real numbers, then

(a31 + a32 + a33 + a34 + a35)
2

a41 + a42 + a43 + a44 + a45
≥ 1

2

∑
i<j

aiaj.

5.97. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an = n,

then

√
a1 +

√
a2 + · · ·+

√
an ≤

√√√√2n− 1 + 2

(
1− 1

n

)∑
i<j

aiaj.

5.98. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an =
∑
i<j

aiaj > 0,

then
(n− 1)(n− 2)

2
(a1 + a2 + · · ·+ an) +

∑
i<j

√
aiaj ≥ n(n− 1).

5.99. Let
F (a1, a2, . . . , an) = n(a21 + a22 + · · ·+ a2n)− (a1 + a2 + · · ·+ an)2 ,

where a1, a2, . . . , an are positive real numbers such that a1 = min{a1, a2, . . . , an} and

a21(a
2
2 + a23 + · · ·+ a2n) ≥ n− 1.

Then,

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
.
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5.100. Let
F (a1, a2, . . . , an) = a1 + a2 + · · ·+ an − n n

√
a1a2 · · · an,

where a1, a2, . . . , an are positive real numbers such that a1 = min{a1, a2, . . . , an} and

a1(a2 + a3 + · · ·+ an) ≥ n− 1.

Then,

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
.

5.101. Let

F (a1, a2, . . . , an) =

√
a21 + a22 + · · ·+ a2n

n
− a1 + a2 + · · ·+ an

n
,

where a1, a2, . . . , an are positive real numbers such that a1 = min{a1, a2, . . . , an} and

an−11 (a2 + a3 + · · ·+ an) ≥ n− 1.

Then,

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
.

5.102. If a1, a2, . . . , an (n ≥ 4) are positive real numbers such that

a1 + a2 + · · ·+ an = n, an = max{a1, a2, . . . , an},

then

n

(
1

a1
+

1

a2
+ · · ·+ 1

an−1

)
≥ 4(a21 + a22 + · · ·+ a2n) + n(n− 5).

5.103. If a1, a2, . . . , an are positive real numbers such that

a1 + a2 + · · ·+ an = n,

then
1

a1
+

1

a2
+ · · ·+ 1

an
+ n− 2 ≥ n(n− 1)2∑

1≤i<j≤n

aiaj
.

5.104. If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then
n∑

i=1

1

n− ai
≤ n− 2

n− 1
+

n∑
1≤i<j≤n

aiaj
.
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5.105. If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then
n∑

i=1

1

n− ai
≥ 1 +

n

2
∑

1≤i<j≤n

aiaj
.

5.106. If a1, a2, . . . , an are nonnegative real numbers such that

n∑
i=1

1

2ai + n− 2
≤ 1,

then
2
∑

1≤i<j≤n

aiaj ≥ (n− 1)(a1 + a2 + · · ·+ an).

5.107. If a1, a2, . . . , an are positive real numbers such that

1

2a1 + n− 2
+

1

2a2 + n− 2
+ · · ·+ 1

2an + n− 2
= 1,

then
1

a1
+

1

a2
+ · · ·+ 1

an
+

n(n− 2)

a1 + a2 + · · ·+ an
≥ 2(n− 1).

5.108. If a1, a2, . . . , an are positive real numbers such that

1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
= 1,

then
1

a1
+

1

a2
+ · · ·+ 1

an
+

n(3n− 4)

a1 + a2 + · · ·+ an
≥ 4(n− 1).

5.109. If a1, a2, . . . , an are nonnegative real numbers such that

n∑
i=1

1

ai + 1
≥ n− 1,

then

(n− 2)
n∑

i=1

ai +
n

2
∑

1≤i<j≤n

aiaj
≥ 2n2 − 4n+ 1

n− 1
.
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5.110. If a1, a2, . . . , an are nonnegative real numbers such that

n∑
i=1

1

ai + n− 1
= 1,

then

2
∑

1≤i<j≤n

aiaj ≥
n2(n− 1)

a1 + a2 + · · ·+ an
.

5.111. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

ai + n− 1
≤ 1,

then
n

a1 + a2 + · · ·+ an
− 1 + k

[
2

n(n− 1)

∑
1≤i<j≤n

aiaj − 1

]
≥ 0,

where

k =
4(n− 1)2

(n− 2)(3n− 4)
.

5.112. If a1, a2, . . . , an are positive real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

n

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
+ n(n− 2) ≥ 2(n− 1)(a1 + a2 + · · ·+ an).

5.113. If a1, a2, . . . , an are nonnegative real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1
− n

2
+ k

(
n

a1 + a2 + · · ·+ an
− 1

)
≤ 0,

where

k =
1

2
(n− 1)

√
n(n− 2).

5.114. If a1, a2, . . . , an are nonnegative real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1
− n

2
+ k

(
n

a1 + a2 + · · ·+ an
− 1

)
≥ 0,

where

k =
n(n− 2)

2(n− 1)2

(√
n2 − 2n+ 2− 1

)
.
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5.115. If a1, a2, . . . , an are nonnegative real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

(n− 2)(a1 + a2 + · · ·+ an) ≥ 2

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1

)
+ n(n− 3).

5.116. If a1, a2, . . . , an are positive real numbers such that

1

a1
+

1

a2
+ · · ·+ 1

an
= n,

then

2(n+ 1)

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1

)
≥ n2(n− 1)

a1 + a2 + · · ·+ an
+ 2n.

5.117. If a1, a2, . . . , an are positive real numbers such that

1

a1
+

1

a2
+ · · ·+ 1

an
= n,

then

a21 + a22 + · · ·+ a2n +
2n2

a1 + a2 + · · ·+ an
≥ 3n.

5.118. If a1, a2, . . . , an are nonnegative real numbers such that a1 + a2 + · · ·+ an = n, then∑ 1

a21 + (n2 − n+ 1)(a22 + · · ·+ a2n)
≤ 1

n2 − 2n+ 2
.

5.119. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

1

(5a+ 2b+ 2c)2
+

1

(2a+ 5b+ 2c)2
+

1

(2a+ 2b+ 5c)2
≤ 1

27
.

5.120. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

1

(3a+ b+ c)2
+

1

(a+ 3b+ c)2
+

1

(a+ b+ 3c)2
≤ 1

8
.

5.121. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

1

(a+ 4b+ 4c)2
+

1

(4a+ b+ 4c)2
+

1

(4a+ 4b+ c)2
≤ 1

27
.
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5.122. If n ≥ 3, 1 < k ≤ n and a1, a2, . . . , an are nonnegative real numbers,then

(n− 1)k−1(ak1 + · · ·+ akn) + n[nk−1 − (n− 1)k−1](a1 · · · an)k/n ≥ (a1 + a2 + · · ·+ an)k.

5.123. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

(n− 1)ai + 1
= 1.

then
a1 + a2 + · · ·+ an ≥ n n−2

√
a1a2 · · · an.

5.124. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

(n− 1)ai + 1
= 1,

then
a1 + a2 + · · ·+ an − n ≤ k(a1a2 · · · an − 1),

where k =

(
n− 1

n− 2

)n−1

.

5.125. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

(n− 1)ai + 1
= 1,

then
(n− 2)(a1 + a2 + · · ·+ an) + a1a2 · · · an ≥ (n− 1)2.

5.126. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

2ai + n− 2
= 1,

then
a1 + a2 + · · ·+ an − n ≥ 2n−1(a1a2 · · · an − 1).

5.127. Let n ≥ 3, and let a1 ≥ a2 ≥ · · · ≥ an > 0 such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
. Then

(a)
1

a21
+

1

a22
+ · · ·+ 1

a2n
− n ≥

(
3− 4

n

)(
an−1
an

+
an
an−1

− 2

)
;

(b)
1

a21
+

1

a22
+ · · ·+ 1

a2n
− n ≥

(
3− 4

n

)
(an−1 − an)2.
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5.3 Solutions

P 5.1. If a, b, c, d are nonnegative real numbers so that

a+ b+ c+ d = a3 + b3 + c3 + d3 = 2,

then
7

4
≤ a2 + b2 + c2 + d2 ≤ 2.

(Vasile C., 2010)

Solution. The right inequality follows from the Cauchy-Schwarz inequality

(a2 + b2 + c2 + d2)2 ≤ (a+ b+ c+ d)(a3 + b3 + c3 + d3).

The equality holds for a = b = 0 and c = d = 1 (or any permutation).

To prove the left inequality, assume that a ≤ b ≤ c ≤ d, then apply Corollary 5 for k = 3 and
m = 2:

• If a, b, c, d are nonnegative real numbers so that

a+ b+ c+ d = 2 , a3 + b3 + c3 + d3 = 2, a ≤ b ≤ c ≤ d,

then

S4 = a2 + b2 + c2 + d2

has the minimum value for a = b = c.

So, we only need to prove that the equations

3a+ d = 3a3 + d3 = 2, a, d ≥ 0,

imply
7

4
≤ 3a2 + d2.

Indeed, from 3a+ d = 3a3 + d3 = 2, we get a = 1/4 and d = 5/4, when

3a2 + d2 =
7

4
.

The left inequality is an equality for

a = b = c =
1

4
, d =

5

4

(or any cyclic permutation).



344 Vasile Ĉırtoaje

P 5.2. If a1, a2, . . . , a9 are nonnegative real numbers so that

a1 + a2 + · · ·+ a9 = a21 + a22 + · · ·+ a29 = 3,

then

3 ≤ a31 + a32 + · · ·+ a39 ≤
14

3
.

(Vasile C., 2010)

Solution. The left inequality follows from the Cauchy-Schwarz inequality

(a1 + a2 + · · ·+ a9)(a
3
1 + a32 + · · ·+ a39) ≥ (a21 + a22 + · · ·+ a29)

2.

The equality holds for a1 = a2 = · · · = a6 = 0 and a7 = a8 = a9 = 1 (or any permutation).
To prove the right inequality, assume that

a1 ≤ a2 ≤ · · · ≤ a9,

then apply Corollary 5 for k = 2 and m = 3:
• If a1, a2, . . . , a9 are nonnegative real numbers so that

a1 + a2 + · · ·+ a9 = 3 , a21 + a22 + · · ·+ a29 = 3, a1 ≤ a2 ≤ · · · ≤ a9,

then
S9 = a31 + a32 + · · ·+ a39

has the maximum value for a1 = a2 = · · · = a8 ≤ a9.
Thus, we only need to prove that the equations

8a+ b = 3, 8a2 + b2 = 3, a, b ≥ 0,

involve

8a3 + b3 ≤ 14

3
.

Indeed, from the equations above, we get a = 1/6 and b = 5/3, when

8a3 + b3 =
1

27
+

125

27
=

14

3
.

The equality holds for

a1 = a2 = · · · = a8 =
1

6
, a9 =

5

3
(or any cyclic permutation).

P 5.3. If a, b, c, d are nonnegative real numbers so that

a+ b+ c+ d = a2 + b2 + c2 + d2 =
27

7
,

then
5427

1372
≤ a3 + b3 + c3 + d3 ≤ 1377

343
.

(Vasile C., 2014)
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Solution. Assume that a ≤ b ≤ c ≤ d.

(a) To prove the right inequality, we apply Corollary 5 for k = 2 and m = 3:

• If a, b, c, d are nonnegative real numbers so that

a+ b+ c+ d =
27

7
, a2 + b2 + c2 + d2 =

27

7
, a ≤ b ≤ c ≤ d,

then
S4 = a3 + b3 + c3 + d3

has the maximum value for a = b = c ≤ d

Thus, we only need to prove that the equations

3a+ d =
27

7
, 3a2 + d2 =

27

7
, a, d ≥ 0,

involve

3a3 + d3 ≤ 1377

343
.

Indeed, from the equations above, we get a = 6/7 and d = 9/7, when

3a3 + d3 = 3

(
6

7

)3

+

(
9

7

)3

=
1377

343
.

The equality holds for

a = b = c =
6

7
, d =

9

7

(or any cyclic permutation).

(b) To prove the left inequality, we apply Corollary 5 for k = 2 and m = 3:

• If a, b, c, d are nonnegative real numbers so that

a+ b+ c+ d =
27

7
, a2 + b2 + c2 + d2 =

27

7
, a ≤ b ≤ c ≤ d,

then
S4 = a3 + b3 + c3 + d3

has the minimum value for either a = 0 or a ≤ b = c = d.

The case a = 0 is not possible because from

b+ c+ d =
27

7
, b2 + c2 + d2 =

27

7
,

we get

3(b2 + c2 + d2)− (b+ c+ d)2 =
27

7

(
3− 27

7

)
< 0,

which contradicts the known inequality

3(b2 + c2 + d2) ≥ b+ c+ d)2.
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For a ≤ b = c = d, we need to prove that the equations

a+ 3d =
27

7
, a2 + 3d2 =

27

7
, a, d ≥ 0,

involve

a3 + 3d3 ≥ 5427

1372
.

Indeed, from the equations above, we get a = 9/14 and d = 15/14, when

a3 + 3d3 =

(
9

14

)3

+ 3

(
15

14

)3

=
5427

1372
.

The equality holds for

a =
9

14
, b = c = d =

15

14

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let k be a positive real number (k > 2), and let a1, a2, . . . , an be nonnegative real numbers
so that

a1 + a2 + · · ·+ an = a21 + a22 + · · ·+ a2n =
(n− 1)3

n2 − 3n+ 3
.

The sum
Sn = ak1 + ak2 + · · ·+ akn

has the maximum value for

a1 = · · · = an−1 =
(n− 1)(n− 2)

n2 − 3n+ 3
, an =

(n− 1)2

n2 − 3n+ 3
,

and the minimum value for

a1 =
(n− 1)2(n− 2)

n(n2 − 3n+ 3)
, a2 = · · · = an =

(n− 1)(n2 − 2n+ 2)

n(n2 − 3n+ 3)
.

P 5.4. If a, b, c are positive real numbers so that abc = 1, then

a5 + b5 + c5 ≥
√

3(a7 + b7 + c7).

(Vasile C., 2014)

Solution. Substituting
a = x1/5, b = y1/5, c = z1/5,

we need to show that xyz = 1 involves

x+ y + z ≥
√

3(x7/5 + y7/5 + z7/5).
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Assume that x ≤ y ≤ z, then apply Corollary 5 for k = 0 and m = 7/5:

• If x ≤ y ≤ z > 0 such that x+ y + z is fixed and xyz = 1, then

S3 = x7/5 + y7/5 + z7/5

has the maximum value for x = y.

So, it suffices to prove the original inequality for a = b. Write this inequality in the homoge-
neous form

(a5 + b5 + c5)2 ≥ 3abc(a7 + b7 + c7).

We only need to prove this inequality for a = b = 1; that is, to show that f(c) ≥ 0, where

f(c) = (c5 + 2)2 − 3c(c7 + 2), c > 0.

We have
f ′(c) = 10c4(c5 + 2)− 24c7 − 6,

f ′′(c) = 2c3g(t), g(t) = 45c5 − 84c3 + 40.

By the AM-GM inequality, we get

g(t) = 15c5 + 15c5 + 15c5 + 20 + 20− 84c3 ≥ 5 5
√

(15c5)3 · 202 − 84c3

=
5
√

27 · 16
(

25− 14
5
√

18
)
c3 > 0,

hence f ′′(c) > 0, f ′(c) is increasing. Since f ′(0) = 1, it follows that f ′(c) ≤ 0 for c ≤ 1,
f ′(c) ≥ 0 for c ≥ 1, therefore f is decreasing on (0, 1] and increasing on [1,∞); consequently,
f(c) ≥ f(1) = 0. The equality occurs for a = b = c = 1.

P 5.5. If a, b, c, d are positive real numbers so that abcd = 1, then

a3 + b3 + c3 + d3 ≥
√

4(a4 + b4 + c4 + d4).

(Vasile C., 2014)

Solution. Substituting
a = x1/3, b = y1/3, c = z1/3, d = t1/3,

we need to show that xyzt = 1 involves

x+ y + z + t ≥
√

4(x4/3 + y4/3 + z4/3 + t4/3).

Apply Corollary 5, case k = 0 and m = 4/3:

• If x ≥ y ≥ z ≥ t > 0 such that x+ y + z + t is fixed and xyzt = 1, then

S4 = x4/3 + y4/3 + z4/3 + t4/3

has the maximum value for x = y = z.
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Therefore, it suffices to prove the original inequality for a = b = c. Write the original inequality
in the homogeneous form

(a3 + b3 + c3 + d3)2 ≥ 4
√
abcd (a4 + b4 + c4 + d4).

We only need to prove this inequality for a = b = c = 1; that is, to show that

(d3 + 3)2 ≥ 4
√
d (d4 + 3).

Putting u =
√
d, we have

(d3 + 3)2 − 4
√
d (d4 + 3) = (u6 + 3)2 − 4u(u8 + 3)

= (u3 − 1)4 + 4(u+ 2)(u− 1)2 ≥ 0.

The equality holds for a = b = c = d = 1.

P 5.6. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

bcd

11a+ 16
+

cda

11b+ 16
+

dab

11c+ 16
+

abc

11d+ 16
≤ 4

27
.

(Vasile C., 2008)

Solution. For a = 0, the inequality becomes

bcd ≤ 64

27
,

where b, c, d ≥ 0, b+ c+ d = 4. By the AM-GM inequality, we have

bcd ≤
(
b+ c+ d

3

)3

=

(
4

3

)3

=
64

27
.

For abcd 6= 0, we write the inequality in the form

f(a) + f(b) + f(c) + f(d) +
4

(1 + k)abcd
≥ 0,

where

f(u) =
−1

u(u+ k)
, k =

16

11
, u > 0.

We have f(0+) = −∞ and

f ′(u) =
2u+ k

(u2 + ku)2
,

g(x) = f ′(1/x) =
kx4 + 2x3

(kx+ 1)2
,

g′′(x) =
2x(k3x3 + 4k2x2 + 6kx+ 6)

(kx+ 1)4
.
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Since g′′(x) > 0 for x > 0, g is strictly convex on (0,∞). By Corollary 3 and Note 1, if
0 < a ≤ b ≤ c ≤ d such that a+ b+ c+ d = 4 and abcd is fixed, then the sum

S4 = f(a) + f(b) + f(c) + f(d)

has the maximum value for b = c = d. Thus, we only need to prove that

b3

11a+ 16
+

3ab2

11b+ 16
≤ 4

27

for a+ 3b = 4. The inequality is equivalent to

b3

3(20− 11b)
+

3b2(4− 3b)

11b+ 16
≤ 4

21
,

(b− 1)2(4− 3b)(231b+ 80) ≥ 0,

(b− 1)2a(231b+ 80) ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = 0, b = c = d =
4

3

(or any cyclic permutation).

P 5.7. If a, b, c are real numbers, then

bc

3a2 + b2 + c2
+

ca

3b2 + c2 + a2
+

ab

3c2 + a2 + b2
≤ 3

5
.

(Vasile Cı̂rtoaje and Pham Kim Hung, 2005)

Solution. For a = 0, the inequality is true because

bc

b2 + c2
≤ 1

2
<

3

5
.

Consider further that a, b, c are different from zero. The inequality remains unchanged by replac-
ing a, b, c with −a,−b,−c, respectively. Thus, we only need to consider the case a < 0, b, c > 0,
and the case a, b, c > 0. In the first case, it suffices to show that

bc

3a2 + b2 + c2
≤ 3

5
.

Indeed, we have
bc

3a2 + b2 + c2
<

bc

b2 + c2
≤ 1

2
<

3

5
.

Consider now the case a, b, c > 0. Replacing a, b, c with
√
a,
√
b,
√
c, the inequality becomes

1√
a(3a+ b+ c)

+
1√

b(3b+ c+ a)
+

1√
c(3c+ a+ b)

≤ 3

5
√
abc

.
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Due to homogeneity, we may consider that a+ b+ c = 2. So, we need to show that

f(a) + f(b+ f(c) +
6

5
√
abc
≥ 0,

where

f(u) =
−1√

u(u+ 1)
, u > 0.

We have f(0+) = −∞ and

f ′(u) =
3u+ 1

2u
√
u(u+ 1)2

,

g(x) = f ′(1/x) =
x2
√
x(x+ 3)

2(x+ 1)2
,

g′′(x) =

√
x(3x3 + 11x2 + 5x+ 45)

8(x+ 1)4
.

Since g′′(x) > 0 for x > 0, g is strictly convex on (0,∞). By Corollary 3 and Note 1, if

a+ b+ c = 2, abc = fixed, 0 < a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is minimum for b = c. Thus, we only need to prove the original homogeneous inequality for
b = c = 1; that is,

1

3a2 + 2
+

2a

a2 + 4
≤ 3

5
,

9a4 − 30a3 + 37a2 − 20a+ 4 ≥ 0,

(a− 1)2(3a− 2)2 ≥ 0.

The equality holds for a = b = c, and also for

3a = 2b = 2c

(or any cyclic permutation).

P 5.8. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a)
bc

a2 + 2
+

ca

b2 + 2
+

ab

c2 + 2
≤ 9

8
;

(b)
bc

a2 + 3
+

ca

b2 + 3
+

ab

c2 + 3
≤ 11

√
33− 45

24
;

(c)
bc

a2 + 4
+

ca

b2 + 4
+

ab

c2 + 4
≤ 3

5
.

(Vasile C., 2008)
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Solution. For the nontrivial case abc 6= 0, we can write the desired inequalities in the form

f(a) + f(b) + f(c) +
m

abc
≥ 0,

where

f(u) =
−1

u(u2 + k)
, k ∈ {2, 3, 4}, u > 0.

We have f(0+) = −∞ and

f ′(u) =
3u2 + k

u2(u2 + k)2
,

g(x) = f ′(1/x) =
kx6 + 3x4

(kx2 + 1)2
,

g′′(x) =
2x2(k3x6 + 4k2x4 − 3kx2 + 18)

(kx2 + 1)4
.

Since
k3x6 + 4k2x4 − 3kx2 + 18 > 4k2x4 − 3kx2 + 18 > 0,

we have g′′(x) > 0, hence g is strictly convex on (0,∞). According to Corollary 3 and Note 1, if

a+ b+ c = 3, abc = fixed, 0 < a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is minimum for b = c. Thus, we only need to prove the original inequalities for b = c.

(a) We only need to prove the homogeneous inequality

bc

9a2 + 2(a+ b+ c)2
+

ca

9b2 + 2(a+ b+ c)2
+

ab

9c2 + 2(a+ b+ c)2
≤ 1

8

for b = c = 1, that is
1

11a2 + 8a+ 8
+

2a

2a2 + 8a+ 17
≤ 1

8
,

2a

2a2 + 8a+ 17
≤ a(11a+ 8)

8(11a2 + 8a+ 8)
,

a(22a3 − 72a2 + 123a+ 8) ≥ 0.

Since
22a3 − 72a2 + 123a+ 8 > 20a3 − 80a2 + 80a = 20a(a− 2)2 ≥ 0,

the conclusion follows. The equality holds for a = 0 and b = c = 3/2 (or any cyclic permutation).

(b) Let

m =
11
√

33− 45

72
≈ 0.253, r =

√
33− 5

4
≈ 0.186.

We only need to prove the homogeneous inequality

bc

3a2 + (a+ b+ c)2
+

ca

3b2 + (a+ b+ c)2
+

ab

3c2 + (a+ b+ c)2
≤ m
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for b = c = 1; that is, to show that f(a) ≤ m, where

f(a) =
1

4(a2 + a+ 1)
+

2a

a2 + 4a+ 7
.

We have

f ′(a) =
−8a6 − 18a5 + 15a4 + 28a3 + 18a2 − 42a+ 7

4(a2 + a+ 1)2(a2 + 4a+ 7)2

=
(1− a)2(7 + 7a+ 4a2)(1− 5a− 2a2)

4(a2 + a+ 1)2(a2 + 4a+ 7)2
.

Since f ′(a) ≥ 0 for a ∈ [0, r], and f ′(a) ≤ 0 for a ∈ [r,∞), f is increasing on [0, r] and decreasing
on [r,∞); therefore,

f(a) ≥ f(r) = m.

The equality holds for

a/r = b = c

(or any cyclic permutation).

(c) We only need to prove the homogeneous inequality

bc

9a2 + 4(a+ b+ c)2
+

ca

9b2 + 4(a+ b+ c)2
+

ab

9c2 + 4(a+ b+ c)2
≤ 1

15

for b = c = 1, that is
1

13a2 + 16a+ 16
+

2a

4a2 + 16a+ 25
≤ 1

15
,

52a4 − 118a3 + 105a2 − 64a+ 25 ≥ 0,

(a− 1)2(52a2 − 14a+ 25) ≥ 0.

Since

52a2 − 14a+ 25 > 7a2 − 14a+ 7 = 7(a− 1)2 ≥ 0,

the conclusion follows. The equality holds for a = b = c = 1.

P 5.9. If a, b, c, d are nonnegative real numbers so that

(3a+ 1)(3b+ 1)(3c+ 1)(3d+ 1) = 64,

then

abc+ bcd+ cda+ dab ≤ 1.

(Vasile C., 2014)
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Solution. For d = 0, we need to show that

(3a+ 1)(3b+ 1)(3c+ 1) = 64

involves abc ≤ 1. Indeed, by the AM-GM inequality, we have

64 = (3a+ 1)(3b+ 1)(3c+ 1) ≥
(

4
4
√
a3
)(

4
4
√
b3
)(

4
4
√
c3
)

= 64 4
√

(abc)3,

hence abc ≤ 1. Consider further that a, b, c, d > 0 and use the contradiction method. Assume
that

abc+ bcd+ cda+ dab > 1,

and prove that
(3a+ 1)(3b+ 1)(3c+ 1) > 64.

It suffices to show that
abc+ bcd+ cda+ dab ≥ 1

involves
(3a+ 1)(3b+ 1)(3c+ 1) ≥ 64.

Replacing a, b, c, d by 1/a, 1/b, 1/c, 1/d, we need to show that

a+ b+ c+ d = abcd

involves (
3

a
+ 1

)(
3

b
+ 1

)(
3

c
+ 1

)(
3

d
+ 1

)
≥ 64,

which is equivalent to
f(a) + f(b) + f(c) + f(d) ≤ −6 ln 2,

where

f(u) = − ln

(
3

u
+ 1

)
, u > 0.

We have f(0+) = −∞ and

g(x) = f ′(1/x) =
3x2

3x+ 1
, g′′(x) =

6

(3x+ 1)3
> 0,

hence g is strictly convex on (0,∞). By Corollary 3 and Note 1, if a, b, c, d are positive real
numbers so that

a+ b+ c+ d = fixed , abcd = fixed , a ≤ b ≤ c ≤ d,

then
S4 = f(a) + f(b) + f(c) + f(d)

is maximum for a = b = c.

Thus, we only need to prove that (
3

a
+ 1

)3(
3

d
+ 1

)
≥ 64
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for 3a+ d = a3d, that is
3

d
=
a3 − 1

a
, 1 < a ≤ d.

Write this inequality as

(3 + a)3(3 + d) ≥ 64a3d,

(3 + a)4(3 + d) ≥ 64a3d(3 + a),

4

(
1 +

a− 1

4

)4

(3 + d) ≥ a3d(3 + a).

By Bernoulli’s inequality, we have(
1 +

a− 1

4

)4

≥ 1 + 4 · a− 1

4
= a.

Thus, it suffices to show that

4(3 + d) ≥ a2d(3 + a),

which is equivalent to
12

d
≥ a3 + 3a2 − 4,

4(a3 − 1)

a
≥ a3 + 3a2 − 4,

a4 − a3 − 4a+ 4 ≤ 0,

(a− 1)(a3 − 4) ≤ 0.

This is true if a3 ≤ 4. Indeed, we have

0 ≤ 3

a
− 3

d
=

3

a
− a3 − 1

a
=

4− a3

a
.

The proof is completed. The original inequality is an equality for

a = b = c = 1, d = 0

(or any cyclic permutation).

P 5.10. If a1, a2, . . . , an and p, q are nonnegative real numbers so that

a1 + a2 + · · ·+ an = p+ q, a31 + a32 + · · ·+ a3n = p3 + q3,

then

a21 + a22 + · · ·+ a2n ≤ p2 + q2.

(Vasile C., 2013)



EV Method for Nonnegative Variables 355

Solution. For n = 2, the inequality is an equality. Consider now that n ≥ 3 and a1 ≤ a2 ≤
· · · ≤ an. We will apply Corollary 5 for k = 3 and m = 2:

• If a1, a2, . . . , an are nonnegative real numbers so that a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = p+ q, a31 + a32 + · · ·+ a3n = p3 + q3,

then
Sn = a21 + a22 + · · ·+ a2n

is maximum for either a1 = 0 or a2 = a3 = · · · = an.

In the first case a1 = 0, the conclusion follows by induction method. In the second case, for

a1 = a, a2 = a3 = · · · = an = b,

we need to show that
a2 + (n− 1)b2 ≤ p2 + q2

for
a+ (n− 1)b = p+ q, a3 + (n− 1)b3 = p3 + q3.

Since

3(p2 + q2) = (p+ q)2 +
2(p3 + q3)

p+ q
,

the inequality can be written as

3a2 + 3(n− 1)b2 ≤ [a+ (n− 1)b]2 +
2[a3 + (n− 1)b3]

a+ (n− 1)b
,

which is equivalent to
(n− 1)(n− 2)b2[3a+ (n− 3)b] ≥ 0.

The equality holds when n− 2 of a1, a2, . . . , an are equal to zero.

P 5.11. If a, b, c are nonnegative real numbers, then

a
√
a2 + 4b2 + 4c2 + b

√
b2 + 4c2 + 4a2 + c

√
c2 + 4a2 + 4b2 ≥ (a+ b+ c)2.

(Vasile C., 2010)

Solution. Due to homogeneity and symmetry, we may assume that

a2 + b2 + c2 = 3, 0 ≤ a ≤ b ≤ c ≤
√

3.

Under this assumption, we write the desired inequality as

f(a) + f(b) + f(c) +
1√
3

(a+ b+ c)2 ≤ 0,

where
f(u) = −u

√
4− u2, 0 ≤ u ≤

√
3.
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We have

g(x) = f ′(x) =
2(x2 − 2)√

4− x2
,

g′′(x) =
48

(4− x2)5/2
.

Since g′′(x) > 0 for x ∈ (0, 2), g is strictly convex on [0,
√

3]. According to Corollary 1, if

a+ b+ c = fixed , a2 + b2 + c2 = 3 , 0 ≤ a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is maximum for a = b ≤ c. Thus, we only need to prove the original inequality for a = b. Since
the inequality is an identity for a = b = 0, we may consider a = b = 1 and c ≥ 1. We need to
prove that

2
√

4c2 + 5 + c
√
c2 + 8 ≥ (c+ 2)2.

By squaring, the inequality becomes

c
√

(4c2 + 5)(c2 + 8) ≥ 2c3 + 8c− 1.

This is true if
c2(4c2 + 5)(c2 + 8) ≥ (2c3 + 8c− 1)2,

which is equivalent to
5c4 + 4c3 − 24c2 + 16c− 1 ≥ 0,

(c− 1)2(5c2 + 14c− 1) ≥ 0.

The equality holds for a = b = c, and also for a = b = 0 (or any cyclic permutation).

P 5.12. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then

1

a+ b
+

1

b+ c
+

1

c+ a
≤ 3

2(a+ b+ c)
+
a+ b+ c

3
.

(Vasile C., 2010)

Solution. Write the inequality in the homogeneous form

1

a+ b
+

1

b+ c
+

1

c+ a
≤ 3

2(a+ b+ c)
+

a+ b+ c

ab+ bc+ ca
.

Due to homogeneity and symmetry, we may assume that

a+ b+ c = 1, 0 ≤ a ≤ b ≤ c, ab+ bc+ ca > 0.

Under this assumption, we write the desired inequality as

f(a) + f(b) + f(c) ≤ 3

2
+

1

ab+ bc+ ca
,
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where

f(u) =
1

1− u
, 0 ≤ u < 1.

We will apply Corollary 1 to the function f , which satisfies f(1−) =∞ and

g(x) = f ′(x) =
1

(1− x)2
,

g′′(x) =
6

(1− x)4
.

Since g′′(x) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note 3, if

a+ b+ c = 1 , ab+ bc+ ca = fixed , 0 ≤ a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is maximum for a = b ≤ c. Thus, we only need to prove the homogeneous inequality for a = b = 1
and c ≥ 1; that is,

1 +
4

c+ 1
≤ 3

c+ 2
+

2(c+ 2)

2c+ 1
,

which reduces to
(c− 1)2 ≥ 0.

The original inequality is an equality for a = b = c = 1.

P 5.13. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3

a+ b+ c
+
a+ b+ c

6
.

(Vasile C., 2010)

Solution. Proceeding in the same manner as in the proof of the preceding P 5.12, we only need
to prove the homogeneous inequality

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3

a+ b+ c
+

a+ b+ c

2(ab+ bc+ ca)

for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality reduces to

1

b
+

1

c
≥ 2

b+ c
+
b+ c

2bc
,

which is equivalent to
(b− c)2 ≥ 0.
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Case 2: a ≤ b = c = 1. The homogeneous inequality becomes

1

2
+

2

a+ 1
≥ 3

a+ 2
+

a+ 2

2(2a+ 1)
,

1

2
− a+ 2

2(2a+ 1)
≥ 3

a+ 2
− 2

a+ 1
,

a− 1

2(2a+ 1)
≥ a− 1

(a+ 1)(a+ 2)
,

a(a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
√

3

(or any cyclic permutation).

P 5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a2 + b2 + c2 = 3,

then
1

a+ b
+

1

b+ c
+

1

c+ a
+
a+ b+ c

9
≥ 11

2(a+ b+ c)
.

(Vasile C., 2010)

Solution. Using the same method as in the proof of P 5.12, we only need to prove the homo-
geneous inequality

1

a+ b
+

1

b+ c
+

1

c+ a
+

a+ b+ c

3(a2 + b2 + c2)
≥ 11

2(a+ b+ c)

for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality reduces to

1

b
+

1

c
+

1

b+ c
+

b+ c

3(b2 + c2)
≥ 11

2(b+ c)
,

b+ c

bc
+

b+ c

3(b2 + c2)
≥ 9

2(b+ c)
,

(b+ c)2
[

1

bc
+

1

3(b2 + c2)

]
≥ 9

2
.

Using the substitution

x =
b2 + c2

bc
, x ≥ 2,
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the inequality becomes

(x+ 2)

(
1 +

1

3x

)
≥ 9

2
,

which is equivalent to
6x2 − 13x+ 4 ≥ 0,

x+ 2(x− 2)(3x− 1) ≥ 0.

Case 2: a ≤ 1 = b = c. The homogeneous inequality becomes

1

2
+

2

a+ 1
+

a+ 2

3(a2 + 2)
≥ 11

2(a+ 2)
,

a+ 2

3(a2 + 2)
+

a2 − 4a− 1

2(a+ 1)(a+ 2)
≥ 0,

3a4 − 10a3 + 13a2 − 8a+ 2 ≥ 0,

(a− 1)2(3a2 − 4a+ 2) ≥ 0,

(a− 1)2[a2 + 2(a− 1)2] ≥ 0.

The equality holds for a = b = c = 1.

P 5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a+ b+ c = 4,

then
1

a+ b
+

1

b+ c
+

1

c+ a
≥ 15

8 + ab+ bc+ ca
.

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the homogeneous in-
equality

2

a+ b
+

2

b+ c
+

2

c+ a
≥ 15(a+ b+ c)

(a+ b+ c)2 + 2(ab+ bc+ ca)

for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality reduces to

2(b+ c)

bc
+

2

b+ c
≥ 15(b+ c)

(b+ c)2 + 2bc
,

2(b+ c)2

bc
+ 2 ≥ 15(b+ c)2

(b+ c)2 + 2bc
.

Using the substitution

x =
(b+ c)2

bc
, x ≥ 4,
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the inequality becomes

2x+ 2 ≥ 15x

x+ 2
,

which is equivalent to
2x2 − 9x+ 4 ≥ 0,

(x− 4)(2x− 1) ≥ 0.

Case 2: a ≤ 1, b = c = 1. The homogeneous inequality becomes

1 +
4

a+ 1
≥ 15(a+ 2)

(a+ 2)2 + 2(2a+ 1)
,

a+ 5

a+ 1
≥ 15(a+ 2)

a2 + 8a+ 6
,

a(a− 1)2 ≥ 0.

The equality holds for a = b = c = 4/3, and also for

a = 0, b = c = 2

(or any cyclic permutation).

P 5.16. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 1

a+ b+ c
+

2√
ab+ bc+ ca

.

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the desired homogeneous
inequality for a = 0 and for 0 < a ≤ b = c = 1.

Case 1: a = 0. The inequality reduces to the obvious form

1

b
+

1

c
≥ 2√

bc
.

Case 2: 0 < a ≤ 1 = b = c. The inequality becomes

1

2
+

2

a+ 1
≥ 1

a+ 2
+

2√
2a+ 1

,

1

2
− 1

a+ 2
≥ 2√

2a+ 1
− 2

a+ 1
,

a

2(a+ 2)
≥ 2(a+ 1−

√
2a+ 1)

(a+ 1)
√

2a+ 1
,

a

2(a+ 2)
≥ 2a2

(a+ 1)
√

2a+ 1 (a+ 1 +
√

2a+ 1)
.
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Since √
2a+ 1 (a+ 1 +

√
2a+ 1) ≥

√
2a+ 1(

√
2a+ 1 +

√
2a+ 1) = 2(2a+ 1),

it suffices to show that
a

2(a+ 2)
≥ a2

(a+ 1)(2a+ 1)
,

which is equivalent to
a(1− a) ≥ 0.

The equality holds for
a = 0, b = c

(or any cyclic permutation).

P 5.17. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3−

√
3

a+ b+ c
+

2 +
√

3

2
√
ab+ bc+ ca

.

(Vasile C., 2010)

Solution. As shown in the proof of P 5.12, it suffices to consider the cases a = 0 and a ≤ b =
c = 1.

Case 1: a = 0. The inequality reduces to

1

b
+

1

c
≥ 2−

√
3

b+ c
+

2 +
√

3

2
√
bc

.

It suffices to show that
1

b
+

1

c
≥ 2−

√
3

2
√
bc

+
2 +
√

3

2
√
bc

,

which is equivalent to the obvious inequality

1

b
+

1

c
≥ 2√

bc
.

Case 2: a ≤ 1 = b = c. The inequality reduces to

1

2
+

2

a+ 1
≥ 3−

√
3

a+ 2
+

2 +
√

3

2
√

2a+ 1
.

Using the substitution

2a+ 1 = 3x2, x ≥
√

3

3
,

the inequality becomes
1

2
+

4

3x2 + 1
≥ 6− 2

√
3

3(x2 + 1)
+

2 +
√

3

2
√

3 x
,
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1

2
+

4

3x2 + 1
− 2

x2 + 1
− 1

2x
≥ 1√

3 x
− 2√

3 (x2 + 1)
,

3x5 − 3x4 − 4x2 + 5x− 1

2x(x2 + 1)(3x2 + 1)
≥ 1√

3

(
1

x
− 2

x2 + 1

)
,

(x− 1)2(3x3 + 3x2 + 3x− 1)

2x(x2 + 1)(3x2 + 1)
≥ (x− 1)2√

3 x(x2 + 1)
.

This is true if
3x3 + 3x2 + 3x− 1

2(3x2 + 1)
≥
√

3

3
,

which is equivalent to
9x3 + 3(3− 2

√
3)x2 + 9x− 3− 2

√
3 ≥ 0,

(3x−
√

3 )[3x2 + (3−
√

3)x+ 2 +
√

3] ≥ 0.

The equality holds for a = b = c, and also for

a = 0, b = c

(or any cyclic permutation).

P 5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that

ab+ bc+ ca = 3.

If

0 ≤ k ≤ 9 + 5
√

3

6
≈ 2.943,

then
2

a+ b
+

2

b+ c
+

2

c+ a
≥ 9(1 + k)

a+ b+ c+ 3k
.

(Vasile Cı̂rtoaje and Lorian Saceanu, 2014)

Solution. From
(a+ b+ c)2 ≥ 3(ab+ bc+ ca),

we get
a+ b+ c ≥ 3.

Let

m =
9 + 5

√
3

6
, m ≥ k.

We claim that
1 +m

a+ b+ c+ 3m
≥ 1 + k

a+ b+ c+ 3k
.

Indeed, this inequality is equivalent to the obvious inequality

(m− k)(a+ b+ c− 3) ≥ 0.
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Thus, we only need to show that

2

a+ b
+

2

b+ c
+

2

c+ a
≥ 9(1 +m)

a+ b+ c+ 3m
,

which can be rewritten in the homogeneous form

2

a+ b
+

2

b+ c
+

2

c+ a
≥ 9(1 +m)

a+ b+ c+m
√

3(ab+ bc+ ca)
.

As shown in the proof of P 5.12, it suffices to prove this homogeneous inequality for a = 0 and
for a ≤ b = c = 1.

Case 1: a = 0. The inequality reduces to

2

b
+

2

c
+

2

b+ c
≥ 9(1 +m)

b+ c+m
√

3bc
.

Substituting

x =
b+ c√
bc
, x ≥ 2,

the inequality becomes

2x+
2

x
≥ 9(1 +m)

x+m
√

3
,

2x3 + 2
√

3 mx2 − (7 + 9m)x+ 2
√

3 m ≥ 0,

(x− 2)[2x2 + 2(
√

3 m+ 2)x−
√

3 m] ≥ 0.

Case 2: a ≤ 1 = b = c. The inequality has the form

1 +
4

a+ 1
≥ 9(1 +m)

a+ 2 +m
√

3(2a+ 1)
.

Using the substitution

2a+ 1 = 3x2, x ≥
√

3

3
,

the inequality becomes
3x2 + 9

3x2 + 1
≥ 6(1 +m)

x2 + 2mx+ 1
,

x4 + 2mx3 − 2(3m+ 1)x2 + 6mx+ 1− 2m ≥ 0,

(x− 1)2[x2 + 2(m+ 1)x+ 1− 2m] ≥ 0,

which is true since

x2 + 2(m+ 1)x+ 1− 2m ≥ 1

3
+

2(m+ 1)
√

3

3
+ 1− 2m

=
2[2 +

√
3− (3−

√
3)m]

3
= 0.

The equality holds for a = b = c = 1. If k =
9 + 5

√
3

6
, then the equality holds also for

a = 0, b = c =
√

3

(or any cyclic permutation).
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P 5.19. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 20

a+ b+ c+ 6
√
ab+ bc+ ca

.

(Vasile C., 2010)

Solution. The proof is similar to the one of P 5.12. Finally, we only need to prove the inequality
for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The inequality reduces to

1

b
+

1

c
+

1

b+ c
≥ 20

b+ c+ 6
√
bc
.

Substituting

x =
b+ c√
bc
, x ≥ 2,

the inequality becomes

x+
1

x
≥ 20

x+ 6
,

x3 + 6x2 − 19x+ 6 ≥ 0,

(x− 2)(x2 + 8x− 3) ≥ 0.

Case 2: a ≤ 1 = b = c. We need to show that

1

2
+

2

a+ 1
≥ 20

a+ 2 + 6
√

2a+ 1
.

Using the substitution
2a+ 1 = x2, x ≥ 1,

the inequality becomes
x2 + 9

2(x2 + 1)
≥ 40

x2 + 12x+ 3
,

x4 + 12x3 − 68x2 + 108x− 53 ≥ 0,

(x− 1)(x3 + 13x2 − 55x+ 53) ≥ 0.

It is true since

x3 + 13x2 − 55x+ 53 = (x− 1)3 + 16x2 − 58x+ 54

= (x− 1)3 + 16

(
x− 29

16

)2

+
23

16
> 0.

The equality holds for
a = 0, b = c

(or any cyclic permutation).
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P 5.20. If a, b, c are positive real numbers so that

7(a2 + b2 + c2) = 11(ab+ bc+ ca),

then
51

28
≤ a

b+ c
+

b

c+ a
+

c

a+ b
≤ 2.

(Vasile C., 2008)

Solution. Due to homogeneity and symmetry, we may consider that

a+ b+ c = 1, 0 < a ≤ b ≤ c < 1.

Thus, we need to show that

a+ b+ c = 1, a2 + b2 + c2 =
11

25
, 0 < a ≤ b ≤ c < 1

involves
51

28
≤ a

1− a
+

b

1− b
+

c

1− c
≤ 2.

We apply Corollary 1 to the function

f(u) =
u

1− u
, 0 ≤ u < 1.

We have f(1−) =∞ and

g(x) = f ′(x) =
1

(1− x)2
, g′′(x) =

6

(1− x)4
.

Since g′′(x) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note 3, if

a+ b+ c = 1 , a2 + b2 + c2 =
11

25
, 0 ≤ a ≤ b ≤ c < 1,

then the sum
S3 = f(a) + f(b) + f(c)

is maximum for a = b ≤ c, and is minimum for either a = 0 or 0 < a ≤ b = c. Note that the
case a = 0 is not possible because it involves 7(b2 + c2) = 11bc, which is false.

(1) To prove the right original inequality for a = b ≤ c, let us denote

t =
c

a
, t ≥ 1.

The hypothesis 7(a2 + b2 + c2) = 11(ab+ bc+ ca) involves t = 3, hence

a

b+ c
+

b

c+ a
+

c

a+ b
=

2a

a+ c
+

c

2a
=

2

1 + t
+
t

2
= 2.

The right inequality is an equality for a = b =
c

3
(or any cyclic permutation).
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(2) To prove the left original inequality for 0 < a ≤ b = c, let us denote

t =
a

b
, 0 < t ≤ 1.

The hypothesis 7(a2 + b2 + c2) = 11(ab+ bc+ ca) involves t =
1

7
, hence

a

b+ c
+

b

c+ a
+

c

a+ b
=

a

2b
+

2b

a+ b
=
t

2
+

2

t+ 1
=

51

28
.

The left inequality is an equality for 7a = b = c (or any cyclic permutation).

P 5.21. If a1, a2, . . . , an are nonnegative real numbers so that

a21 + a22 + · · ·+ a2n
n+ 3

=

(
a1 + a2 + · · ·+ an

n+ 1

)2

,

then
(n+ 1)(2n− 1)

2
≤ (a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≤ 3n2(n+ 1)

2(n+ 2)
.

(Vasile C., 2008)

Solution. For n = 2, both inequalities are identities. For n ≥ 3, assume that

a1 ≤ a2 ≤ · · · ≤ an.

The case a1 = 0 is not possible because the hypothesis involves

a22 + · · ·+ a2n
(a2 + · · ·+ an)2

=
n+ 3

(n+ 1)2
<

1

n− 1
,

which contradicts the Cauchy-Schwarz inequality

a22 + · · ·+ a2n
(a2 + · · ·+ an)2

≥ 1

n− 1
.

Due to homogeneity and symmetry, we may consider that

a1 + a2 + · · ·+ an = n+ 1,

which implies
a21 + a22 + · · ·+ a2n = n+ 3.

Thus, we need to show that

a1 + a2 + · · ·+ an = n+ 1, a21 + a22 + · · ·+ a2n = n+ 3, 0 < a1 ≤ a2 ≤ · · · ≤ an

involves
2n− 1

2
≤ 1

a1
+

1

a2
+ · · ·+ 1

an
≤ 3n2

2(n+ 2)
.
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We apply Corollary 5 for k = 2 and m = −1:

• If a1, a2, . . . , an are positive real numbers so that 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n+ 1, a21 + a22 + · · ·+ a2n = n+ 3,

then

Sn =
1

a1
+

1

a2
+ · · ·+ 1

an

is minimum for
0 < a1 = a2 = · · · = an−1 ≤ an,

and is maximum for
a1 ≤ a2 = a3 = · · · = an.

(1) To prove the left original inequality, we only need to consider the case

a1 = a2 = · · · = an−1 ≤ an.

The hypothesis
a21 + a22 + · · ·+ a2n

n+ 3
=

(
a1 + a2 + · · ·+ an

n+ 1

)2

implies
(n− 1)a21 + a2n

n+ 3
=

[
(n− 1)a1 + an

n+ 1

]2
,

(2a1 − an)[2a1 − (n+ 2)an] = 0,

a1 =
an
2
,

hence

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
= [(n− 1)a1 + an]

(
n− 1

a1
+

1

an

)
= (n− 1)2 + 1 + (n− 1)

(
a1
an

+
an
a1

)
=

(n+ 1)(2n− 1)

2
.

The equality holds for

a1 = a2 = · · · = an−1 =
an
2

(or any cyclic permutation).

(2) To prove the right original inequality, we only need to consider the case

a1 ≤ a2 = a3 = · · · = an.

The hypothesis involves
(a1 − 2an)[(n+ 2)a1 − 2an] = 0,
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a1 =
2an
n+ 2

,

hence

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
= [(n− 1)a1 + an]

(
n− 1

a1
+

1

an

)
= (n− 1)2 + 1 + (n− 1)

(
a1
an

+
an
a1

)
=

3n2(n+ 1)

2(n+ 2)
.

The equality holds for

a1 = a2 = · · · = an−1 =
2an
n+ 2

(or any cyclic permutation).

P 5.22. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 3, then

abc+ bcd+ cda+ dab ≤ 1 +
176

81
abcd.

(Vasile C., 2005)

Solution. Assume that
a ≤ b ≤ c ≤ d.

For a = 0, we need to show that b+ c+ d = 3 implies

bcd ≤ 1,

which follows immediately from the AM-GM inequality:

bcd ≤
(
b+ c+ d

3

)3

= 1.

For a > 0, rewrite the inequality in the form

abcd

(
1

a
+

1

b
+

1

c
+

1

d

)
≤ 1 +

176

81
abcd

and apply Corollary 5 for k = 0 and m = −1:

• If
a+ b+ c+ d = 3, abcd = fixed, 0 < a ≤ b ≤ c ≤ d,

then

S4 =
1

a
+

1

b
+

1

c
+

1

d
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is maximum for
a ≤ b = c = d.

Thus, we only need to prove the homogeneous inequality

27(a+ b+ c+ d)(abc+ bcd+ cda+ dab) ≤ (a+ b+ c+ d)4 + 176abcd

for a ≤ b = c = d = 1. The inequality becomes

27(a+ 3)(3a+ 1) ≤ (a+ 3)4 + 176a,

a4 + 12a3 − 27a2 + 14a ≥ 0,

a(a− 1)2(a+ 14) ≥ 0.

The equality holds for a = b = c = d = 3/4, and also for

a = 0, b = c = d = 1

(or any cyclic permutation).

P 5.23. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 3, then

a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 +
3

4
abcd ≤ 1.

(Gabriel Dospinescu and Vasile Cı̂rtoaje, 2005)

Solution. Assume that
a ≤ b ≤ c ≤ d.

For a = 0, we need to show that
b2c2d2 ≤ 1,

which follows immediately from the AM-GM inequality:

bcd ≤
(
b+ c+ d

3

)3

= 1.

For a > 0, rewrite the inequality in the form

a2b2c2d2
(

1

a2
+

1

b2
+

1

c2
+

1

d2

)
+

3

4
abcd ≤ 1,

and apply Corollary 5 for k = 0 and m = −2:

• If
a+ b+ c+ d = 3, abcd = fixed, 0 < a ≤ b ≤ c ≤ d,

then

S4 =
1

a2
+

1

b2
+

1

c2
+

1

d2
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is maximum for a ≤ b = c = d.

Thus, we only need to prove the homogeneous inequality(
a+ b+ c+ d

3

)6

≥ a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 +
1

12
abcd(a+ b+ c+ d)2

for a ≤ b = c = d = 1; that is, to show that 0 < a ≤ 1 implies(
1 +

a

3

)6
≥ 1 + 3a2 +

1

12
a(a+ 3)2.

Since (
1 +

a

3

)3
= 1 + a+

a2

3
+
a3

27
> 1 + a+

a2

3
,

it suffices to show that (
1 + a+

a2

3

)2

≥ 1 + 3a2 +
1

12
a(a+ 3)2,

which is equivalent to the obvious inequality

4a4 + 3a(1− a)(15− 7a) ≥ 0.

The equality holds for

a = 0, b = c = d = 1

(or any cyclic permutation).

P 5.24. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 3, then

a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 +
4

3
(abcd)3/2 ≤ 1.

(Vasile C., 2005)

Solution. The proof is similar to the one of the preceding P 5.23. We need to prove that(
1 +

a

3

)6
≥ 1 + 3a2 +

4

3
a3/2

for 0 ≤ a ≤ 1. Since

2a3/2 ≤ a2 + a,

it suffices to show that (
1 +

a

3

)6
≥ 1 +

2

3
a+

11

3
a2.

Since (
1 +

a

3

)3
= 1 + a+

a2

3
+
a3

27
≥ 1 + a+

a2

3
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and (
1 + a+

a2

3

)2

= 1 + 2a+
5

3
a2 +

2

3
a3 +

1

9
a4

≥ 1 + 2a+
5

3
a2 +

2

3
a3,

it suffices to show that

1 + 2a+
5

3
a2 +

2

3
a3 ≥ 1 +

2

3
a+

11

3
a2,

which is equivalent to the obvious inequality

a(1− a)(2− a) ≥ 0.

The equality holds for
a = 0, b = c = d = 1

(or any cyclic permutation).

P 5.25. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 + 2(abcd)3/2 ≤ 6.

(Vasile C., 2005)

Solution. The proof is similar to the one of P 5.23. We need to prove that

6

(
a+ 3

4

)6

≥ 1 + 3a2 + 2a3/2

for 0 ≤ a ≤ 1. Since
2a3/2 ≤ a2 + a,

it suffices to show that

6

(
a+ 3

4

)6

≥ 1 + a+ 4a2.

Using the substitution

x =
1− a

4
, 0 ≤ x ≤ 1

4
,

the inequality becomes
3(1− x)6 ≥ 3− 18x+ 32x2,

x2(13− 60x+ 45x2 − 18x3 + 3x4) ≥ 0.

It is true since

2(13− 60x+ 45x2 − 18x3 + 3x4) > 25− 120x+ 90x2 − 40x3

= 5(1− 4x)(5− 4x+ 2x2) ≥ 0.

The equality holds for a = b = c = d = 1.
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P 5.26. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

11(ab+ bc+ ca) + 4(a2b2 + b2c2 + c2a2) ≤ 45.

(Vasile C., 2005)

Solution. Assume that a ≤ b ≤ c. For a = 0, we need to show that b+ c = 3 involves

11bc+ 4b2c2 ≤ 45.

We have

bc ≤
(
b+ c

2

)2

=
9

4
,

hence

11bc+ 4b2c2 ≤ 99

4
+

81

4
= 45.

For a > 0, rewrite the desired inequality in the form

11abc

(
1

a
+

1

b
+

1

c

)
+ 4a2b2c2

(
1

a2
+

1

b2
+

1

c2

)
≤ 45.

According to Corollary 5 (case k = 2 and m < 0), if

a+ b+ c = 3, abc = fixed, 0 < a ≤ b ≤ c,

then the sums
1

a
+

1

b
+

1

c
and

1

a2
+

1

b2
+

1

c2
are maximum for 0 < a ≤ b = c.

Therefore, we only need to prove that a+ 2b = 3 involves

11(2ab+ b2) + 4(2a2b2 + b4) ≤ 45,

which is equivalent to
15− 22b− 13b2 + 32b3 − 12b4 ≥ 0,

(3− 2b)(1− b)2(5 + 6b) ≥ 0,

a(1− b)2(5 + 6b) ≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
3

2

(or any cyclic permutation).

Remark. In the same manner, we can prove the following statement:

• If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

abc+ bcd+ cda+ dab+ a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 ≤ 8,

with equality for a = b = c = d = 1.
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P 5.27. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

a2b2 + b2c2 + c2a2 + a3b3 + b3c3 + c3a3 ≥ 6abc.

(Vasile C., 2005)

Solution. Assume that a ≤ b ≤ c. For a = 0, the inequality is trivial. For a > 0, rewrite the
desired inequality in the form

abc

(
1

a2
+

1

b2
+

1

c2

)
+ a2b2c2

(
1

a3
+

1

b3
+

1

c3

)
≥ 6.

According to Corollary 5 (case k = 0 and m < 0), if

a+ b+ c = 3, abc = fixed, 0 < a ≤ b ≤ c,

then the sums
1

a2
+

1

b2
+

1

c2
and

1

a3
+

1

b3
+

1

c3
are maximum for 0 < a ≤ b = c.

Thus, we only need to prove that

2a2b2 + b4 + 2a3b3 + b6 ≥ 6ab2

for
a+ 2b = 3, 1 ≤ b < 3/2.

The inequality is equivalent to

b3(14− 33b+ 24b2 − 5b3) ≥ 0,

b3(1− b)2(14− 5b) ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = 0, c = 3

(or any cyclic permutation).

P 5.28. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2(a2 + b2 + c2) + 5
(√

a+
√
b+
√
c
)
≥ 21.

(Vasile C., 2008)

Solution. Apply Corollary 5 for k = 2 and m = 1/2:

• If
a+ b+ c = 3, a2 + b2 + c2 = fixed, 0 ≤ a ≤ b ≤ c,

then
S3 =

√
a+
√
b+
√
c
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is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. We need to show that b+ c = 3 involves

2(b2 + c2) + 5
(√

b+
√
c
)
≥ 21,

which is equivalent to

5

√
3 + 2

√
bc ≥ 3 + 4bc.

Substituting

x =
√
bc, 0 ≤ x ≤ b+ c

2
=

3

2
,

the inequality becomes
5
√

3 + 2x ≥ 3 + 4x2,

25(3 + 2x) ≥ (3 + 4x2)2.

This inequality is equivalent to f(x) ≥ 0, where

f(x) =
66

x
+ 50− 24x− 16x3, 0 < x ≤ 3/2.

Since f is decreasing, we have
f(x) ≥ f(3/2) = 4 > 0.

Case 2: 0 < a ≤ b = c. We need to show that

2(a2 + 2b2) + 5
(√

a+ 2
√
b
)
≥ 21

for

a+ 2b = 3, 1 ≤ b <
3

2
.

Write the inequality as
5
√

3− 2b+ 10
√
b ≥ 3 + 24b− 12b2.

Substituting

x =
√
b, 1 ≤ x <

√
3

2
,

the inequality becomes
5
√

3− 2x2 ≥ 3− 10x+ 24x2 − 12x4,

12(x2 − 1)2 ≥ 5
(

3− 2x−
√

3− 2x2
)
,

12(x2 − 1)2 ≥ 30(x− 1)2

3− 2x+
√

3− 2x2
,

which is true if

2(x+ 1)2 ≥ 5

3− 2x+
√

3− 2x2
.

It suffices to show that

2(x+ 1)2 ≥ 5

3− 2x
,
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which is equivalent to
1 + 8x− 2x2 − 4x3 ≥ 0,

x(5− 4x)

(
7

4
+ x

)
+

4− 3x

4
≥ 0.

Since

x <

√
3

2
<

5

4
<

4

3
,

the conclusion follows.

The equality holds for a = b = c = 1.

P 5.29. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then√
1 + 2a

3
+

√
1 + 2b

3
+

√
1 + 2c

3
≥ 3.

(Vasile C., 2008)

Solution. Write the hypothesis ab+ bc+ ca = 3 as

(a+ b+ c)2 = 6 + a2 + b2 + c2,

and apply Corollary 1 to

f(u) =

√
1 + 2u

3
, u ≥ 0.

We have

g(x) = f ′(x) =
1√

3(1 + 2x)
,

g′′(x) =

√
3

(1 + 2x)5/2
.

Since g′′(x) > 0 for x ≥ 0, g is strictly convex on [0,∞). According to Corollary 1, if

a+ b+ c = fixed, a2 + b2 + c2 = fixed, 0 ≤ a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. We need to show that bc = 3 involves

√
1 + 2b+

√
1 + 2c ≥ 3

√
3− 1.

By squaring, the inequality becomes

b+ c+
√

13 + 2(b+ c) ≥ 13− 3
√

3.
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We have b+ c ≥ 2
√
bc = 2

√
3, hence

b+ c+
√

13 + 2(b+ c) ≥ 2
√

3 +

√
13 + 4

√
3 = 4

√
3 + 1 > 13− 3

√
3.

Case 2: 0 < a ≤ b = c. From ab+ bc+ ca = 3, it follows that

a =
3− b2

2b
. 1 ≤ b <

√
3.

Thus, the inequality can be written as√
1 +

3− b2
b

+ 2
√

1 + 2b ≥ 3
√

3.

Substituting

t =

√
1 + 2b

3
, 1 ≤ t <

√
1 + 2

√
3

3
<

5

4
,

the inequality turns into √
3 + 4t2 − 3t4

2(3t2 − 1)
≥ 3− 2t.

By squaring, we need to show that

7− 8t− 14t2 + 24t3 − 9t4 ≥ 0,

which is equivalent to
(1− t)2(7 + 6t− 9t2) ≥ 0.

This is true since

7 + 6t− 9t2 = 8− (3t− 1)2 > 8−
(

15

4
− 1

)2

=
7

16
> 0.

The equality holds for a = b = c = 1.

Remark. The following generalization holds:

• Let a, b, c be nonnegative real numbers such that ab+ bc+ ca = 3. If

k ≥ k0 =
14
√

3− 15

24
≈ 0.38536,

then √
a+ k

1 + k
+

√
b+ k

1 + k
+

√
c+ k

1 + k
≥ 3,

with equality for a = b = c = 1. If k = k0, then the equality also occurs for a = 0 and b = c =
√

3
(or any cyclic permutation).
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P 5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If

0 ≤ k ≤ 15,

then
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

k

(a+ b+ c)2
≥ 9 + k

4(ab+ bc+ ca)
.

(Vasile C., 2007)

Solution. Due to homogeneity and symmetry, we may consider that

a+ b+ c = 1, 0 ≤ a ≤ b ≤ c.

On this assumption, the inequality becomes

1

(1− a)2
+

1

(1− b)2
+

1

(1− c)2
+ k ≥ 9 + k

2(1− a2 − b2 − c2)
.

To prove it, we apply Corollary 1 to the function

f(u) =
1

(1− u)2
, 0 ≤ u < 1.

We have f(1−) =∞ and

g(x) = f ′(x) =
2

(1− x)3
, g′′(x) =

24

(1− x)5
.

Since g′′(x) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note 3, if

a+ b+ c = 1, a2 + b2 + c2 = fixed, 0 ≤ a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. For

x =
b

c
+
c

b
, x ≥ 2,

the original inequality becomes

1

b2
+

1

c2
+

1 + k

(b+ c)2
≥ 9 + k

4bc
,

x+
1 + k

x+ 2
≥ 9 + k

4
,

(x− 2)(4x+ 7− k) ≥ 0.

This is true since
4x+ 7− k ≥ 15− k ≥ 0.
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Case 2: 0 < a ≤ b = c. The original inequality becomes

2

(a+ b)2
+

1

4b2
+

k

(a+ 2b)2
≥ 9 + k

4b(2a+ b)
,

a(a− b)2

2b2(a+ b)2(2a+ b)
+

ka(4b− a)

4b(a+ 2b)2(2a+ b)
≥ 0.

The equality holds for
a = 0, b = c

(or any cyclic permutation). If k = 0 (Iran 1996 inequality), then the equality holds also for
a = b = c.

P 5.31. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

24

(a+ b+ c)2
≥ 8

ab+ bc+ ca
.

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.30, it suffices to prove the inequality for
a = 0, and for 0 < a ≤ b = c.

Case 1: a = 0. For

x =
b

c
+
c

b
, x ≥ 2,

the original inequality becomes

1

b2
+

1

c2
+

25

(b+ c)2
≥ 8

bc
,

x+
25

x+ 2
≥ 8,

(x− 3)2 ≥ 0.

Case 2: 0 < a ≤ b = c. Due to homogeneity, we only need to prove the homogeneous inequality
for 0 < a ≤ b = c = 1; that is,

2

(a+ 1)2
+

1

4
+

24

(a+ 2)2
≥ 8

2a+ 1
.

It suffices to show that
2

(a+ 1)2
≥ 8

2a+ 1
− 24

(a+ 2)2
,

which is equivalent to
1

(1 + a)2
≥ 4(1− a)2

(2a+ 1)(a+ 2)2
,

a(2a2 + 9a+ 12) ≥ 4a2(a2 − 2).
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This is true since
a(2a2 + 9a+ 12) ≥ 0 ≥ 4a2(a2 − 2).

The equality holds for

a = 0,
b

c
+
c

b
= 3

(or any cyclic permutation).

Remark. Actually, the following generalization holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥ 15, then

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

k

(a+ b+ c)2
≥ 2(

√
k + 1 − 1)

ab+ bc+ ca
,

with equality for

a = 0,
b

c
+
c

b
=
√
k + 1− 2

(or any cyclic permutation).

P 5.32. If a, b, c are nonnegative real numbers, no two of which are zero, so that

k(a2 + b2 + c2) + (2k + 3)(ab+ bc+ ca) = 9(k + 1), 0 ≤ k ≤ 6,

then
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

9k

(a+ b+ c)2
≥ 3

4
+ k.

(Vasile C., 2007)

Solution. Write the inequality in the homogeneous form

4

(a+ b)2
+

4

(b+ c)2
+

4

(c+ a)2
+

36k

(a+ b+ c)2
≥ 9(k + 1)(4k + 3)

k(a2 + b2 + c2) + (2k + 3)(ab+ bc+ ca)
.

As shown in the proof of P 5.30, it suffices to prove this inequality for a = 0, and for 0 < a ≤ b = c.

Case 1: a = 0. Let

x =
b

c
+
c

b
, x ≥ 2.

The homogeneous inequality becomes

4

(
1

b2
+

1

c2

)
+

36k + 4

(b+ c)2
≥ 9(k + 1)(4k + 3)

k(b2 + c2) + (2k + 3)bc
,

4x+
36k + 4

x+ 2
≥ 9(k + 1)(4k + 3)

kx+ 2k + 3
,

4kx3 + 4(4k + 3)x2 − (43k + 3)x− 2(5k + 21) ≥ 0,
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(x− 2)[4kx2 + 4(6k + 3)x+ 5k + 21] ≥ 0.

Case 2: 0 < a ≤ b = c. We only need to prove the homogeneous inequality for b = c = 1. The
inequality becomes

8

(a+ 1)2
+ 1 +

36k

(a+ 2)2
≥ 9(k + 1)(4k + 3)

ka2 + (4k + 6)a+ 4k + 3
,

ka6 + (10k + 6)a5 − (14k − 12)a4 − (10k + 18)a3 + (17k − 24)a2 + (24− 4k)a ≥ 0,

a(a− 1)2[ka3 + 6(2k + 1)a2 + 3(3k + 8)a+ 4(6− k)] ≥ 0.

Clearly, the last inequality is true for 0 ≤ k ≤ 6.

The equality holds for a = b = c, and also for

a = 0, b = c

(or any cyclic permutation).

P 5.33. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
2

a2 + b2
+

2

b2 + c2
+

2

c2 + a2
≥ 8

a2 + b2 + c2
+

1

ab+ bc+ ca
;

(b)
2

a2 + b2
+

2

b2 + c2
+

2

c2 + a2
≥ 7

a2 + b2 + c2
+

6

(a+ b+ c)2
;

(c)
2

a2 + b2
+

2

b2 + c2
+

2

c2 + a2
≥ 45

4(a2 + b2 + c2) + ab+ bc+ ca
.

(Vasile C., 2007)

Solution. (a) Due to homogeneity and symmetry, we may consider that

a2 + b2 + c2 = 1, 0 ≤ a ≤ b ≤ c.

On this assumption, the inequality can be written as

2

1− a2
+

2

1− b2
+

2

1− c2
≥ 8 +

2

(a+ b+ c)2 − 1
.

To prove it, we apply Corollary 1 to the function

f(u) =
1

1− u2
, 0 ≤ u < 1.

We have f(1−) =∞ and

g(x) = f ′(x) =
2x

(1− x2)2
, g′′(x) =

24x(1 + x2)

(1− x2)4
.
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Since g′′(x) > 0 for x ∈ (0, 1), g is strictly convex on [0, 1). According to Corollary 1 and Note
3, if

a+ b+ c = fixed, a2 + b2 + c2 = 1, 0 ≤ a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. For

x =
b

c
+
c

b
, x ≥ 2,

the original inequality becomes
2

b2
+

2

c2
≥ 6

b2 + c2
+

1

bc
,

2x ≥ 6

x
+ 1,

(x− 2)(2x+ 3) ≥ 0.

Case 2: 0 < a ≤ b = c. Due to homogeneity, it suffices to prove the original inequality for
b = c = 1. Thus, we need to show that

1 +
4

a2 + 1
≥ 8

a2 + 2
+

1

2a+ 1
,

which is equivalent to
2a

2a+ 1
≥ 4a2

(a2 + 1)(a2 + 2)
,

a(a4 − a2 − 2a+ 2) ≥ 0,

a(a− 1)2(a2 + 2a+ 2) ≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(b) The proof is similar to the one of the inequality in (a). For a = 0 and

x =
b

c
+
c

b
, x ≥ 2,

the original inequality becomes

2

b2
+

2

c2
≥ 5

b2 + c2
+

6

(b+ c)2
,

2x ≥ 5

x
+

6

x+ 2
,

(x− 2)(2x2 + 8x+ 5) ≥ 0.

For b = c = 1, the original inequality is

1 +
4

a2 + 1
≥ 7

a2 + 2
+

6

(a+ 2)2
,
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a(a5 + 4a4 − 2a3 − 15a+ 12) ≥ 0,

a(a− 1)2(a3 + 6a2 + 9a+ 12) ≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(c) The proof is also similar to the one of the inequality in (a). For a = 0 and

x =
b

c
+
c

b
, x ≥ 2,

the original inequality becomes

2

(
1

b2
+

1

c2

)
+

2

b2 + c2
≥ 45

4(b2 + c2) + bc
,

2x+
2

x
≥ 45

4x+ 1
,

(x− 2)(8x2 + 18x− 1) ≥ 0.

For b = c = 1, the original inequality can be written as

1 +
4

a2 + 1
≥ 45

4a2 + 2a+ 9
,

a(2a3 + a2 − 8a+ 5) ≥ 0,

a(a− 1)2(2a+ 5) ≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

P 5.34. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
+

3

a2 + b2 + c2
≥ 4

ab+ bc+ ca
.

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.33, it suffices to prove the inequality for
a = 0, and for 0 < a ≤ b = c.

Case 1: a = 0. For

x =
b

c
+
c

b
, x ≥ 2,

the original inequality becomes
1

b2
+

1

c2
+

4

b2 + c2
≥ 4

bc
,

x+
4

x
≥ 4,

(x− 2)2 ≥ 0.
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Case 2: 0 < a ≤ b = c. Due to homogeneity, it suffices to prove the original inequality for
0 < a ≤ b = c = 1. Thus, we need to show that

1

2
+

2

a2 + 1
+

3

a2 + 2
≥ 4

2a+ 1
.

It suffices to show that
2

a+ 1
+

3

a+ 2
≥ 4

2a+ 1
− 1

2
,

which is equivalent to
5a+ 7

a2 + 3a+ 2
≥ 7− 2a

4a+ 2
,

a(2a2 + 19a+ 21) ≥ 0,

The equality holds for
a = 0, b = c

(or any cyclic permutation).

Remark. Actually, the following generalization holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero.
(a) If −4 ≤ k ≤ 3, then

2

a2 + b2
+

2

b2 + c2
+

2

c2 + a2
+

2k

a2 + b2 + c2
≥ k + 5

ab+ bc+ ca
,

with equality for
a = 0, b = c

(or any cyclic permutation).

(b) If k ≥ 3, then

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
+

k

a2 + b2 + c2
≥ 2

√
k + 1

ab+ bc+ ca
,

with equality for

a = 0,
b

c
+
c

b
=
√
k + 1

(or any cyclic permutation).

P 5.35. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
3

a2 + ab+ b2
+

3

b2 + bc+ c2
+

3

c2 + ca+ a2
≥ 5

ab+ bc+ ca
+

4

a2 + b2 + c2
;

(b)
3

a2 + ab+ b2
+

3

b2 + bc+ c2
+

3

c2 + ca+ a2
≥ 1

ab+ bc+ ca
+

24

(a+ b+ c)2
;

(c)
1

a2 + ab+ b2
+

1

b2 + bc+ c2
+

1

c2 + ca+ a2
≥ 21

2(a2 + b2 + c2) + 5(ab+ bc+ ca)
.

(Vasile C., 2007)
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Solution. (a) Due to homogeneity and symmetry, we may consider that

a+ b+ c = 1, 0 ≤ a ≤ b ≤ c.

Let

p =
1 + a2 + b2 + c2

2
.

Since
1

2(b2 + bc+ c2)
=

1

(a+ b+ c)2 + a2 + b2 + c2 − 2a(a+ b+ c)
=

1

2(p− a)
,

the inequality can be written as

3

p− a
+

3

p− b
+

3

p− c
≥ 5

1− p
+

4

2p− 1
.

To prove it, we apply Corollary 1 to the function

f(u) =
3

p− u
, 0 ≤ u < p.

We have f(p−) =∞ and

g(x) = f ′(x) =
3

(p− x)2
, g′′(x) =

18

(p− x)4
.

Since g′′(x) > 0, g is strictly convex on [0, p). According to Corollary 1 and Note 3, if

a+ b+ c = 1, a2 + b2 + c2 = 2p− 1 = fixed, 0 ≤ a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. For

x =
b

c
+
c

b
, x ≥ 2,

the original inequality becomes

3

(
1

b2
+

1

c2

)
+

3

b2 + bc+ c2
≥ 5

bc
+

4

b2 + c2
,

which is equivalent to

3x+
3

x+ 1
≥ 5 +

4

x
,

(x− 2)(3x2 + 4x+ 2) ≥ 0.

Case 2: 0 < a ≤ b = c. Due to homogeneity, it suffices to prove the original inequality for
b = c = 1. Thus, we need to show that

6

a2 + a+ 1
+ 1 ≥ 5

2a+ 1
+

4

a2 + 2
,
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which is equivalent to

a(a4 − a3 + 3a2 − 7a+ 4) ≥ 0,

a(a− 1)2(a2 + a+ 4) ≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(b) The proof is similar to the one of the inequality in (a). For a = 0, the original inequality
becomes

3

(
1

b2
+

1

c2

)
+

3

b2 + bc+ c2
≥ 1

bc
+

24

(b+ c)2
,

which is equivalent to

3x+
3

x+ 1
≥ 1 +

24

x+ 2
, x =

b

c
+
c

b
,

(x− 2)(3x2 + 14x+ 10) ≥ 0.

For b = c = 1, the original inequality becomes

6

a2 + a+ 1
+ 1 ≥ 1

2a+ 1
+

24

a2 + 2
,

which is equivalent to

a(a4 + 5a3 − 9a2 − a+ 4) ≥ 0,

a(a− 1)2(a2 + 7a+ 4) ≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(c) The proof is similar to the one of the inequality in (a). For a = 0, the original inequality
becomes

1

b2
+

1

c2
+

1

b2 + bc+ c2
≥ 21

2(b2 + c2) + 5bc
,

which is equivalent to

x+
1

x+ 1
≥ 21

2x+ 5
, x =

b

c
+
c

b
,

(x− 2)(2x2 + 11x+ 8) ≥ 0.

For b = c = 1, the original inequality becomes

2

a2 + a+ 1
+

1

3
≥ 21

2a2 + 10a+ 9
,

which is equivalent to

a(a3 + 6a2 − 15a+ 8) ≥ 0,

a(a− 1)2(a+ 8) ≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).
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P 5.36. Let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞), so
that f ′′′(u) ≥ 0 for u ∈ (0,∞). If a, b, c ≥ 0, then

f(a2 + 2bc) + f(b2 + 2ca) + f(c2 + 2ab) ≤ f(a2 + b2 + c2) + 2f(ab+ bc+ ca).

Solution. Denoting

x = a2 + 2bc, y = b2 + 2ca, z = c2 + 2ab,

the inequality becomes

f(x) + f(y) + f(z) ≤ f(a2 + b2 + c2) + 2f(ab+ bc+ ca).

Assume that

a+ b+ c = fixed, a2 + b2 + c2 = fixed,

which involve

2(ab+ bc+ ca) = (a+ b+ c)2 − (a2 + b2 + c2) = fixed.

We have

x+ y + z = (a+ b+ c)2 = fixed,

x2 + y2 + z2 = (a2 + b2 + c2)2 + 2(ab+ bc+ ca)2 = fixed.

According to the EV-Theorem (Corollary 1), since f ′′′(u) ≥ 0 for u ∈ (0,∞), the sum f(x) +
f(y) + f(z) is maximum for x = y ≤ z, that is

a2 + 2bc = b2 + 2ca ≤ c2 + 2ab.

From a2+2bc = b2+2ca, we get a = b or a+b = 2c. If a+b = 2c, the inequality b2+2ca ≤ c2+2ab
is equivalent to (b−c)2 ≤ 0, which involves b = c. Thus it suffices to prove the required inequality
for two equal variables, when the inequality is an identity.
The equality holds for a = b or b = c or c = a.

Remark 1. The inequality is also true for a real-valued function f , continuous on (0,∞) and
differentiable on (0,∞), so that f ′′′(u) ≥ 0 for u ∈ (0,∞) and limu→0 f(u) = ±∞.

Remark 2. The following inequalities hold:

1

a2 + 2bc
+

1

b2 + 2ca
+

1

c2 + 2ab
≥ 1

a2 + b2 + c2
+

2

ab+ bc+ ca
,

√
a2 + 2bc+

√
b2 + 2ca+

√
c2 + 2ab ≤

√
a2 + b2 + c2 + 2

√
ab+ bc+ ca,

1√
a2 + 2bc

+
1√

b2 + 2ca
+

1√
c2 + 2ab

≥ 1√
a2 + b2 + c2

+
2√

ab+ bc+ ca
,

(a2 + 2bc)(b2 + 2ca)(c2 + 2ab) ≤ (a2 + b2 + c2)(ab+ bc+ ca)2.
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P 5.37. If a, b, c are the lengths of the side of a triangle, then

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
≤ 85

36(ab+ bc+ ca)
.

(Vasile C., 2007)

Solution. Use the substitution

a = y + z, b = z + x, c = x+ y,

where x, y, z are nonnegative real numbers. Due to homogeneity and symmetry, we may consider
that

x+ y + z = 2, 0 ≤ x ≤ y ≤ z.

We need to show that

1

(x+ 2)2
+

1

(y + 2)2
+

1

(z + 2)2
≤ 85

18(12− x2 − y2 − z2)
,

which can be written as

f(x) + f(y) + f(z) +
85

18(12− x2 − y2 − z2)
≥ 0,

where

f(u) =
−1

(u+ 2)2
, u ≥ 0.

We have

g(x) = f ′(x) =
2

(x+ 2)3
, g′′(x) =

24

(x+ 2)5
.

Since g′′(x) > 0 for x ≥ 0, g is strictly convex on [0,∞). According to Corollary 1, if

x+ y + z = 2, x2 + y2 + z2 = fixed, 0 ≤ x ≤ y ≤ z,

then the sum
S3 = f(x) + f(y) + f(z)

is minimum for either x = 0 or 0 < x ≤ y = z.

Case 1: x = 0. This implies a = b+ c. Since

1

(a+ b)2
+

1

(c+ a)2
=

5(b2 + c2) + 8bc

(2b2 + 2c2 + 5bc)2

and
ab+ bc+ ca = a(b+ c) + bc = (b+ c)2 + bc = b2 + c2 + 3bc,

we need to show that

5(b2 + c2) + 8bc

(2b2 + 2c2 + 5bc)2
+

1

(b+ c)2
≤ 85

36(b2 + c2 + 3bc)
.
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For bc = 0, the inequality is true. For bc 6= 0, substituting

t =
b

c
+
c

b
, t ≥ 2,

the inequality becomes
5t+ 8

(2t+ 5)2
+

1

t+ 2
≤ 85

36(t+ 3)
,

5t+ 8

(2t+ 5)2
≤ 49t+ 62

36(t+ 2)(t+ 3)
.

It suffices to show that
5t+ 8

(2t+ 5)2
≤ 48t+ 64

36(t+ 2)(t+ 3)
,

which is equivalent to
5t+ 8

(2t+ 5)2
≤ 12t+ 16

9(t+ 2)(t+ 3)
,

3t3 + 7t2 − 10t− 32 ≥ 0,

(t− 2)(3t2 + 13t+ 16) ≥ 0.

Case 2: 0 < x ≤ y = z. This involves b = c. Since the original inequality is homogeneous, we
may consider b = c = 1 and 0 ≤ a ≤ b+ c = 2. Thus, we only need to show that

1

4
+

2

(a+ 1)2
≤ 85

36(2a+ 1)
,

which is equivalent to

(a− 2)(9a2 − 2a+ 1) ≤ 0.

The equality holds for a degenerated isosceles triangle with a = b + c, b = c (or any cyclic
permutation).

P 5.38. If a, b, c are the lengths of the side of a triangle so that a+ b+ c = 3, then

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
≤ 3(a2 + b2 + c2)

4(ab+ bc+ ca)
.

(Vasile C., 2007)

Solution. Write the inequality in the homogeneous form

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
≤ 27(a2 + b2 + c2)

4(a+ b+ c)2(ab+ bc+ ca)
.

As shown in the proof of the preceding P 5.37, it suffices to prove this inequality for a = b + c
and for b = c = 1.
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Case 1: a = b+ c. Since

1

(a+ b)2
+

1

(c+ a)2
=

5(b2 + c2) + 8bc

(2b2 + 2c2 + 5bc)2

and
27(a2 + b2 + c2)

4(a+ b+ c)2(ab+ bc+ ca)
=

27(b2 + c2 + bc)

8(b+ c)2(b2 + c2 + 3bc)
,

we need to show that

5(b2 + c2) + 8bc

(2b2 + 2c2 + 5bc)2
+

1

(b+ c)2
≤ 27(b2 + c2 + bc)

8(b+ c)2(b2 + c2 + 3bc)
.

For bc = 0, the inequality is true. For bc 6= 0, substituting

t =
b

c
+
c

b
, t ≥ 2,

the inequality becomes
5t+ 8

(2t+ 5)2
+

1

t+ 2
≤ 27(t+ 1)

8(t+ 2)(t+ 3)
,

9t2 + 38t+ 41

(2t+ 5)2
≤ 27(t+ 1)

8(t+ 3)
.

It suffices to show that
9t2 + 45t+ 27

(2t+ 5)2
≤ 27(t+ 1)

8(t+ 3)
,

which is equivalent to
t2 + 5t+ 3

(2t+ 5)2
≤ 3(t+ 1)

8(t+ 3)
,

4t3 + t(8t− 9) + 3 ≥ 0.

Case 2: b = c = 1, a ≤ b+ c = 2. The homogeneous inequality becomes

2

(a+ 1)2
+

1

4
≤ 27(a2 + 2)

4(2a+ 1)(a+ 2)2
.

Since
4(2a+ 1)(a+ 2) ≤ 9(a+ 1)2,

it suffices to show that
2

(a+ 1)2
+

1

4
≤ 3(a2 + 2)

(a+ 1)2(a+ 2)
,

which is equivalent to
(a− 6)(a− 1)2 ≤ 0.

The equality holds for a an equilateral triangle.
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P 5.39. Let a, b, c ≥ 2

5
so that a+ b+ c = 3. Then,

1

3 + 2(a2 + b2)
+

1

3 + 2(b2 + c2)
+

1

3 + 2(c2 + a2)
≤ 3

7
.

(Vasile C., 2006)

Solution. For a ≤ b ≤ c, we have

2

5
≤ a ≤ b ≤ c ≤ 11

5
.

Indeed,

c = 3− a− b ≤ 3− 2

5
− 2

5
=

11

5
.

Using the substitution

m =
3

2
+ a2 + b2 + c2, m ≥ 3

2
+

1

3
(a+ b+ c)2 =

9

2
,

we have to show that

f(a) + f(b) + f(c) ≤ 6

7

for

a+ b+ c = 3, a2 + b2 + c2 = m− 3

2
,

2

5
≤ a ≤ b ≤ c ≤ 11

5
,

f(u) =
1

m− u2
,

2

5
≤ u ≤ 11

5
.

From

g(x) = f ′(x) =
2x

(m− x2)2
, g′′(x) =

24x(m+ x2)

(m− x2)4
,

it follows that g′′(x) > 0, hence g is strictly convex. By Corollary 1 and Note 2, if

a+ b+ c = 3, a2 + b2 + c2 = fixed,
2

5
≤ a ≤ b ≤ c ≤ 11

5
,

then the sum
S3 = f(a) + f(b) + f(c)

is maximum for either c = 11/5 or a = b ≤ c. The case c = 11/5 leads to a = b = 2/5, when the
inequality is an equality. In the second case, we need to prove that

1

3 + 4a2
+

2

3 + 2(a2 + c2)
≤ 3

7

for 2a+ c = 3,
2

5
≤ a ≤ c. Write the inequality as follows

1

3 + 4a2
+

2

21− 24a+ 10a2
≤ 3

7
,
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1

3 + 4a2
≤ 49− 72a+ 30a2

7(21− 24a+ 10a2)
,

a(a− 1)2(5a− 2) ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b =
2

5
, c =

11

5

(or any cyclic permutation).

Remark In the same manner, we can prove the following statement:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1+a2+· · ·+an = n. If k ≥ n2 − 1

n2 − n− 1
,

then ∑ 1

k + a22 + · · ·+ a2n
≤ n

k + n− 1
,

with equality for a1 = a2 = · · · = an = 1. If k =
n2 − 1

n2 − n− 1
, then the equality holds also for

a1 = · · · = an−1 =
1

n2 − n− 1
, an = n− n− 1

n2 − n− 1

(or any cyclic permutation).

P 5.40. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2

2 + a2 + b2
+

2

2 + b2 + c2
+

2

2 + c2 + a2
≤ 99

63 + a2 + b2 + c2
.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality
for 0 ≤ a = b ≤ c; that is, to show that 2a+ c = 3 involves

1

1 + a2
+

4

2 + a2 + c2
≤ 99

63 + 2a2 + c2
.

Write this inequality as follows

1

a2 + 1
+

4

5a2 − 12a+ 11
≤ 33

2(a2 − 2a+ 12)
,

49a4 − 112a3 + 78a2 − 16a+ 1 ≥ 0,

(a− 1)2(7a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b =
1

7
, c =

19

7
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(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If
8

5
≤ k ≤ 3, then

k + 2

k + a2 + b2
+

k + 2

k + b2 + c2
+

k + 2

k + c2 + a2
≤ 9(3k2 + 11k + 10)

9(k2 + 2k + 6) + (5k − 8)(a2 + b2 + c2)
,

with equality for a = b = c = 1, and also for

a = b =
3− k

7
, c =

2k + 15

7

(or any cyclic permutation).

P 5.41. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1

3 + a2 + b2
+

1

3 + b2 + c2
+

1

3 + c2 + a2
≤ 18

27 + a2 + b2 + c2
.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality
for 0 ≤ a = b ≤ c. Therefore, we only need to show that 2a+ c = 3 involves

1

3 + 2a2
+

2

3 + a2 + c2
≤ 18

27 + 2a2 + c2
.

Write this inequality as follows

1

2a2 + 3
+

2

5a2 − 12a+ 12
≤ 3

a2 − 2a+ 6
,

a2(a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = 0, c = 3

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If k ≥ n

n− 2
,

then ∑ 1

k + a22 + · · ·+ a2n
≤ n2(n+ k)

n(n2 + kn+ k2) + (kn− n− k)(a21 + a22 + · · ·+ a2n)
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = · · · = an−1 = 0, an = n

(or any cyclic permutation).
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P 5.42. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

5

3 + a2 + b2
+

5

3 + b2 + c2
+

5

3 + c2 + a2
≥ 27

6 + a2 + b2 + c2
.

(Vasile C., 2014)

Solution. Using the substitution

m = 3 + a2 + b2 + c2,

we have to show that

f(a) + f(b) + f(c) ≥ 27

24 +m

for
a+ b+ c = 3, a2 + b2 + c2 = m− 3, 0 ≤ a ≤ b ≤ c,

f(u) =
5

m− u2
, 0 ≤ u ≤

√
m− 3.

From

g(x) = f ′(x) =
10x

(m− x2)2
, g′′(x) =

120x(m+ x2)

(m− x2)4
,

it follows that g′′(x) ≥ 0 for 0 ≤ x ≤
√
m− 3, hence g is strictly convex. By Corollary 1, if

a+ b+ c = 3, a2 + b2 + c2 = fixed, 0 ≤ a ≤ b ≤ c,

then the sum
S3 = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c. Write the inequality in the homogeneous form∑ 5

(a+ b+ c)2 + 3(a2 + b2)
≥ 27

2(a+ b+ c)2 + 3(a2 + b2 + c2)
.

Case 1: a = 0. The homogeneous inequality becomes

5

(b+ c)2 + 3b2
+

5

(b+ c)2 + 3c2
+

5

(b+ c)2 + 3(b2 + c2)
≥ 27

2(b+ c)2 + 3(b2 + c2)
,

5[5(b2 + c2) + 4bc]

4(b2 + c2)2 + 10bc(b2 + c2) + 13b2c2
+

5

4(b2 + c2) + 2bc
≥ 27

5(b2 + c2) + 4bc
.

For the nontrivial case bc 6= 0, substituting

b

c
+
c

b
= t, t ≥ 2,

we may write the inequality as

5(5t+ 4)

4t2 + 10t+ 13
+

5

4t+ 2
≥ 27

5t+ 4
,
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5(5t+ 4)

4t2 + 10t+ 13
≥ 83t+ 34

2(2t+ 1)(5t+ 4)
.

Since

83t+ 34 ≤ 90t+ 20,

it suffices to show that
5t+ 4

4t2 + 10t+ 13
≥ 9t+ 2

(2t+ 1)(5t+ 4)
,

which is equivalent to

14t3 + 7t2 − 65t− 10 ≥ 0,

(t− 2)(14t2 + 35t+ 5) ≥ 0.

Case 2: 0 < a ≤ b = c. We only need to prove the homogeneous inequality for b = c = 1; that
is,

10

(a+ 2)2 + 3(a2 + 1)
+

5

(a+ 2)2 + 6
≥ 27

2(a+ 2)2 + 3(a2 + 2)
,

10

4a2 + 4a+ 7
+

5

a2 + 4a+ 10
≥ 27

5a2 + 8a+ 14
,

a(a3 − 3a+ 2) ≥ 0,

a(a− 1)2(a+ 2) ≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
3

2

(or any cyclic permutation).

Remark 1. Similarly, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k ≥ 0, then

1

k + a2 + b2
+

1

k + b2 + c2
+

1

k + c2 + a2
≥ 9(4k + 15)

3(4k2 + 15k + 9) + (8k + 21)(a2 + b2 + c2)
.

with equality for a = b = c = 1, and also for

a = 0, b = c =
3

2

(or any cyclic permutation).

For k = 0, we get the inequality in P 1.171 from Volume 2:

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
≥ 45

(a+ b+ c)2 + 7(a2 + b2 + c2)
.

Remark 2. More general, the following statement holds:
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• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If k ≥ 0, then∑ 1

k + a22 + · · ·+ a2n
≥ p

q + a21 + a22 + · · ·+ a2n
,

where

p =
n2(n− 1)2k + n3(n2 − n− 1)

(n− 1)3k + n(n3 − 2n2 − n+ 1)
, q =

n(n− 1)2k2 + n2(n2 − n− 1)k + n3

(n− 1)3k + n(n3 − 2n2 − n+ 1)
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = an =
n

n− 1

(or any cyclic permutation).

For k = 0 and k = n, we get the inequalities∑ 1

a22 + · · ·+ a2n
≥ n2(n2 − n− 1)

n2 + (n3 − 2n2 − n+ 1)(a21 + a22 + · · ·+ a2n)
,

∑ 2n− 1

n+ a22 + · · ·+ a2n
≥ n2(2n− 3)

n(n− 1) + (n− 2)(a21 + a22 + · · ·+ a2n)
.

P 5.43. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then∑ 3

3 + 2(a2 + b2 + c2)
≤ 296

218 + a2 + b2 + c2 + d2
.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality
for 0 ≤ a = b = c ≤ d, that is to show that 3a+ d = 4 involves

1

1 + 2a2
+

9

3 + 4a2 + 2d2
≤ 296

218 + 3a2 + d2
.

Write this inequality as follows

1

1 + 2a2
+

9

35− 48a+ 22a2
≤ 148

3(39− 4a+ 2a2)
,

(a− 1)2(14a− 1)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = b = c =
1

14
, d =

53

14

(or any cyclic permutation).
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P 5.44. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 3, then

4

2 + a2 + b2
+

4

2 + b2 + c2
+

4

2 + c2 + a2
≥ 21

4 + a2 + b2 + c2
.

(Vasile C., 2014)

Solution. The proof is similar to the one of P 5.42. Thus, we only need to prove the inequality
for a = 0 and for 0 < a ≤ b = c.

Case 1: a = 0. We need to show that bc = 3 involves

1

2 + b2
+

1

2 + c2
+

1

2 + b2 + c2
≥ 21

4(4 + b2 + c2)
.

Denote
x = b2 + c2, x ≥ 2bc = 6.

Since
1

2 + b2
+

1

2 + c2
=

4 + b2 + c2

b2c2 + 2(b2 + c2) + 4
=

x+ 4

2x+ 13
,

we only need to show that
x+ 4

2x+ 13
+

1

x+ 2
≥ 21

4(x+ 4)
.

Since
x+ 4

2x+ 13
+

1

x+ 2
=

x2 + 8x+ 21

(2x+ 13)(x+ 2)
≥ 7(2x+ 3)

(2x+ 13)(x+ 2)
,

it suffices to show that
2x+ 3

(2x+ 13)(x+ 2)
≥ 3

4(x+ 4)
.

This inequality reduces to
(x− 6)(2x+ 5) ≥ 0.

Case 2: 0 < a ≤ b = c. Let
q = ab+ bc+ ca.

We only need to prove the homogeneous inequality

4

2q + 3(a2 + b2)
+

4

2q + 3(b2 + c2)
+

4

2q + 3(c2 + a2)
≥ 21

4q + 3(a2 + b2 + c2)

for b = c = 1. Thus, we need to show that

8

2(2a+ 1) + 3(a2 + 1)
+

4

2(2a+ 1) + 6
≥ 21

4(2a+ 1) + 3(a2 + 2)
,

which is equivalent to
8

3a2 + 4a+ 5
+

1

a+ 2
≥ 21

3a2 + 8a+ 10
,

a2 + 4a+ 7

(3a2 + 4a+ 5)(a+ 2)
≥ 7

3a2 + 8a+ 10
,



EV Method for Nonnegative Variables 397

a(3a3 − a2 − 7a+ 5) ≥ 0,

a(a− 1)2(3a+ 5) ≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
√

3

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that ab+ bc+ ca = 3. If k ≥ 0, then

1

k + a2 + b2
+

1

k + b2 + c2
+

1

k + c2 + a2
≥ 9(k + 5)

3(k2 + 5k + 2) + 2(k + 4)(a2 + b2 + c2)
.

with equality for a = b = c = 1, and also for

a = 0, b = c =
√

3

(or any cyclic permutation).

For k = 0, we get the inequality in P 1.171 from Volume 2:

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
≥ 45

2(ab+ bc+ ca) + 8(a2 + b2 + c2)
.

P 5.45. If a, b, c are nonnegative real numbers so that a2 + b2 + c2 = 3, then

1

10− (a+ b)2
+

1

10− (b+ c)2
+

1

10− (c+ a)2
≤ 1

2
.

(Vasile C., 2006)

Solution. Let
s = a+ b+ c, s ≤ 3.

We need to show that

1

10− (s− a)2
+

1

10− (s− b)2
+

1

10− (s− c)2
≤ 1

2

for a+ b+ c = s and a2 + b2 + c2 = 3. Apply Corollary 1 to the function

f(u) =
−1

10− (s− u)2
, 0 ≤ u ≤ s ≤ 3.

We have

g(x) = f ′(x) =
2(s− x)

[10− (s− x)2]2
,
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g′′(x) =
24(s− x)[10 + (s− x)2]

[10− (s− x)2]4
.

Since g′′(x) > 0 for x ∈ [0, s), g is strictly convex on [0, s]. According to the Corollary 1, if

a+ b+ c = s, a2 + b2 + c2 = 3, 0 ≤ a ≤ b ≤ c,

then
S3 = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c. Therefore, we only need to prove the homogeneous
inequality ∑ 1

10(a2 + b2 + c2)− 3(b+ c)2
≤ 1

2(a2 + b2 + c2)

for a = 0 and for b = c = 1.

Case 1: a = 0. The homogeneous inequality becomes

1

7(b2 + c2)− 6bc
+

1

10b2 + 7c2
+

1

7b2 + 10c2
≤ 1

2(b2 + c2)
.

This is true since
1

7(b2 + c2)− 6bc
≤ 1

4(b2 + c2)

and

1

10b2 + 7c2
+

1

7b2 + 10c2
=

17(b2 + c2)

70(b2 + c2) + 149b2c2

≤ 17(b2 + c2)

70(b2 + c2) + 140b2c2

=
17

70(b2 + c2)
<

1

4(b2 + c2)
.

Case 2: b = c = 1. The homogeneous inequality turns into

1

2(5a2 + 4)
+

2

7a2 − 6a+ 17
≤ 1

2(a2 + 2)
,

2

7a2 − 6a+ 17
≤ 2a2 + 1

(5a2 + 4)(a2 + 2)
,

4a4 − 12a3 + 13a2 − 6a+ 1 ≥ 0,

(a− 1)2(2a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

2a = b = c =
2√
3

(or any cyclic permutation).
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P 5.46. If a, b, c are nonnegative real numbers, no two of which are zero, so that a4 + b4 +c4 = 3,
then

1

a5 + b5
+

1

b5 + c5
+

1

c5 + a5
≥ 3

2
.

(Vasile C., 2010)

Solution. Using the substitution

x = a4, y = b4, z = c4, p = x5/4 + y5/4 + z5/4,

we need to show that x+ y + z = 3 and x5/4 + y5/4 + z5/4 = p involve

f(x) + f(y) + f(z) ≥ 3

2
,

where

f(u) =
1

p− u5/4
, 0 ≤ u < p4/5.

We will apply the EV-Theorem for k = 5/4. We have

f ′(u) =
5u1/4

4(p− u5/4)2
,

g(x) = f ′
(
x

1
k−1

)
= f ′(x4) =

5x

4(p− x5)2
,

g′′(x) =
75x4(2p+ 3x5)

2(p− x5)4
.

Since g′′(x) ≥ 0, g is strictly convex. According to the EV-Theorem and Note 3, if

x+ y + z = 3, x5/4 + y5/4 + z5/4 = p = fixed, 0 ≤ x ≤ y ≤ z,

then

S3 = f(x) + f(y) + f(z)

is minimum for either x = 0 or 0 < x ≤ y = z. Thus, we only need to prove the homogeneous
inequality

1

a5 + b5
+

1

b5 + c5
+

1

c5 + a5
≥ 3

2

(
3

a4 + b4 + c4

)5/4

for a = 0 and 0 < a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality becomes

1

b5
+

1

c5
+

1

b5 + c5
≥ 3

2

(
3

b4 + c4

)5/4

,

(
b

c

)5/2

+
(c
b

)5/2
+

1(
b
c

)5/2
+
(
c
b

)5/2 ≥ (3

2

)9/4
[

2(
b
c

)2
+
(
c
b

)2
]5/4

,
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t5/2 + t−5/2 +
1

t5/2 + t−5/2
≥
(

3

2

)9/4(
2

t2 + t−2

)5/4

,

2A5/2 +
1

2A5/2
≥
(

3

2

)9/4

· 1

B5/2
,

where

A =

(
t5/2 + t−5/2

2

)2/5

, B =

(
t2 + t−2

2

)1/2

, t =
b

c
.

By power mean inequality, we have A ≥ B ≥ 1. Since

2A5/2 +
1

2A5/2
−
(

2B5/2 +
1

2B5/2

)
=
(
A5/2 −B5/2

)(
2− 1

2A5/2B5/2

)
≥ 0,

it suffices to show that

2B5/2 +
1

2B5/2
≥
(

3

2

)9/4

· 1

B5/2
,

4B5 + 1 ≥
(

39

25

)1/4

,

which is true if

5 ≥
(

39

25

)1/4

,

32 · 54 ≥ 39.

This inequality follows by multiplying the inequalities

54 > 23 · 33

and

32 · 23 > 36.

Case 2: 0 < a ≤ 1 = b = c. The homogeneous inequality becomes

a5 + 5

a5 + 1
≥ 3

(
3

a4 + 2

)5/4

,

which is true if g(a) ≥ 0, where

g(a) = ln(a5 + 5)− ln(a5 + 1) +
5

4
ln(a4 + 2)− 9 ln 3

4
,

with

g′(a)

5a3
=

a

a5 + 5
− a

a5 + 1
+

1

a4 + 2
=

a10 + 2a5 − 8a+ 5

(a4 + 5)(a5 + 1)(a4 + 2)

=
(a− 1)(a9 + a8 + a7 + a6 + a5 + 3a4 + 3a3 + 3a2 + 3a− 5)

(a4 + 5)(a5 + 1)(a4 + 2)
.
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There exists d ∈ (0, 1) so that g′(d) = 0, g′(a) > 0 for a ∈ [0, d) and g′(a) < 0 for a ∈ (d, 1).
Therefore, g is increasing on [0, d] and is decreasing on [d, 1]. Since g(1) = 0, we only need to
show that g(0) ≥ 0. Indeed,

g(0) =
1

4
ln

54 · 25

39
> 0.

The equality holds for a = b = c = 1.

P 5.47. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

√
a21 + 1 +

√
a22 + 1 + · · ·+

√
a2n + 1 ≥

√
2

(
1− 1

n

)
(a21 + a22 + · · ·+ a2n) + 2(n2 − n+ 1).

(Vasile C., 2014)

Solution. For n = 2, we need to show that a1 + a2 = 2 involves√
a21 + 1 +

√
a22 + 1 ≥

√
a21 + a22 + 6.

By squaring, the inequality becomes√
(a21 + 1)(a22 + 1) ≥ 2,

which follows immediately from the Cauchy-Schwarz inequality:

(a21 + 1)(a22 + 1) = (a21 + 1)(1 + a22) ≥ (a1 + a2)
2 = 4.

Assume further that n ≥ 3 and a1 ≤ a2 ≤ · · · ≤ an. We will apply Corollary 1 to the function

f(u) = −
√
u2 + 4, u ≥ 0.

We have

g(x) = f ′(x) =
−x√
x2 + 4

,

g′′(x) =
12x

(x2 + 4)5/2
.

Since g′′(x) > 0 for x > 0, g(x) is strictly convex for x ≥ 0. By Corollary 1, if a1 ≤ a2 ≤ · · · ≤ an
and

a1 + a2 + · · ·+ an = n, a21 + a22 + · · ·+ a2n = fixed,

then the sum
Sn = f(a1) + f(a2) + · · ·+ f(an)

is maximum for a1 = a2 = · · · = an−1. Thus, we only need to show that

√
a2 + 1 + (n− 1)

√
b2 + 1 ≥

√
2

(
1− 1

n

)
[a2 + (n− 1)b2] + 2(n2 − n+ 1).
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for
a+ (n− 1)b = n.

By squaring, the inequality becomes

2n(n− 1)
√

(a2 + 1)(b2 + 1) ≥ (n− 2)a2 − (n− 2)(n− 1)2b2 + n3,

which is equivalent to√
(b2 + 1)[(n− 1)2b2 − 2n(n− 1)b+ n2 + 1] ≥ n− (n− 2)b.

This is true if

(b2 + 1)[(n− 1)2b2 − 2n(n− 1)b+ n2 + 1] ≥ [n− (n− 2)b]2,

which is equivalent o

(n− 1)2b4 − 2n(n− 1)b3 + (n2 + 2n− 2)b2 − 2nb+ 1 ≥ 0,

(b− 1)2[(n− 1)b− 1]2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
1

n− 1
, an = n− 1

(or any cyclic permutation).

P 5.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then∑√
(3n− 4)a21 + n ≥

√
(3n− 4)(a21 + a22 + · · ·+ a2n) + n(4n2 − 7n+ 4).

(Vasile C., 2009)

Solution. The proof is similar to the one of the preceding P 5.47. Thus, it suffices to prove the
inequality for a1 = a2 = · · · = an−1. Write the inequality in the homogeneous form∑√

n(3n− 4)a21 + S2 ≥
√
n(3n− 4)(a21 + a22 + · · ·+ a2n) + (4n2 − 7n+ 4)S2,

where S = a1 +a2 + · · ·+an. We only need to prove this inequality for a1 = a2 = · · · = an−1 = 1,
that is

(n− 1)
√
n(3n− 4) + (n− 1 + an)2 +

√
n(3n− 4)a2n + (n− 1 + an)2 ≥

≥
√
n(3n− 4)(n− 1 + a2n) + (4n2 − 7n+ 4)(n− 1 + an)2,

which is equivalent to√
(n− 1)[a2n + 2(n− 1)an + 4n2 − 6n+ 1] +

√
(3n− 1)a2n + 2an + n− 1 ≥

≥
√

(7n− 4)a2n + 2(4n2 − 7n+ 4)an + 4n3 − 8n2 + 7n− 4.
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By squaring, the inequality turns into

2
√

(n− 1)[(3n− 1)a2n + 2an + n− 1][a2n + 2(n− 1)an + 4n2 − 6n+ 1] ≥

(3n− 2)a2n + 2(n− 1)(3n− 2)an + 2n2 − n− 2.

Squaring again, we get
(an − 1)2(an − 2n+ 3)2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
an

2n− 3
=

n

3n− 4

(or any cyclic permutation).

Remark. For n = 3, we get the inequality
√

5a2 + 3 +
√

5b2 + 3 +
√

5c2 + 3 ≥
√

5(a2 + b2 + c2) + 57,

where a, b, c are nonnegative real numbers so that a + b + c = 3. By squaring, the inequality
turns into √

(5a2 + 3)(5b2 + 3) +
√

(5b2 + 3)(5c2 + 3) +
√

(5c2 + 3)(5a2 + 3) ≥ 24,

with equality for a = b = c = 1, and also for

a = b =
c

3
=

3

5

(or any cyclic permutation).

P 5.49. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
a2 + 4 +

√
b2 + 4 +

√
c2 + 4 ≤

√
8

3
(a2 + b2 + c2) + 37.

(Vasile C., 2009)

Solution. Assume that a ≤ b ≤ c, and apply Corollary 1 to the function a

f(u) = −
√
u2 + 4, u ≥ 0.

We have

g(x) = f ′(x) =
−x√
x2 + 4

,

g′′(x) =
12x

(x2 + 4)5/2
.

Since g′′(x) > 0 for x > 0, g(x) is strictly convex for x ≥ 0. By Corollary 1, if

a+ b+ c = 3, a2 + b2 + c2 = fixed , a ≤ b ≤ c,
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then the sum
S3 = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c. Thus, we only need to prove the desired inequality
for these cases.

Case 1: a = 0. We need to prove that b+ c = 3 involves

√
b2 + 4 +

√
c2 + 4 ≤

√
8

3
(b2 + c2) + 37 − 2.

Substituting

b =
3x

2
, c =

3y

2
,

we need to prove that x+ y = 2 involves

√
9x2 + 16 +

√
9y2 + 16 ≤ 2

√
6(x2 + y2) + 37 − 4.

By squaring, the inequality becomes

2
√

(9x2 + 16)(9y2 + 16) ≤ 15(x2 + y2) + 132− 16
√

6(x2 + y2) + 37.

Denoting
p = xy, 0 ≤ p ≤ 1,

we have
x2 + y2 = 4− 2p, (9x2 + 16)(9y2 + 16) = 81p2 − 288p+ 832,

and the inequality becomes√
81p2 − 288p+ 832 ≤ −15p+ 96− 8

√
61− 12p,√

81

4
p2 − 72p+ 208 ≤ −15

2
p+ (48− 4

√
61− 12p),

By squaring again (the right hand side is positive), the inequality becomes

81

4
p2 − 72p+ 208 ≤ 225

4
p2 − 15p(48− 4

√
61− 12p) + (48− 4

√
61− 12p)2,

3p2 − 70p+ 256 ≥ (32− 5p)
√

61− 12p.

Since

2
√

61− 12p ≤ 7 +
61− 12p

7
=

2(55− 6p)

7
,

it suffices to show that
7(3p2 − 70p+ 256) ≥ (32− 5p)(55− 6p),

which is equivalent to
(1− p)(32 + 9p) ≥ 0.

Case 2: b = c. We need to prove that
a+ 2b = 3
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implies
√
a2 + 4 + 2

√
b2 + 4 ≤

√
8

3
(a2 + 2b2) + 37.

By squaring, the inequality becomes

12
√

(a2 + 4)(b2 + 4) ≤ 5a2 + 4b2 + 51,

which is equivalent to √
(4b2 − 12b+ 13)(b2 + 4) ≤ 2b2 − 5b+ 8.

By squaring again, the inequality becomes

2b3 − 7b2 + 8b− 3 ≤ 0,

(b− 1)2(2b− 3) ≤ 0,

(b− 1)2a ≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
3

2

(or any cyclic permutation).

P 5.50. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
32a2 + 3 +

√
32b2 + 3 +

√
32c2 + 3 ≤

√
32(a2 + b2 + c2) + 219.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.49. Thus, it suffices to prove the homogeneous
inequality ∑√

96a2 + (a+ b+ c)2 ≤
√

96(a2 + b2 + c2) + 73(a+ b+ c)2

for a = 0 and for b = c = 1.

Case 1: a = 0. We have to show that

b+ c+
√

97b2 + 2bc+ c2 +
√
b2 + 2bc+ 97c2 ≤

√
169(b2 + c2) + 146bc.

Since 2bc ≤ b2 + c2, it suffices to prove that

b+ c+
√

98b2 + 2c2 +
√

2b2 + 98c2 ≤
√

169(b2 + c2) + 146bc.

By squaring, we get

(b+ c)
(√

98b2 + 2c2 +
√

2b2 + 98c2
)

+ 2
√

(49b2 + c2)(b2 + 49c2) ≤

≤ 34(b2 + c2) + 72bc.
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Since √
98b2 + 2c2 +

√
2b2 + 98c2 ≤

√
2(98b2 + 2c2 + 2b2 + 98c2) = 10

√
2(b2 + c2)

and

10(b+ c)
√

2(b2 + c2) ≤ 20(b+ c)2,

it suffices to show that √
(49b2 + c2)(b2 + 49c2) ≤ 7(b2 + c2) + 36bc.

Squaring again, the inequality becomes

bc(b− c)2 ≥ 0.

Case 2: b = c = 1. The homogeneous inequality turns into

√
97a2 + 4a+ 4 + 2

√
a2 + 4a+ 100 ≤

√
169a2 + 292a+ 484.

By squaring, we get √
(97a2 + 4a+ 4)(a2 + 4a+ 100) ≤ 17a2 + 68a+ 20.

Squaring again, the inequality reduces to

a(a− 1)2(a+ 12) ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 3/2 (or any cyclic
permutation).

Remark. By squaring, we deduce the inequality√
(32a2 + 3)(32b2 + 3) +

√
(32b2 + 3)(32c2 + 3) +

√
(32c2 + 3)(32a2 + 3) ≤ 105,

with equality for a = b = c = 1, and also for

a = 0, b = c =
3

2

(or any cyclic permutation).

P 5.51. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

1

a1
+

1

a2
+ · · ·+ 1

an
+

2n
√
n− 1

a21 + a22 + · · ·+ a2n
≥ n+ 2

√
n− 1.

(Vasile C., 2009)
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Solution. For n = 2, the inequality reduces to

(a1a2 − 1)2 ≥ 0.

Consider further that n ≥ 3 and a1 ≤ a2 ≤ · · · ≤ an. By Corollary 5 (case k = 2 and m = −1),
if a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a21 + a22 + · · ·+ a2n = fixed,

then the sum

Sn =
1

a1
+

1

a2
+ · · ·+ 1

an

is minimum for a1 = · · · = an−1 ≤ an. Therefore, we only need to prove that

n− 1

a1
+

1

an
+

2n
√
n− 1

(n− 1)a21 + a2n
≥ n+ 2

√
n− 1,

for (n− 1)a1 + an = n. The inequality is equivalent to

(a1 − 1)2
(
a1 −

n

n− 1 +
√
n− 1

)2

≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
an√
n− 1

(or any cyclic permutation).

P 5.52. If a, b, c ∈ [0, 1], then

(1 + 3a2)(1 + 3b2)(1 + 3c2) ≥ (1 + ab+ bc+ ca)3.

Solution. Since
2(ab+ bc+ ca) = (a+ b+ c)2 − (a2 + b2 + c2),

we may apply Corollary 1 to the function

f(u) = − ln(1 + 3u2), u ∈ [0, 1],

to prove the inequality

f(a) + f(b) + f(c) + 3 ln(1 + ab+ bc+ ca) ≤ 0.

We have

g(x) = f ′(x) =
−6x

1 + 3x2
,

g′′(x) =
108x(1− x2)

(1 + 3x2)3
.
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Since g′′(x) > 0 for x ∈ (0, 1), g is strictly convex on [0, 1]. According to Corollary 1 and Note
2, if

a+ b+ c = fixed, a2 + b2 + c2 = fixed, 0 ≤ a ≤ b ≤ c ≤ 1,

then
S3 = f(a) + f(b) + f(c)

is maximum for a = b ≤ c. or for c = 1. Thus, we only need to prove the original inequality for
these cases.

Case 1: a = b ≤ c. We need to show that

(1 + 3a2)2(1 + 3c2) ≥ (1 + a2 + 2ac)3.

For c = 0, the inequality is an equality. For fixed c, 0 < c ≤ 1, we need to show that h(a) ≥ 0,
where

h(a) = 2 ln(1 + 3a2) + ln(1 + 3c2)− 3 ln(1 + a2 + 2ac), a ∈ [0, c].

From

h′(a) =
12a

1 + 3a2
− 6(a+ c)

1 + a2 + 2ac
=

6(1− a2)(a− c)
(1 + 3a2)(1 + a2 + 2ac)

≤ 0,

it follows that h is decreasing on [0, c], hence h(a) ≥ h(c) = 0.

Case 2: c = 1. We need to show that

4(1 + 3a2)(1 + 3b2) ≥ (1 + a)3(1 + b)3.

This is true because

2(1 + 3a2) ≥ (1 + a)3, 2(1 + 3b2) ≥ (1 + b)3.

The first inequality is equivalent to
(1− a)3 ≥ 0.

The proof is completed. The equality holds for a = b = c.

Remark. The following statement is true.

• If a, b, c are real numbers so that ab+ bc+ ca = 3, then

(1 + 3a2)(1 + 3b2)(1 + 3c2) ≥ 64.

The inequality is equivalent to
(3abc− a− b− c)2 ≥ 0.

P 5.53. If a, b, c are nonnegative real numbers so that a+ b+ c = ab+ bc+ ca, then

1

4 + 5a2
+

1

4 + 5a2
+

1

4 + 5a2
≥ 1

3
.

(Vasile C., 2007)
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Solution. By expanding, the inequality becomes

4(a2 + b2 + c2) + 15 ≥ 25a2b2c2 + 5(a2b2 + b2c2 + c2a2).

Let p = a+ b+ c. Since

a2 + b2 + c2 = p2 − 2p, a2b2 + b2c2 + c2a2 = p2 − 2pabc,

the inequality becomes
(2p− 4)2 ≥ (p− 5abc)2,

(3p− 4− 5abc)(p+ 5abc− 4) ≥ 0.

We will show that 3p ≥ 4 + 5abc and p+ 5abc ≥ 4. According to Corollary 4 (case n = 3, k = 2)
or P 3.57 in Volume 1, if

a+ b+ c = fixed, ab+ bc+ ca = fixed, 0 ≤ a ≤ b ≤ c ≤ d,

then the product abc is maximum for a = b, and is minimum for a = 0 or b = c. Thus, we only
need to prove that 3p ≥ 4 + 5abc for a = b, and p+ 5abc ≥ 4 for a = 0 and for b = c.

For a = b, from a+ b+ c = ab+ bc+ ca we get

c =
a(2− a)

2a− 1
,

1

2
< a ≤ 2,

hence

3p− 4− 5abc = (3− 5a2)c+ 6a− 4 =
(a− 1)2(5a2 + 4)

2a− 1
≥ 0.

For a = 0, from a+ b+ c = ab+ bc+ ca we get

c =
b

b− 1
, b > 1,

hence

p+ 5abc− 4 = b+ c− 4 =
(b− 2)2

b− 1
≥ 0.

For b = c, from a+ b+ c = ab+ bc+ ca we get

a =
b(2− b)
2b− 1

,
1

2
< b ≤ 2,

hence

p+ 5abc− 4 = a(5b2 + 1) + 2b− 4 =
(2− b)(5b3 − 3b+ 2)

2b− 1

=
(2− b)[4b3 + (b− 1)2(b+ 2)]

2b− 1
≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 2 (or any cyclic
permutation).
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P 5.54. If a, b, c, d are positive real numbers so that a+ b+ c+ d = 4abcd, then

1

1 + 3a
+

1

1 + 3b
+

1

1 + 3c
+

1

1 + 3d
≥ 1.

(Vasile C., 2007)

Solution. By expanding, the inequality becomes

1 + 3(ab+ ac+ ad+ bc+ bd+ cd) ≥ 19abcd,

2 + 3(a+ b+ c+ d)2 ≥ 3(a2 + b2 + c2 + d2) + 38abcd.

According to Corollary 5 (case n = 4, k = 0, m = 2), if

a+ b+ c+ d = fixed, abcd = fixed, 0 < a ≤ b ≤ c ≤ d,

then the sum
S4 = a2 + b2 + c2 + d2

is maximum for a = b = c ≤ d. Thus, we only need to prove that

3a+ d = 4a3d, d =
3a

4a3 − 1
, a >

1
3
√

4
,

involves
3

3a+ 1
+

1

3d+ 1
≥ 1,

3

3a+ 1
+

4a3 − 1

4a3 + 9a− 1
≥ 1,

4a3 − 9a2 + 6a− 1 ≥ 0,

(a− 1)2(4a− 1) ≥ 0.

The equality holds for a = b = c = d = 1.

Remark. The following generalization holds:

• If a1, a2, . . . , an (n ≥ 4) are positive real numbers so that

a1 + a2 + · · ·+ an = na1a2 · · · an,

then
1

1 + (n− 1)a1
+

1

1 + (n− 1)a2
+ · · ·+ 1

1 + (n− 1)an
≥ 1.

P 5.55. If a1, a2, . . . , an are positive real numbers so that

a1 + a2 + · · ·+ an =
1

a1
+

1

a2
+ · · ·+ 1

an
,

then
1

1 + (n− 1)a1
+

1

1 + (n− 1)a2
+ · · ·+ 1

1 + (n− 1)an
≥ 1.

(Vasile C., 1996)
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Solution. For n = 2, the inequality is an identity. For n ≥ 3, we consider

a1 ≤ a2 ≤ · · · ≤ an,

and apply Corollary 2 to the function

f(u) =
1

1 + (n− 1)u
, u > 0.

We have

f ′(u) =
−(n− 1)

[1 + (n− 1)u]2
,

g(x) = f ′
(

1√
x

)
=
−(n− 1)x

[
√
x+ n− 1]2

,

g′′(x) =
3(n− 1)2

2
√
x(
√
x+ n− 1)4

.

Since g′′(x) > 0 for x > 0, g is strictly convex on [0,∞). By Corollary 2, if 0 < a1 ≤ a2 ≤ · · · ≤
an and

a1 + a2 + · · ·+ an = fixed,
1

a1
+

1

a2
+ · · ·+ 1

an
= fixed,

then the sum
Sn = f(a1) + f(a2) + · · ·+ f(an)

is minimum for a2 = · · · = an. Therefore, we only need to show that

1

1 + (n− 1)a
+

n− 1

1 + (n− 1)b
≥ 1

for

a+ (n− 1)b =
1

a
+
n− 1

b
, 0 < a ≤ b.

Write the hypothesis as
1

a
− a = (n− 1)

(
b− 1

b

)
,

which involves a ≤ 1 ≤ b and
1

a
− a ≥ b− 1

b
, ab ≤ 1.

Write the desired inequality as

n− 1

1 + (n− 1)b
≥ 1− 1

1 + (n− 1)a
,

which is equivalent to
n− 1

1 + (n− 1)b
≥ (n− 1)a

1 + (n− 1)a
,

1− a ≥ (n− 1)a(b− 1).

For the nontrivial case b 6= 1, we have

1− a− (n− 1)a(b− 1) = 1− a− b(1− a2)
a(b2 − 1)

a(b− 1) =
(1− a)(1− ab)

b+ 1
≥ 0.

If n ≥ 3, then the equality holds for a1 = a2 = · · · = an = 1.
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P 5.56. If a, b, c, d, e are nonnegative real numbers so that a4 + b4 + c4 + d4 + e4 = 5, then

7(a2 + b2 + c2 + d2 + e2) ≥ (a+ b+ c+ d+ e)2 + 10.

(Vasile C., 2008)

Solution. According to Corollary 5 (case n = 5, k = 4, m = 2), if

a+ b+ c+ d+ e = fixed, a4 + b4 + c4 + d4 + e4 = 5, 0 ≤ a ≤ b ≤ c ≤ d ≤ e,

then the sum

S4 = a2 + b2 + c2 + d2 + e2

is minimum for a = b = c = d ≤ e. Thus, we only need to prove the homogeneous inequality

[7(a2 + b2 + c2 + d2 + e2)− (a+ b+ c+ d+ e)2]2 ≥ 20(a4 + b4 + c4 + d4 + e4)

for a = b = c = d = 0 and a = b = c = d = 1. The first case is trivial. In the second case, the
inequality becomes

[7(4 + e2)− (4 + e)2]2 ≥ 20(4 + e4),

(3e2 − 4e+ 6)2 ≥ 5e4 + 20,

e4 − 6e3 + 13e2 − 12e+ 4 ≥ 0,

(e− 1)2(e− 2)2 ≥ 0.

The equality holds for a = b = c = d = e = 1, and also for

a = b = c = d =
e

2
=

1√
2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are nonnegative real numbers so that

a41 + a42 + · · ·+ a4n = n,

then

(n+
√
n− 1)(a21 + a22 + · · ·+ a2n − n) ≥ (a1 + a2 + · · ·+ an)2 − n2,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = · · · = an−1 =
an√
n− 1

=
1

4
√
n− 1

(or any cyclic permutation).
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P 5.57. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n, then

(a21 + a22 + · · ·+ a2n)2 − n2 ≥ n(n− 1)

n2 − n+ 1

(
a41 + a42 + · · ·+ a4n − n

)
.

(Vasile C., 2008)

Solution. For n = 2, the inequality reduces to (a1a2 − 1)2 ≥ 0. For n ≥ 3, we apply Corollary
5 for k = 2 and m = 4 : if 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a21 + a22 + · · ·+ a2n = fixed,

then
Sn = a41 + a42 + · · ·+ a4n

is maximum for a1 = · · · = an−1 ≤ an. Thus, we only need to prove the homogeneous inequality

n2(n2 − n+ 1)(a21 + a22 + · · ·+ a2n)2 ≥ (n2 − 2n+ 2)(a1 + a2 + · · ·+ an)4 + n3(n− 1)Sn,

for a1 = · · · = an−1 = 0 and for a1 = · · · = an−1 = 1. For the nontrivial case a1 = · · · = an−1 = 1,
the inequality becomes

n2(n2 − n+ 1)(n− 1 + a2n)2 ≥ (n2 − 2n+ 2)(n− 1 + an)4 + n3(n− 1)(n− 1 + a4n),

(an − 1)2[an − (n− 1)2]2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = · · · = an−1 =
1

n− 1
, an = n− 1

(or any cyclic permutation).

P 5.58. If a1, a2, . . . , an are nonnegative real numbers so that a21 + a22 + · · ·+ a2n = n, then

a31 + a32 + · · ·+ a3n ≥

√
n2 − n+ 1 +

(
1− 1

n

)
(a61 + a62 + · · ·+ a6n).

(Vasile C., 2008)

Solution. For n = 2, the inequality is equivalent to

a61 + a62 + 4a31a
3
2 ≥ 6,

(a21 + a22)
3 − 3a21a

2
2(a

2
1 + a22) + 4a31a

3
2 ≥ 6,

2a31a
3
2 − 3a21a

2
2 + 1 ≥ 0,

(a1a2 − 1)2(2a1a2 + 1) ≥ 0.
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For n ≥ 3, we apply Corollary 5 for k = 3/2 and m = 3 : if 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn and

x1 + x2 + · · ·+ xn = n, x
3/2
1 + x

3/2
2 + · · ·+ x3/2n = fixed,

then
Sn = x31 + x32 + · · ·+ x3n

is maximum for x1 = · · · = xn−1 ≤ xn. Thus, we only need to prove the homogeneous inequality

(a31 + a32 + · · ·+ a3n)2 ≥ n2 − n+ 1

n3
(a21 + a22 + · · ·+ a2n)3 +

(
1− 1

n

)
(a61 + a62 + · · ·+ a6n)

for a1 = · · · = an−1 = 0 and for a1 = · · · = an−1 = 1. For the nontrivial case a1 = · · · = an−1 = 1,
the inequality becomes

n3(n− 1 + a3n)2 ≥ (n2 − n+ 1)(n− 1 + a2n)3 + n2(n− 1)(n− 1 + a6n),

(an − 1)2(an − n+ 1)2(a2n + 2nan + n− 1) ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = · · · = an−1 =
an

n− 1
=

1√
n− 1

(or any cyclic permutation).

P 5.59. If a, b, c are positive real numbers so that abc = 1, then

4

(
1

a
+

1

b
+

1

c

)
+

50

a+ b+ c
≥ 27.

(Vasile C., 2012)

Solution. According to Corollary 5 (case k=0 and m = −1, if

a+ b+ c = fixed, abc = 1, 0 < a ≤ b ≤ c,

then

S3 =
1

a
+

1

b
+

1

c

is minimum for 0 < a = b ≤ c. Thus, we only need to prove that

4

(
2

a
+

1

c

)
+

50

2a+ c
≥ 27

for
a2c = 1, a ≤ 1.

The inequality is equivalent to

8a6 − 54a4 − 26a3 − 27a+ 8 ≥ 0,
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(2a− 1)2(2a4 + 2a3 − 12a2 + 5a+ 8) ≥ 0.

It is true for a ∈ (0, 1] because

2a4 + 2a3 − 12a2 + 5a+ 8 > −12a2 + 4a+ 8 = 4(1− a)(2 + 3a) ≥ 0.

The equality holds for

a = b =
1

2
, c = 4

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

2n

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
+

(2n + n− 1)2

a1 + a2 + · · ·+ an
≥ 2n(2n + 1),

with equality for

a1 = · · · = an−1 =
1

2
, an = 2n−1

(or any cyclic permutation).

For
a1 = · · · = an−1 = a ≤ 1, an−1an = 1,

the inequality is equivalent to f(a) ≥ 0, where

f(a) = 2n

(
n− 1

a
+ an−1

)
+

(2n + n− 1)2an−1

(n− 1)an + 1
− 2n(2n + 1).

We have

f ′(a)

n− 1
=

2n(an − 1)

a2
− (2n + n− 1)2an−2(an − 1)

[(n− 1)an + 1]2

=
(an − 1)(2nan − 1)[(n− 1)2an − 2n]

a2[(n− 1)an + 1]2
.

Since
(n− 1)2an − 2n ≤ (n− 1)2 − 2n < 0,

it follows that f ′(a) < 0 for a ∈
(

0,
1

2

)
, and f ′(a) > 0 for a ∈

(
1

2
, 1

)
. Therefore, f is decreasing

on

(
0,

1

2

]
and increasing on

[
1

2
, 1

]
, hence

f(a) ≥ f

(
1

2

)
= 0.
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P 5.60. If a, b, c are positive real numbers so that abc = 1, then

a3 + b3 + c3 + 15 ≥ 6

(
1

a
+

1

b
+

1

c

)
.

(Michael Rozenberg, 2006)

Solution. Replacing a, b, c by their reverses 1/a, 1/b, 1/c, we need to show that abc = 1 involves

1

a3
+

1

b3
+

1

c3
+ 15 ≥ 6(a+ b+ c).

According to Corollary 5 (case k=0 and m = −3, if

a+ b+ c = fixed, abc = 1, 0 < a ≤ b ≤ c,

then

S3 =
1

a3
+

1

b3
+

1

c3

is minimum for 0 < a = b ≤ c. Thus, we only need to prove that

2

a3
+

1

c3
+ 15 ≥ 6(2a+ c)

for
a2c = 1, a ≤ 1.

The inequality is equivalent to

2

a3
+ a6 + 15 ≥ 6

(
2a+

1

a2

)
,

a9 − 12a4 + 15a3 − 6a+ 2 ≥ 0,

(1− a)2(2− 2a− 6a2 + 5a3 + 4a4 + 3a5 + 2a6 + a7) ≥ 0.

It suffices to show that
2− 2a− 6a2 + 5a3 + 3a4 ≥ 0.

Indeed, we have

2(2− 2a− 6a2 + 5a3 + 3a4) = (2− 3a)2
(

1 + 2a+
3

4
a2
)

+ a3
(

1− 3

4
a

)
≥ 0.

The equality holds for a = b = c = 1.

P 5.61. Let a1, a2, . . . , an be positive numbers so that a1a2 · · · an = 1. If k ≥ n− 1, then

ak1 + ak2 + · · ·+ akn + (2k − n)n ≥ (2k − n+ 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

(Vasile C., 2008)
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Solution. For n = 2 and k = 1, the inequality is an identity. For n = 2 and k > 1, we need to
show that f(a) ≥ 0 for a > 0, where

f(a) = ak + a−k + 4(k − 1)− (2k − 1)(a+ a−1).

We have
f ′(a) = k(ak−1 − a−k−1)− (2k − 1)(1− a−2),

f ′′(a) = k[(k − 1)ak−2 + (k + 1)a−k−2]− 2(2k − 1)a−3.

By the weighted AM-GM inequality, we get

(k − 1)ak−2 + (k + 1)a−k−2 ≥ 2ka
(k−1)(k−2)+(k+1)(−k−2)

2k = 2ka−3,

hence
f ′′(a) ≥ 2k2a−3 − 2(2k − 1)a−3 = 2(k − 1)2a−3 > 0,

f ′ is strictly increasing. Since f ′(1) = 0, it follows that f ′(a) < 0 for a < 1 and f ′(a) > 0 for
a > 1, f is decreasing on (0, 1] and increasing on [1,∞), hence f(a) ≥ f(1) = 0.

Consider further that n ≥ 3. Replacing a1, a2, . . . , an by 1/a1, 1/a2, . . . , 1/an, we need to show
that a1a2 · · · an = 1 involves

1

ak1
+

1

ak2
+ · · ·+ 1

akn
+ (2k − n)n ≥ (2k − n+ 1)(a1 + a2 + · · ·+ an).

According to Corollary 5, if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = fixed, a1a2 · · · an = 1,

then

Sn =
1

ak1
+

1

ak2
+ · · ·+ 1

akn

is minimum for 0 < a1 = · · · = an−1 ≤ an. Thus, we only need to prove the original inequality
for a1 = · · · = an−1 ≥ 1; that is, to show that t ≥ 1 involves f(t) ≥ 0, where

f(t) = (n− 1)tk +
1

tk(n−1)
+ (2k − n)n− (2k − n+ 1)

(
n− 1

t
+ tn−1

)
.

We have

f ′(t) =
(n− 1)g(t)

tkn−k+1
, g(t) = k(tkn − 1)− (2k − n+ 1)tkn−k−1(tn − 1),

g′(t) = tkn−k−2h(t), h(t) = k2ntk+1 − (2k − n+ 1)[(k + 1)(n− 1)tn − kn+ k + 1],

h′(t) = (k + 1)ntn−1[k2tk−n+1 − (2k − n+ 1)(n− 1)].

If k = n− 1, then h(t) = n(n− 1)(n− 2) > 0. If k > n− 1, then

k2tk−n+1 − (2k − n+ 1)(n− 1) ≥ k2 − (2k − n+ 1)(n− 1) = (k − n+ 1)2 > 0,

h′(t) > 0 for t ≥ 1, h is strictly increasing on [1,∞), hence

h(t) ≥ h(1) = n[(k − 1)2 + n− 2] > 0.
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From h > 0, we get g′ > 0, g is strictly increasing, g(t) ≥ g(1) = 0 for t ≥ 1, f ′(t) > 0 for t > 1,
f is strictly increasing, f(t) ≥ f(1) = 0 for t ≥ 1.

The equality holds for a1 = a2 = · · · = an = 1. If n = 2 and k = 1, then the equality holds for
a1a2 = 1.

P 5.62. Let a1, a2, . . . , an (n ≥ 3) be nonnegative numbers so that a1 + a2 + · · · + an = n, and
let k be an integer satisfying 2 ≤ k ≤ n+ 2. If

m =

(
n

n− 1

)k−1

− 1,

then
ak1 + ak2 + · · ·+ akn

n
− 1 ≥ m(1− a1a2 · · · an).

(Vasile C., 2005)

Solution. According to Corollary 4, if 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, ak1 + ak2 + · · ·+ akn = fixed,

then the product
P = a1a2 · · · an

is minimum for either a1 = 0 or 0 < a1 ≤ a2 = · · · = an.

Case 1: a1 = 0. We need to show that

ak2 + · · ·+ akn ≥
nk

(n− 1)k−1

for a2 + · · ·+ an = n. This follows by Jensen’s inequality

ak2 + · · ·+ akn ≥ (n− 1)

(
a2 + · · ·+ an

n− 1

)k

.

Case 2: 0 < a1 ≤ a2 = · · · = an. Denoting a1 = x and a2 = y (x ≤ y), we only need to show
that

f(x) ≥ 0,

where

f(x) = xk + (n− 1)yk + nmxyn−1 − n(m+ 1), y =
n− x
n− 1

, 0 < x ≤ 1 ≤ y.

It is easy to check that
f(0) = f(1) = 0.

Since

y′ =
−1

n− 1
,
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we have

f ′(x) = k(xk−1 − yk−1) + nmyn−2(y − x)

= (y − x)[nmyn−2 − k(yk−2 + yk−3x+ · · ·+ xk−2)]

= (y − x)yn−2[nm− kg(x)],

where

g(x) =
1

yn−k
+

x

yn−k+1
+ · · ·+ xk−2

yn−2
.

We see that f ′(x) has the same sign as

h(x) = nm− kg(x).

Since the function

y(x) =
n− x
n− 1

is strictly decreasing, g is strictly increasing for 2 ≤ k ≤ n. Also, g is strictly increasing for
k = n+ 1, when

g(x) = y + x+
x2

y
+ · · ·+ xn−1

yn−2

=
(n− 2)x+ n

n− 1
+
x2

y
+ · · ·+ xn−1

yn−2
,

and for k = n+ 2, when

g(x) = y2 + yx+ x2 +
x3

y
+ · · ·+ xn

yn−2

=
(n2 − 3n+ 3)x2 + n(n− 3)x+ n2

(n− 1)2
+
x3

y
+ · · ·+ xn

yn−2
.

Therefore, the function h(x) is strictly decreasing for x ∈ [0, 1]. Since f(0) = f(1) = 0, there
exists x1 ∈ (0, 1) so that f(x) is increasing on [0, x1] and decreasing on [x1, 1]. As a consequence,
f(x) ≥ 0 for x ∈ [0, 1].

The equality holds for a1 = a2 = · · · = an = 1, and also for

a1 = 0, a2 = · · · = an =
n

n− 1

(or any cyclic permutation).

Remark 1. For k = 2, we obtain the following inequality

(n− 1)(a21 + a22 + · · ·+ a2n) + na1a2 · · · an ≥ n2,

which holds for any nonnegative real numbers a1, a2, . . . , an satisfying a1 + a2 + · · · + an = n.
Since a1a2 · · · an ≤ 1 (by the AM-GM inequality), this inequality implies

(n− 1)(a21 + a22 + · · ·+ a2n) + n(a1a2 · · · an)2/n ≥ n2,
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which is equivalent to Shleifer’s homogeneous inequality:

(n− 1)(a21 + a22 + · · ·+ a2n) + n(a1a2 · · · an)2/n ≥ (a1 + a2 + · · ·+ an)2.

For n = 4, Shleifer’s inequality becomes Turkevich’s inequality:

a21 + a22 + a23 + a24 + 2
√
a1a2a3a4 ≥ a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4.

Remark 2. For the particular case k = n, the inequality has been posted in 2004 on Art of
Problem Solving website by Gabriel Dospinescu and Calin Popa.

P 5.63. If a, b, c are positive real numbers so that
1

a
+

1

b
+

1

c
= 3, then

4(a2 + b2 + c2) + 9 ≥ 21abc.

(Vasile C., 2006)

Solution. Replacing a, b, c by their reverses 1/a, 1/b, 1/c, we need to show that a + b + c = 3
involves

4

(
1

a2
+

1

b2
+

1

c2

)
+ 9 ≥ 21

abc
.

According to Corollary 5 (case k=0 and m = −2), if

a+ b+ c = 3, abc = fixed, 0 < a ≤ b ≤ c,

then

S3 =
1

a2
+

1

b2
+

1

c2

is minimum for 0 < a = b ≤ c. Thus, we only need to prove that

4

(
2

a2
+

1

c2

)
+ 9 ≥ 21

a2c

for 2a+ b = 3. The inequality is equivalent to

(9a2 + 8)c2 − 21c+ 4a2 ≥ 0,

4a4 − 12a3 + 13a2 − 6a+ 1 ≥ 0,

(a− 1)2(2a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = 2, c =
1

2

(or any cyclic permutation).
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P 5.64. If a1, a2, . . . , an are positive real numbers so that
1

a1
+

1

a2
+ · · ·+ 1

an
= n, then

a1 + a2 + · · ·+ an − n ≤ en−1(a1a2 · · · an − 1),

where

en−1 =

(
1 +

1

n− 1

)n−1

.

(Gabriel Dospinescu and Calin Popa, 2004)

Solution. For n = 2, the inequality is an identity. For n ≥ 3, replacing a1, a2, . . . , an by
1/a1, 1/a2, . . . , 1/an, we need to show that a1 + a2 + · · ·+ an = n involves

a1a2 · · · an
(

1

a1
+

1

a2
+ · · ·+ 1

an
− n+ en−1

)
≤ en−1.

According to Corollary 5 (case k = 0 and m = −1), if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a1a2 · · · an = fixed,

then

Sn =
1

a1
+

1

a2
+ · · ·+ 1

an

is maximum for 0 < a1 ≤ a2 = · · · = an. Using the notation a1 = x and a2 = y, we only need to
show that f(x) ≤ 0 for

x+ (n− 1)y = n, 0 < x ≤ 1,

where

f(x) = xyn−1
(

1

x
+
n− 1

y
− n+ en−1

)
− en−1

= yn−1 + (n− 1)xyn−2 − (n− en−1)xyn−1 − en−1.

Since

y′ =
−1

n− 1
,

we get
f ′(x)

yn−3
= (y − x)h(x),

where

h(x) = n− 2− (n− en−1)y = n− 2− (n− en−1)
n− x
n− 1

is a linear increasing function. Since

h(0) =
n

n− 1

(
en−1 − 3 +

2

n

)
< 0

and
h(1) = en−1 − 2 > 0,



422 Vasile Ĉırtoaje

there exists x1 ∈ (0, 1) so that h(x1) = 0, h(x) < 0 for x ∈ [0, x1), and h(x) > 0 for x ∈ (x1, 1].
Consequently, f is strictly decreasing on [0, x1] and strictly increasing on [x1, 1]. From

f(0) = f(1) = 0,

it follows that f(x) ≤ 0 for x ∈ [0, 1].

The equality holds for a1 = a2 = · · · = an = 1. If n = 2, then the equality holds for
a1 + a2 = 2a1a2.

P 5.65. If a1, a2, . . . , an are positive real numbers, then

an1 + an2 + · · ·+ ann
a1a2 · · · an

+ n(n− 1) ≥ (a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

(Vasile C., Crux Mathematicorum, 8, 2006)

Solution. For n = 2, the inequality is an identity. For n ≥ 3, according to Corollary 5 (case
k = 0 and m ∈ {−1, n}), if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = fixed, a1a2 · · · an = fixed,

then the sum
1

a1
+

1

a2
+ · · ·+ 1

an
is maximum and the sum an1 + an2 + · · ·+ ann is minimum for

0 < a1 ≤ a2 = · · · = an.

Consequently, we only need to prove the desired homogeneous inequality for a2 = · · · = an = 1,
when it becomes

an1 + (n− 2)a1 ≥ (n− 1)a21.

Indeed, by the AM-GM inequality, we have

an1 + (n− 2)a1 ≥ (n− 1) n−1

√
an1 · an−21 = (n− 1)a21.

For n ≥ 3, the equality holds when a1 = a2 = · · · = an.

P 5.66. If a1, a2, . . . , an are nonnegative real numbers, then

(n− 1)(an1 + an2 + · · ·+ ann) + na1a2 · · · an ≥ (a1 + a2 + · · ·+ an)(an−11 + an−12 + · · ·+ an−1n ).

(Janos Suranyi, MSC-Hungary)
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Solution. For n = 2, the inequality is an identity. For n ≥ 3, according to Corollary 5 (case
k = n and m = n− 1), if 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = fixed, an1 + an2 + · · ·+ ann = fixed,

then the sum an−11 + an−12 + · · · + an−1n is maximum and the product a1a2 · · · an is minimum for
either a1 = 0 or 0 < a1 ≤ a2 = · · · = an. Consequently, we only need to consider these cases.

Case 1: a1 = 0. The inequality reduces to

(n− 1)(an2 + · · ·+ ann) ≥ (a2 + · · ·+ an)(an−12 + · · ·+ an−1n ),

which follows immediately from Chebyshev’s inequality.

Case 2: 0 < a1 ≤ a2 = · · · = an. Due to homogeneity, we may set a2 = · · · = an = 1, when the
inequality becomes

(n− 2)an1 + a1 ≥ (n− 1)an−11 .

Indeed, by the AM-GM inequality, we have

(n− 2)an1 + a1 ≥ (n− 1)
n−1

√
a
n(n−2)
1 · a1 = (n− 1)an−11 .

For n ≥ 3, the equality holds when a1 = a2 = · · · = an, and also when

a1 = 0, a2 = · · · = an

(or any cyclic permutation).

P 5.67. If a1, a2, . . . , an are nonnegative real numbers, then

(n− 1)(an+1
1 + an+1

2 + · · ·+ an+1
n ) ≥ (a1 + a2 + · · ·+ an)(an1 + an2 + · · ·+ ann − a1a2 · · · an).

(Vasile C., 2006)

Solution. For n = 2, the inequality is an identity. For n ≥ 3, according to Corollary 5 (case
k = n+ 1 and m = n), if 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = fixed, an+1
1 + an+1

2 + · · ·+ an+1
n = fixed,

then the sum an1 + an2 + · · · + ann is maximum and the product a1a2 · · · an is minimum for either
a1 = 0 or 0 < a1 ≤ a2 = · · · = an. Consequently, we only need to consider these cases.

Case 1: a1 = 0. The inequality reduces to

(n− 1)(an+1
2 + · · ·+ an+1

n ) ≥ (a2 + · · ·+ an)(an2 + · · ·+ ann),

which follows immediately from Chebyshev’s inequality.

Case 2: 0 < a1 ≤ a2 = · · · = an. Due to homogeneity, we may set a2 = · · · = an = 1, when the
inequality becomes

(n− 2)an+1
1 + a21 ≥ (n− 1)an1 .
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Indeed, by the AM-GM inequality, we have

(n− 2)an+1
1 + a21 ≥ (n− 1)

n−1

√
a
(n+1)(n−2)
1 · a21 = (n− 1)an1 .

For n ≥ 3, the equality holds when a1 = a2 = · · · = an, and also when

a1 = 0, a2 = · · · = an

(or any cyclic permutation).

P 5.68. If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an − n)

(
1

a1
+

1

a2
+ · · ·+ 1

an
− n

)
+ a1a2 · · · an +

1

a1a2 · · · an
≥ 2.

(Vasile C., 2006)

Solution. For n = 2, the inequality reduces to

(1− a1)2(1− a2)2 ≥ 0.

Consider further that n ≥ 3. Since the inequality remains unchanged by replacing each ai with
1/ai, we may consider a1a2 · · · an ≥ 1. By the AM-GM inequality, we get

a1 + a2 + · · ·+ an ≥ n n
√
a1a2 · · · an ≥ n.

According to Corollary 5 (case k = 0 and m = −1), if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = fixed, a1a2 · · · an = fixed,

then the sum

Sn =
1

a1
+

1

a2
+ · · ·+ 1

an
is minimum for 0 < a1 = a2 = · · · = an−1 ≤ an. Consequently, we only need to consider

a1 = a2 = · · · = an−1 = x, an = y, x ≤ y.

The inequality becomes

[(n− 1)x+ y − n]

(
n− 1

x
+

1

y
− n

)
+ xn−1y +

1

xn−1y
≥ 2,

(
xn−1 +

n− 1

x
− n

)
y +

[
1

xn−1
+ (n− 1)x− n

]
1

y
≥ n(n− 1)(x− 1)2

x
.

Since

xn−1 +
n− 1

x
− n =

x− 1

x

[
(xn−1 − 1) + (xn−2 − 1) + · · ·+ (x− 1)

]
=

(x− 1)2

x

[
xn−2 + 2xn−3 + · · ·+ (n− 1)

]
,
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and
1

xn−1
+ (n− 1)x− n =

(x− 1)2

x

[
1

xn−2
+

2

xn−3
+ · · ·+ (n− 1)

]
,

it is enough to prove the inequality

[
xn−2 + 2xn−3 + · · ·+ (n− 1)

]
y +

[
1

xn−2
+

2

xn−3
+ · · ·+ (n− 1)

]
1

y
≥ n(n− 1),

which is equivalent to(
xn−2y +

1

xn−2y
− 2

)
+ 2

(
xn−3y +

1

xn−3y
− 2

)
+ · · ·+ (n− 1)

(
y +

1

y
− 2

)
≥ 0,

(xn−2y − 1)2

xn−2y
+

2(xn−3y − 1)2

xn−3y
+ · · ·+ (n− 1)(y − 1)2

y
≥ 0.

The equality holds if n− 1 of the numbers ai are equal to 1.

P 5.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then∣∣∣∣∣∣ 1√
a1 + a2 + · · ·+ an − n

− 1√
1
a1

+ 1
a2

+ · · ·+ 1
an
− n

∣∣∣∣∣∣ < 1.

(Vasile C., 2006)

Solution. Let

A = a1 + a2 + · · ·+ an − n, B =
1

a1
+

1

a2
+ · · ·+ 1

an
− n.

By the AM-GM inequality, it follows that A > 0 and B > 0. According to the preceding P 5.68,
the following inequality holds

(a1 + · · ·+ an+1 − n− 1)

(
1

a1
+ · · ·+ 1

an+1

− n− 1

)
+ a1 · · · an+1 +

1

a1 · · · an+1

≥ 2,

which is equivalent to

(A− 1 + an+1)

(
B − 1 +

1

an+1

)
+ an+1 +

1

an+1

≥ 2,

A

an+1

+Ban+1 + AB − A−B ≥ 0.

Choosing

an+1 =

√
A

B
,
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we get

2
√
AB + AB − A−B ≥ 0,

AB ≥
(√

A−
√
B
)2
,

1 ≥
∣∣∣∣ 1√
A
− 1√

B

∣∣∣∣ .

P 5.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−11 + an−12 + · · ·+ an−1n +
n2(n− 2)

a1 + a2 + · · ·+ an
≥ (n− 1)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

Solution. For n = 2, the inequality is an identity. Consider further that n ≥ 3. According to
Corollary 5 (case k = 0), if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = fixed, a1a2 · · · an = 1,

then the sum an−11 + an−12 + · · ·+ an−1n is minimum and the sum
1

a1
+

1

a2
+ · · ·+ 1

an
is maximum

for 0 < a1 ≤ a2 = · · · = an. Thus, we only need to prove the homogeneous inequality

an−11 + an−12 + · · ·+ an−1n +
n2(n− 2)a1a2 · · · an
a1 + a2 + · · ·+ an

≥ (n− 1)a1a2 · · · an
(

1

a1
+

1

a2
+ · · ·+ 1

an

)
for a2 = · · · = an = 1; that is, to show that f(x) ≥ 0 for x ∈ [0, 1], where

f(x) = xn−2 +
n2(n− 2)

x+ n− 1
− (n− 1)2,

f ′(x)

n− 2
= xn−3 − n2

(x+ n− 1)2
.

Since f ′ is increasing, we have f ′(x) ≤ f ′(1) = 0 for x ∈ [0, 1], f is decreasing on [0, 1], hence
f(x) ≥ f(1) = 0.

The equality holds for a1 = a2 = · · · = an = 1. If n = 2, then the equality holds for a1a2 = 1.

P 5.71. If a, b, c are nonnegative real numbers, then

(a+ b+ c− 3)2 ≥ abc− 1

abc+ 1
(a2 + b2 + c2 − 3).

(Vasile C., 2006)
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Solution. For a = 0, the inequality reduces to

b2 + c2 + bc+ 3 ≥ 3(b+ c),

which is equivalent to
(b− c)2 + 3(b+ c− 2)2 ≥ 0.

For abc > 0, according to Corollary 5 (case k = 0 and m = 2), if

a+ b+ c = fixed, abc = fixed,

then
S3 = a2 + b2 + c2

is minimum and maximum when two of a, b, c are equal. Thus, we only need to prove the desired
inequality for a = b; that is,

(2a+ c− 3)2 ≥ a2c− 1

a2c+ 1
(2a2 + c2 − 3),

which is equivalent to

(a− 1)2[ca2 + 2c(c− 2)a+ c2 − 3c+ 3] ≥ 0.

For c ≥ 2, the inequality is clearly true. It is also true for c ≤ 2, because

ca2 + 2c(c− 2)a+ c2 − 3c+ 3 = c(a+ c− 2)2 + (1− c)2(3− c) ≥ 0.

The equality holds if two of a, b, c are equal to 1.

P 5.72. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

(a1a2 · · · an)
1√
n−1 (a21 + a22 + · · ·+ a2n) ≤ n.

(Vasile C., 2006)

Solution. For n = 2, the inequality is equivalent to

(a1a2 − 1)2 ≥ 0.

For n ≥ 3, according to Corollary 5 (case k = 0, m = 2), if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a1a2 · · · an = fixed,

then the sum
Sn = a21 + a22 + · · ·+ a2n

is maximum for a1 = a2 = · · · = an−1. Therefore, we only need to prove the homogeneous
inequality

(a1a2 · · · an)
1√
n−1 · a

2
1 + a22 + · · ·+ a2n

n
≤
(
a1 + a2 + · · ·+ an

n

)2+ n√
n−1
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for a1 = a2 = · · · = an−1 = 1. The inequality is equivalent to f(x) ≥ 0 for x ≥ 1, where

f(x) =

(
2 +

n√
n− 1

)
ln
x+ n− 1

n
− lnx√

n− 1
− ln

x2 + n− 1

n
.

Let

p =
1√
n− 1

.

Since

f ′(x) =
2 + np

x+ n− 1
− p

x
− 2x

x2 + n− 1

=
(n− 1)(x− 1)

x+ n− 1

(
p

x
− 2

x2 + n− 1

)
=
p(n− 1)(x− 1)(x−

√
n− 1)2

x(x+ n− 1)(x2 + n− 1)
≥ 0,

f(x) is increasing for x ≥ 1, hence
f(x) ≥ f(1) = 0.

The equality holds for a1 = a2 = · · · = an = 1.

Remark. For n = 5, from the homogeneous inequality above, we get the following nice inequal-
ities:

• If a, b, c, d, e are positive real numbers so that

a2 + b2 + c2 + d2 + e2 = 5,

then
(a) abcde(a4 + b4 + c4 + d4 + e4) ≤ 5;

(b) a+ b+ c+ d+ e ≥ 5 9
√
abcde.

P 5.73. If a1, a2, . . . , an are positive real numbers such that a1 + a2 + · · ·+ an = n− 1, then

n

√
n− 1

a1a2 · · · an
≥ 4

√
a21 + a22 + · · ·+ a2n

n(n− 1)
.

(Vasile Cı̂rtoaje and KaiRain, 2020)

Solution. For n = 2, we need to show that a1 + a2 = 1 involves

1

a1a2
≥ 8(a21 + a2)

2,

which is equivalent to
(4a1a2 − 1)2 ≥ 0.
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For n ≥ 3, write the inequality in the homogeneous form(
a1 + a2 + · · ·+ an

n− 1

)2
n

√
n− 1

a1a2 · · · an
≥ 4

√
a21 + a22 + · · ·+ a2n

n(n− 1)
.

According to Corollary 4, for a1 + a2 + · · · + an = fixed and a21 + a22 + · · · + a2n = fixed, the
product a1a2 · · · an is maximum for a1 = a2 = · · · = an−1 ≤ an. Due to homogeneity, we may set
a1 = a2 = · · · = an−1 = 1, when the inequality becomes

A(x+ n− 1)2

n
√
x

≥
√
x2 + n− 1,

where

A =

√
n

4(n− 1)(3n−2)/(2n)
, x ≥ 1.

The inequality is true if f(x) ≥ 0, where

f(x) = lnA+ 2 ln(x+ n− 1)− 1

n
lnx− 1

2
ln(x2 + n− 1).

From

f ′(x) =
2

x+ n− 1
− 1

nx
− x

x2 + n− 1

=
(n− 1) [x3 − (n+ 1)x2 + (2n− 1)x− n+ 1]

nx(x+ n− 1)(x2 + n− 1)

=
(n− 1)(x− 1)2(x− n+ 1)

nx(x+ n− 1)(x2 + n− 1)
,

it follows that f is decreasing on [1, n− 1] and increasing on [n− 1,∞), therefore

f(x) ≥ f(n− 1) = 0.

The equality occurs for a1 = a2 = · · · = an−1 =
1

2
and an =

n− 1

2
(or any cyclic permutation).

P 5.74. If a1, a2, . . . , an are positive real numbers so that a31 + a32 + · · ·+ a3n = n, then

a1 + a2 + · · ·+ an ≥ n n+1
√
a1a2 · · · an.

(Vasile C., 2007)

Solution. For n = 2, we need to show that a31 + a32 = 2 involves (a1 + a2)
3 ≥ 8a1a2. Let

x = a1 + a2.

From
2 = a31 + a32 = x3 − 3a1a2x,
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we get

a1a2 =
x3 − 2

3x
.

Thus,

(a1 + a2)
3 − 8a1a2 = x3 − 8(x3 − 2)

3x
=

(x− 2)2(3x2 + 4x+ 4)

3x
≥ 0.

For n ≥ 3, according to Corollary 4, if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = fixed, a31 + a32 + · · ·+ a3n = n,

then the product
P = a1a2 · · · an

is maximum for a1 = a2 = · · · = an−1. Therefore, we only need to prove the homogeneous
inequality (

a1 + a2 + · · ·+ an
n

)n+1

≥ a1a2 · · · an
3

√
a31 + a32 + · · ·+ a3n

n

for a1 = a2 = · · · = an−1 = 1. The inequality is equivalent to f(x) ≥ 0 for x ≥ 1, where

f(x) = (n+ 1) ln
x+ n− 1

n
− lnx− 1

3
ln
x3 + n− 1

n
.

Since

f ′(x) =
n+ 1

x+ n− 1
− 1

x
− x2

x3 + n− 1

=
(n− 1)(x− 1)(x3 − x2 − x+ n− 1)

x(x+ n− 1)(x3 + n− 1)

≥ (n− 1)(x− 1)(x3 − x2 − x+ 1)

x(x+ n− 1)(x3 + n− 1)

=
(n− 1)(x− 1)3(x+ 1)

x(x+ n− 1)(x3 + n− 1)
,

f(x) is increasing for x ≥ 1, hence
f(x) ≥ f(1) = 0.

The equality holds for a1 = a2 = · · · = an = 1.

P 5.75. Let a, b, c be nonnegative real numbers so that ab+ bc+ ca = 3. If

k ≥ 2− ln 4

ln 3
≈ 0.738,

then
ak + bk + ck ≥ 3.

(Vasile C., 2004)
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Solution. Let

r = 2− ln 4

ln 3
.

By the power mean inequality, we have

ak + bk + ck

3
≥
(
ar + br + cr

3

)k/r

.

Thus, it suffices to show that
ar + br + cr ≥ 3.

Since
2(ab+ bc+ ca) = (a+ b+ c)2 − (a2 + b2 + c2),

according to Corollary 5 (case k = 2, m = r), if a ≤ b ≤ c and

a+ b+ c = fixed, a2 + b2 + c2 = fixed,

then
S3 = ar + br + cr

is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. We need to show that bc = 3 implies br + cr ≥ 3. Indeed, by the AM-GM
inequality, we have

br + cr ≥ 2
√

(bc)r = 2 · 3r/2 = 3.

Case 2: 0 < a ≤ b = c. We only need to show that the homogeneous inequality

ar + br + cr ≥ 3

(
ab+ bc+ ca

3

)r/2

holds for b = c = 1; that is, to show that a ∈ (0, 1] involves

ar + 2 ≥ 3

(
2a+ 1

3

)r/2

,

which is equivalent to f(a) ≥ 0, where

f(a) = ln
ar + 2

3
− r

2
ln

2a+ 1

3
.

The derivative

f ′(a) =
rar−1

ar + 2
− r

2a+ 1
=

rg(a)

a1−r(ar + 2)(2a+ 1)
,

where
g(a) = a− 2a1−r + 1.

From

g′(a) = 1− 2(1− r)
ar

,
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it follows that g′(a) < 0 for a ∈ (0, a1), and g′(a) > 0 for a ∈ (a1, 1], where

a1 = (2− 2r)1/r ≈ 0.416.

Then, g is strictly decreasing on [0, a1] and strictly increasing on [a1, 1]. Since g(0) = 1 and
g(1) = 0, there exists a2 ∈ (0, 1) so that g(a2) = 0, g(a) > 0 for a ∈ [0, a2), and g(a) < 0 for a ∈
(a2, 1]. Consequently, f is increasing on [0, a2] and decreasing on [a2, 1]. Since f(0) = f(1) = 0,
we have f(a) ≥ 0 for 0 < a ≤ 1.

The equality holds for a = b = c = 1. If k = 2− ln 4

ln 3
, then the equality holds also for

a = 0, b = c =
√

3

(or any cyclic permutation).

Remark. For k = 3/4, we get the following nice results (see P 3.33 in Volume 1):

• Let a, b, c be positive real numbers.

(a) If a4b4 + b4c4 + c4a4 = 3, then

a3 + b3 + c3 ≥ 3.

(b) If a3 + b3 + c3 = 3, then

a4b4 + b4c4 + c4a4 ≤ 3.

P 5.76. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

k ≥ ln 9− ln 8

ln 3− ln 2
≈ 0.29,

then
ak + bk + ck ≥ ab+ bc+ ca.

(Vasile C., 2005)

Solution. For k ≥ 1, by Jensen’s inequality, we get

ak + bk + ck ≥ 3

(
a+ b+ c

3

)k

= 3 =
1

3
(a+ b+ c)2 ≥ ab+ bc+ ca.

Let

r =
ln 9− ln 8

ln 3− ln 2
.

Assume further that
r ≤ k < 1,

and write the inequality as

2(ak + bk + ck) + a2 + b2 + c2 ≥ 9.
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By Corollary 5, if a ≤ b ≤ c and

a+ b+ c = 3, a2 + b2 + c2 = fixed,

then the sum
S3 = ak + bk + ck

is minimum for either a = 0 or 0 < a ≤ b = c. Thus, we only need to prove the desired inequality
for these cases.

Case 1: a = 0. We need to show that b + c = 3 involves bk + ck ≥ bc. Indeed, by the AM-GM
inequality, we have

bk + ck − bc ≥ 2(bc)k/2 − bc = (bc)k/2
[
2− (bc)1−k/2

]
≥ (bc)k/2

[
2−

(
b+ c

2

)2−k
]

= (bc)k/2

[
2−

(
3

2

)2−k
]

≥ (bc)k/2

[
2−

(
3

2

)2−r
]

= 0.

Case 2: 0 < a ≤ b = c. We only need to show that the homogeneous inequality

(ak + bk + ck)

(
a+ b+ c

3

)2−k

≥ ab+ bc+ ca

holds for b = c = 1; that is, to show that a ∈ (0, 1] involves

(ak + 2)

(
a+ 2

3

)2−k

≥ 2a+ 1,

which is equivalent to f(a) ≥ 0, where

f(a) = ln(ak + 2) + (2− k) ln
a+ 2

3
− ln(2a+ 1).

We have

f ′(a) =
kak−1

ak + 2
+

2− k
a+ 2

− 2

2a+ 1
=

2g(a)

a1−k(ak + 2)(2a+ 1)
,

where
g(a) = a2 + (2k − 1)a+ k + 2(1− k)a2−k − (k + 2)a1−k,

with
g′(a) = 2a+ 2k − 1 + 2(1− k)(2− k)a1−k − (k + 2)(1− k)a−k,

g′′(a) = 2 + 2(1− k)2(2− k)a−k + k(k + 2)(1− k)a−k−1.

Since g′′ > 0, g′ is strictly increasing. From g′(0+) = −∞ and g′(1) = 3(1 − k) + 3k2 > 0, it
follows that there exists a1 ∈ (0, 1) so that g′(a1) = 0, g′(a) < 0 for a ∈ (0, a1) and g′(a) > 0 for
a ∈ (a1, 1]. Therefore, g is strictly decreasing on [0, a1] and strictly increasing on [a1, 1]. Since
g(0) = k > 0 and g(1) = 0, there exists a2 ∈ (0, a1) so that g(a2) = 0, g(a) > 0 for a ∈ [0, a2)
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and g(a) < 0 for a ∈ (a2, 1]. Consequently, f is increasing on [0, a2] and decreasing on [a2, 1].
Since

f(0) = ln 2 + (3− k) ln
2

3
≥ ln 2 + (3− r) ln

2

3
= 0

and f(1) = 0, we get f(a) ≥ 0 for 0 ≤ a ≤ 1.

The equality holds for a = b = c = 1. If k =
ln 9− ln 8

ln 3− ln 2
, then the equality holds also for

a = 0, b = c =
3

2

(or any cyclic permutation).

P 5.77. If a1, a2, . . . , an (n ≥ 4) are nonnegative numbers so that a1 + a2 + · · ·+ an = n, then

1

n+ 1− a2a3 · · · an
+

1

n+ 1− a3a4 · · · a1
+ · · ·+ 1

n+ 1− a1a2 · · · an−1
≤ 1.

(Vasile C., 2004)

Solution. Let a1 ≤ a2 ≤ · · · ≤ an and

en−1 =

(
1 +

1

n− 1

)n−1

.

By the AM-GM inequality, we have

a2a3 · · · an ≤
(
a2 + a3 + · · ·+ an

n− 1

)n−1

≤
(
a1 + a2 + · · ·+ an

n− 1

)n−1

= en−1,

hence
n+ 1− a2a3 · · · an ≥ n+ 1− en−1 = (n− 2) + (3− en−1) > 0.

Consider the cases a1 = 0 and a1 > 0.

Case 1: a1 = 0. We need to show that a2 + a3 + · · ·+ an = n involves

1

n+ 1− a2a3 · · · an
+
n− 1

n+ 1
≤ 1,

which is equivalent to

a2a3 · · · an ≤
n+ 1

2
.

Since

a2a3 · · · an ≤
(
a2 + a3 + · · ·+ an

n− 1

)n−1

= en−1,

it suffices to show that

en−1 ≤
n+ 1

2
.
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For n = 4, we have
n+ 1

2
− en−1 =

7

54
> 0.

For n ≥ 5, we get
n+ 1

2
≥ 3 > en−1.

Case 2: 0 < a1 ≤ a2 ≤ · · · ≤ an. Denote

a1a2 · · · an = (n+ 1)r, r > 0.

From a2a3 · · · an ≤ en−1, we get

a1 ≥ a, a =
(n+ 1)r

en−1
> r.

Write the inequality as follows

a1
a1 − r

+
a2

a2 − r
+ · · ·+ an

an − r
≤ n+ 1,

1

a1 − r
+

1

a2 − r
+ · · ·+ 1

an − r
≤ 1

r
,

f(a1) + f(a2) + · · ·+ f(an) +
1

r
≥ 0,

where

f(u) =
−1

u− r
, u ≥ a.

We will apply Corollary 3 to the function f . We have

f ′(u) =
1

(u− r)2
,

g(x) = f ′
(

1

x

)
=

x2

(1− rx)2
, g′′(x) =

4rx+ 2

(1− rx)4
> 0.

According to Corollary 3, if a ≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a1a2 · · · an = (n+ 1)r = fixed,

then the sum S3 = f(a1) + f(a2) + · · · + f(an) is minimum for a ≤ a1 ≤ a2 = · · · = an. Thus,
we only need to prove the homogeneous inequality

1

n+ 1− a2a3 · · · an
sn−1

+
1

n+ 1− a3a4 · · · a1
sn−1

+ · · ·+ 1

n+ 1− a1a2 · · · an−1
sn−1

≤ 1

for 0 < a1 ≤ a2 = a3 = · · · = an = 1, where

s =
a1 + a2 + · · ·+ an

n
;
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that is,
sn−1

(n+ 1)sn−1 − 1
+

(n− 1)sn−1

(n+ 1)sn−1 − a1
≤ 1, s =

a1 + n− 1

n
,

which is equivalent to
f(s) ≥ 0, s1 < s ≤ 1,

where

s1 =
n− 1

n
and

f(s) = (n+ 1)s2n−2 − n2sn + (n+ 1)(n− 2)sn−1 + ns− n+ 1.

We have
f ′(s) = 2(n2 − 1)s2n−3 − n3sn−1 + (n2 − 1)(n− 2)sn−2 + n,

f ′′(s) = (n− 1)sn−3g(s),

where
g(s) = 2(2n− 3)(n+ 1)sn−1 − n3s+ (n− 2)2(n+ 1),

g′(s) = 2(2n− 3)(n2 − 1)sn−2 − n3.

Since

g′(s) ≥ g′(s1) =
2n(2n− 3)(n+ 1)

en−1
− n3

>
2n(2n− 3)(n+ 1)

3
− n3 =

n(n2 − 2n− 6)

3
> 0,

g is increasing. There are two cases to consider: g(s1) ≥ 0 and g(s1) < 0.

Subcase A: g(s1) ≥ 0. Then, g(s) ≥ 0, f ′′(s) ≥ 0, f ′ is increasing. Since f ′(1) = 0, it follows
that f ′(s) ≤ 0 for s ∈ [s1, 1], f is decreasing, hence f(s) ≥ f(1) = 0.

Subcase B: g(s1) < 0. Then, since g(1) = n2 − 2n + 4 > 0, there exists s2 ∈ (s1, 1) so that
g(s2) = 0, g(s) < 0 for s ∈ [s1, s2) and g(s) > 0 for s ∈ (s2, 1], f ′ is decreasing on [s1, s2]
and increasing on [s2, 1]. We see that f ′(1) = 0. If f ′(s1) ≤ 0, then f ′(s) ≤ 0 for s ∈ [s1, 1],
f is decreasing, hence f(s) ≥ f(1) = 0. If f ′(s1) > 0, then there exists s3 ∈ (s1, s2) so that
f ′(s3) = 0, f ′(s) > 0 for s ∈ [s1, s3) and g(s) < 0 for s ∈ (s3, 1], hence f is increasing on [s1, s3]
and decreasing on [s3, 1]. Since f(1) = 0, it suffices to show that f(s1) ≥ 0. This is true since
s = s1 involves a1 = 0, and we have shown that the desired inequality holds for a1 = 0.

The equality occurs for a1 = a2 = · · · = an = 1.

P 5.78. If a, b, c are nonnegative real numbers so that

a+ b+ c ≥ 2, ab+ bc+ ca ≥ 1,

then
3
√
a+

3
√
b+ 3
√
c ≥ 2.

(Vasile C., 2005)
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Solution. According to Corollary 5 (case k = 2 and m = 1/3), if 0 ≤ a ≤ b ≤ c and

a+ b+ c = fixed, ab+ bc+ ca = fixed,

then the sum S3 = 3
√
a+ 3
√
b+ 3
√
c is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. The hypothesis ab+ bc+ ca ≥ 1 implies bc ≥ 1; consequently,

3
√
a+

3
√
b+ 3
√
c =

3
√
b+ 3
√
c ≥ 2

6
√
bc ≥ 2.

Case 2: 0 < a ≤ b = c. If c ≥ 1, then

3
√
a+

3
√
b+ 3
√
c ≥ 2 3

√
c ≥ 2.

If c < 1, then
3
√
a+

3
√
b+ 3
√
c ≥ a+ b+ c ≥ 2.

The equality holds for
a = 0, b = c = 1

(or any cyclic permutation).

P 5.79. If a, b, c, d are positive real numbers so that abcd = 1, then

(a+ b+ c+ d)4 ≥ 36
√

3 (a2 + b2 + c2 + d2).

(Vasile C., 2008)

Solution. According to Corollary 5 (case k = 0 and m = 2), if a ≤ b ≤ c ≤ d and

a+ b+ c+ d = fixed, abcd = 1,

then the sum
S4 = a2 + b2 + c2 + d2

is maximum for a = b = c ≤ d. Thus, we only need to show that

(3a+ d)4 ≥ 36
√

3 (3a2 + d2)

for a3d = 1. Write this inequality as f(a) ≥ 0, where

f(a) = 4 ln

(
3a+

1

a3

)
− ln

(
3a2 +

1

a6

)
− ln 36

√
3, 0 < a ≤ 1.

Since

f ′(a) =
12(a4 − 1)

a(3a4 + 1)
− 6(a8 − 1)

a(3a8 + 1)
=

6(a4 − 1)2(3a4 − 1)

a(3a4 + 1)(3a8 + 1)
,

f is decreasing on [0, 1/ 4
√

3] and increasing on [1/ 4
√

3, 1]; therefore,

f(a) ≥ f

(
1
4
√

3

)
= 0.
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The equality holds for

a = b = c =
1
4
√

3
, d =

4
√

27

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

(a1 + a2 + · · ·+ an)4 ≥ 16

n
n
√

(n− 1)3n−2 (a21 + a22 + · · ·+ a2n),

with equality for

a1 = a2 = · · · = an−1 =
1

n
√
n− 1

, an = n
√

(n− 1)n−1

(or any cyclic permutation).

P 5.80. If a, b, c are nonnegative real numbers so that ab+ bc+ ca = 1, then

√
33a2 + 16 +

√
33b2 + 16 +

√
33c2 + 16 ≤ 9(a+ b+ c).

(Vasile C., 2006)

Solution. Write the inequality as

f(a) + f(b) + f(c) + 297(a+ b+ c) ≥ 0,

where

f(u) = − 1

33

√
33u2 + 16, u ≥ 0.

We have

g(x) = f ′(x) =
−x√

33x2 + 16
,

g′′(x) =
33 · 48x

(33x2 + 16)5/2
.

Since g′′(x) > 0 for x > 0, g is strictly convex on [0,∞). According to Corollary 1, if 0 ≤ a ≤ b ≤ c
and

a+ b+ c = fixed, a2 + b2 + c2 = fixed,

then the sum
Sn = f(a) + f(b) + f(c)

is minimum for either a = 0 or 0 < a ≤ b = c.

Case 1: a = 0. We need to show that bc = 1 involves

√
33b2 + 16 +

√
33c2 + 16 ≤ 9(b+ c)− 4.
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We see that

9(b+ c)− 4 ≥ 18
√
bc− 4 = 14 > 0.

By squaring, the inequality becomes

√
528t2 + 289 ≤ 24t2 − 36t+ 25,

where

t = b+ c ≥ 2.

Since

24t2 − 36t+ 25 ≥ 6t2 + 25,

it suffices to show that

528t2 + 289 ≤ (6t2 + 25)2,

which is equivalent to

(t2 − 4)(3t2 − 7) ≥ 0.

Case 2: 0 < a ≤ b = c. Write the inequality in the homogeneous form∑√
33a2 + 16(ab+ bc+ ca) ≤ 9(a+ b+ c).

Without loss of generality, assume that b = c = 1, when the inequality becomes

√
33a2 + 32a+ 16 + 2

√
32a+ 49 ≤ 9a+ 18.

By squaring twice, the inequality becomes as follows:√
(33a2 + 32a+ 16)(32a+ 49) ≤ 12a2 + 41a+ 28,

72a(2a3 − a2 − 4a+ 3) ≥ 0,

72a(a− 1)2(2a+ 3) ≥ 0.

The equality holds for a = b = c =
1√
3

, and also for

a = 0, b = c = 1

(or any cyclic permutation).

P 5.81. If a, b, c are positive real numbers so that a+ b+ c = 3, then

a2b2 + b2c2 + c2a2 ≤ 3
3
√
abc

.

(Vasile C., 2006)
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Solution. Write the inequality in the homogeneous form(
a+ b+ c

3

)15

≥ abc

(
a2b2 + b2c2 + c2a2

3

)3

.

Since

a2b2 + b2c2 + c2a2 = (ab+ bc+ ca)2 − 2abc(a+ b+ c)

=
1

4
(9− a2 − b2 − c2)− 6abc,

we will apply Corollary 5 (case k = 0 and m = 2):
• If 0 ≤ a ≤ b ≤ c and

a+ b+ c = 3, abc = fixed,

them the sum
S3 = a2 + b2 + c2

is minimum for 0 < a ≤ b = c.

Therefore, we only need to prove the homogeneous inequality for 0 < a ≤ 1 and b = c = 1.
Taking logarithms, we have to show that f(a) ≥ 0, where

f(a) = 15 ln
a+ 2

3
− ln a− 3 ln

2a2 + 1

3
.

Since the derivative

f ′(a) =
15

a+ 2
− 1

a
− 12a

2a2 + 1
=

2(a− 1)(2a− 1)(4a− 1)

a(a+ 2)(2a2 + 1)

is negative for a ∈
(

0,
1

4

)
∪
(

1

2
, 1

)
and positive for a ∈

(
1

4
,
1

2

)
, f is decreasing on

(
0,

1

4

]
∪
[

1

2
, 1

]
and increasing on

[
1

4
,
1

2

]
. Therefore, it suffices to show that f

(
1

4

)
≥ 0 and f(1) ≥ 0. Indeed,

we have f(1) = 0 and

f

(
1

4

)
= ln

312

219
> 0.

The equality holds for a = b = c = 1.

P 5.82. If a1, a2, . . . , an (n ≤ 81) are nonnegative real numbers so that

a21 + a22 + · · ·+ a2n = a51 + a52 + · · ·+ a5n,

then
a61 + a62 + · · ·+ a6n ≤ n.

(Vasile C., 2006)
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Solution. Setting an = 1, we obtain the statement for n − 1 numbers ai. Consequently, it
suffices to prove the inequality for n = 81. We need to show that the following homogeneous
inequality holds:

81(a51 + a52 + · · ·+ a581)
2 ≥ (a61 + a62 + · · ·+ a681)(a

2
1 + a22 + · · ·+ a281)

2.

According to Corollary 5 (case k = 3 and m = 5/2), if 0 ≤ a1 ≤ a2 ≤ · · · ≤ a81 and

a21 + a22 + · · ·+ a281 = fixed, a61 + a62 + · · ·+ a681 = fixed,

then the sum a51+a52+· · ·+a581 is minimum for a1 = a2 = · · · = a80 ≤ a81. Therefore, we only need
to prove the homogeneous inequality for a1 = a2 = · · · = a80 = 0 and for a1 = a2 = · · · = a80 = 1.
The first case is trivial. In the second case, denoting a81 by x, the homogeneous inequality
becomes as follows:

81(80 + x5)2 ≥ (80 + x6)(80 + x2)2,

x10 − 2x8 − 80x6 + 162x5 − x4 − 160x2 + 80 ≥ 0,

(x− 1)2(x− 2)2(x6 + 6x5 + 21x4 + 60x3 + 75x2 + 60x+ 20) ≥ 0.

Thus, the proof is completed. The equality holds for a1 = a2 = · · · = an = 1. If n = 81, then
the equality holds also for

a1 = a2 = · · · = a80 =
a81
2

=
3

√
3

4

(or any cyclic permutation).

P 5.83. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1 +
√

1 + a3 + b3 + c3 ≥
√

3(a2 + b2 + c2).

(Vasile C., 2006)

Solution. Write the inequality as

√
1 + a3 + b3 + c3 ≥

√
3(a2 + b2 + c2)− 1.

By squaring, we may rewrite the inequality in the homogeneous form

a3 + b3 + c3 + 2

(
a+ b+ c

3

)2√
3(a2 + b2 + c2) ≥ (a+ b+ c)(a2 + b2 + c2).

According to Corollary 5 (case k = 2 and m = 3), if 0 ≤ a ≤ b ≤ c and

a+ b+ c = fixed, a2 + b2 + c2 = fixed,

then the sum
S3 = a3 + b3 + c3
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is minimum for either a = 0 or 0 < a ≤ b = c. Thus, we only need to prove the homogeneous
inequality for a = 0 and for b = c = 1.

Case 1: a = 0. We need to show that

b3 + c3 + 2

(
b+ c

3

)2√
3(b2 + c2) ≥ (b+ c)(b2 + c2).

Simplifying by b+ c, it remains to show that

(b+ c)
√
b2 + c2 ≥ 3

√
3

2
bc.

Indeed,

(b+ c)
√
b2 + c2 ≥

(
2
√
bc
)√

2bc ≥ 3
√

3

2
bc.

Case 2: b = c = 1. We need to prove that

(a+ 2)2
√

3(a2 + 2) ≥ 9(a2 + a+ 1).

By squaring, the inequality becomes

a6 + 8a5 − a4 − 6a3 − 17a2 + 10a+ 5 ≥ 0,

(a− 1)2(a4 + 10a3 + 18a2 + 20a+ 5) ≥ 0.

The equality holds for a = b = c = 1.

P 5.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

√
a+ b+

√
b+ c+

√
c+ a ≤

√
16 +

2

3
(ab+ bc+ ca).

(Lorian Saceanu, 2017)

Solution. Write the inequality in the form

f(a) + f(b) + f(c) +

√
16 +

2

3
(ab+ bc+ ca) ≥ 0,

where
f(u) = −

√
3− u, 0 ≤ u ≤ 3.

We have

g(x) = f ′(x) =
1

2
√

3− x
,

g′′(x) =
3

8
(3− x)−5/2.
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Since g′′(x) > 0 for x ∈ [0, 3), g is strictly convex on [0, 3]. According to Corollary 1, if
0 ≤ a ≤ b ≤ c and

a+ b+ c = 3, ab+ bc+ ca = fixed,

then the sum S3 = f(a) + f(b) + f(c) is minimum for either a = 0 or 0 < a ≤ b = c. Therefore,
we only need to prove the homogeneous inequality

√
a+ b+

√
b+ c+

√
c+ a ≤

√
16

3
(a+ b+ c) +

2(ab+ bc+ ca)

a+ b+ c

for a = 0 and b = c = 1.

Case 1: a = 0. We need to show that

√
b+
√
c+
√
b+ c ≤

√
16

3
(b+ c) +

2bc

b+ c
.

Consider the nontrivial case b, c > 0, use the substitution

x =

√
b

c
+

√
c

b
, x ≥ 2,

and write the inequality as√
b+ c+ 2

√
bc+

√
b+ c ≤

√
16

3
(b+ c) +

2bc

b+ c
,

√
x+ 2 +

√
x ≤

√
16

3
x+

2

x
.

By squaring twice, the inequality becomes as follows:√
x(x+ 2) ≤ 5

3
x− 1 +

1

x
,

16x4 − 48x3 + 39x2 − 18x+ 9 ≥ 0,

(x− 2)[16x2(x− 1) + 7x− 4] + 1 ≥ 0.

Case 2: b = c = 1. We need to prove that

2
√
a+ 1 +

√
2 ≤

√
16

3
(a+ 2) +

2(2a+ 1)

a+ 2

By squaring twice, the inequality becomes as follows:

6(a+ 2)
√

2(a+ 1) ≤ 2a2 + 17a+ 17,

4a4 − 4a3 − 3a2 + 2a+ 1 ≥ 0,

(a− 1)2(2a+ 1)2 ≥ 0.

The equality holds for a = b = c = 1.
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P 5.85. If a, b, c ∈ [0, 4] and ab+ bc+ ca = 4, then

√
a+ b+

√
b+ c+

√
c+ a ≤ 3 +

√
5.

(Vasile Cı̂rtoaje, 2019)

First Solution. Denote s = a+ b+ c, consider s fixed and write the inequality as

f(a) + f(b) + f(c) ≥ −3−
√

5,

where
f(x) = −

√
s− x. 0 ≤ x < s.

From

g(x) = f ′(x) =
1

2
(s− x)−1/2, g′′(x) =

3

8
(s− x)−5/2 > 0,

it follows that g is strictly convex. Thus, by Corollary 1 and Note 2, the sum f(a) + f(b) + f(c)
is minimum for either a ≤ b = c or a = 0.

Case 1: a ≤ b = c. We need to show that 2ac+ c2 = 4 yields

2
√
a+ c+

√
2c ≤ 3 +

√
5,

that is √
2(c2 + 1)

c
+
√

2c ≤ 3 +
√

5.

From 2ac+ c2 = 4,it follows that
2√
3
≤ c ≤ 2.

Since
√

2c ≤ 2, it is enough to show that√
2(c2 + 1)

c
≤ 1 +

√
5,

that is
c2 − (3 +

√
5)c+ 4 ≤ 0.

Indeed,
c2 − (3 +

√
5)c+ 4 ≤ c2 − 5c+ 4 = (c− 1)(c− 4) < 0.

Case 2: a = 0. We need to show that bc = 4 yields

√
b+
√
c+
√
b+ c ≤ 3 +

√
5.

From (4− b)(4− c) ≥ 0, we get b+ c ≤ 5. Thus,

√
b+
√
c+
√
b+ c ≤

√
b+ c+ 2

√
bc+

√
b+ c

≤
√

5 + 2
√

4 +
√

5 = 3 +
√

5.
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The equality occurs for a = 0, b = 1 and c = 4 (or any permutation).

Second Solution(by Kiyoras-2001 ) Assume that a ≥ b ≥ c, denote

S = ab+ bc+ ca

and show that

f(a, b, c) ≤ f

(
a,
S

a
, 0

)
≤ 3 +

√
5,

where

f(a, b, c) =
√
a+ b+

√
b+ c+

√
c+ a.

The left homogeneous inequality is true because

f

(
a,
S

a
, 0

)
− f(a, b, c) =

=

√
a+

S

a
−
√
a+ b+

√
S

a
−
√
b+ c+

√
a−
√
c+ a

=
c
a
(a+ b)√

(a+b)(a+c)
a

+
√
a+ b

+
bc
a√

S
a

+
√
b+ c

− c√
a+
√
c+ a

≥ c

a

( √
a(a+ b)√

a+ c+
√
a
− a√

a+
√
c+ a

)
≥ 0.

Also, the right inequality is true for S = 4 and a, b, c ∈ [0, 4] since a > 1 and

f

(
a,

4

a
, 0

)
− 3−

√
5 =

=

√
a+

4

a
−
√

5 +
2√
a

+
√
a− 3

=
(a− 1)

(
1− 4

a

)√
a+ 4

a
+
√

5
+ (
√
a− 1)

(
1− 2√

a

)
≤ 0.

P 5.86. If a, b, c are positive real numbers so that abc = 1, then

(a)
a+ b+ c

3
≥ 3

√
2 + a2 + b2 + c2

5
;

(b) a3 + b3 + c3 ≥
√

3(a4 + b4 + c4).

(Vasile C., 2006)
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Solution. (a) According to Corollary 5 (case k = 0 and m = 2), if a ≤ b ≤ c and

a+ b+ c = fixed, abc = 1,

the sum S3 = a2 + b2 + c2 is maximum for 0 < a = b ≤ c. Thus, we only need to show that
a2c = 1 involves

2a+ c

3
≥ 3

√
2 + 2a2 + c2

5
,

which is equivalent to

5

(
2a+

1

a2

)3

≥ 27

(
2 + 2a2 +

1

a4

)
,

40a9 − 54a8 + 6a6 + 30a3 − 27a2 + 5 ≥ 0,

(a− 1)2(40a7 + 26a6 + 12a5 + 4a4 − 4a3 − 12a2 + 10a+ 5) ≥ 0.

The inequality is true since

12a5 + 4a4 − 4a3 − 12a2 + 10a+ 5 > 2a5 + 4a4 − 4a3 − 12a2 + 10a

= 2a(a− 1)2(a2 + 4a+ 5) ≥ 0.

The equality holds for a = b = c = 1.

(b) According to Corollary 5 (case k = 0 and m = 4/3), if a ≤ b ≤ c and

a3 + b3 + c3 = fixed, a3b3c3 = 1,

the sum S3 = a4 + b4 + c4 is maximum for 0 < a = b ≤ c. Thus, we only need to show that

2a3 + c3 ≥
√

3(2a4 + c4)

for a2c = 1, a ≤ 1. The inequality is equivalent to(
2a3 +

1

a6

)2

≥ 3

(
2a4 +

1

a8

)
.

Substituting a = 1/t, t ≥ 1, the inequality becomes(
2

t3
+ t6

)2

≥ 3

(
2

t4
+ t8

)
,

which is equivalent to f(t) ≥ 0, where

f(t) = t18 − 3t14 + 4t9 − 6t2 + 4.

We have
f ′(t) = 6tg(t), g(t) = 3t16 − 7t12 + 6t7 − 2,

g′(t) = 6t6h(t), h(t) = 8t9 − 14t5 + 7,

h′(t) = 2t4(36t2 − 35).

Since h′(t) > 0 for t ≥ 1, h is increasing, h(t) ≥ h(1) = 1 for t ≥ 1, g is increasing, g(t) ≥ g(1) = 0
for t ≥ 1, f is increasing, hence f(t) ≥ f(1) = 0 for t ≥ 1.

The equality holds for a = b = c = 1.
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P 5.87. If a, b, c, d are nonnegative real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 18) ≤ 10(a3 + b3 + c3 + d3 − 4).

(Vasile Cı̂rtoaje, 2010)

Solution. Apply Corollary 2 for n = 4, k = 2, m = 3:

• If a, b, c, d are real numbers so that 0 ≤ a ≤ b ≤ c ≤ d and

a+ b+ c+ d = 4, a2 + b2 + c2 + d2 = fixed,

then
S4 = a3 + b3 + c3 + d3

is minimum for either 0 < a ≤ b = c = d or a = 0.

Case 1: 0 < a ≤ b = c = d. We need to show that a+ 3d = 4 involves

(a2 + 3d2 − 4)(a2 + 3d2 + 18) ≤ 10(a3 + 3d3 − 4).

This inequality is equivalent to

(1− d)2(1 + d)(4− 3d) ≥ 0,

(1− d)2(1 + d)a ≥ 0.

Case 2: a = 0. Let
s = b2 + c2 + d2.

We need to show that b+ c+ d = 4 involves

(s− 4)(s+ 18) ≤ 10(b3 + c3 + d3 − 4).

By the Cauchy-Schwarz inequality, we have

s ≥ 1

3
(b+ c+ d)2 =

16

3

and

(b+ c+ d)(b3 + c3 + d3) ≥ (b2 + c2 + d2)2, b3 + c3 + d3 ≥ s2

4
.

Thus, it suffices to show that

(s− 4)(s+ 18) ≤ 10

(
s2

4
− 4

)
,

which is equivalent to the obvious inequality

(s− 4)(3s− 16) ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = 0, b = c = d =
4

3

(or any cyclic permutation).



448 Vasile Ĉırtoaje

P 5.88. If a, b, c, d are nonnegative real numbers such that

a+ b+ c+ d = 4,

then
(a4 + b4 + c4 + d4)2 ≥ (a2 + b2 + c2 + d2)(a5 + b5 + c5 + d5).

(Vasile C., 2020)

Solution. Consider the inequality

(a41 + a42 + · · ·+ a4n)2 ≥ (a21 + a22 + · · ·+ a2n)(a51 + a52 + · · ·+ a5n),

where a1, a2, . . . , an are nonnegative real numbers such that a1 + a2 + · · · + an = n. Write this
inequality in the homogeneous form

n(a41 + a42 + · · ·+ a4n)2 ≥ (a1 + a2 + · · ·+ an)(a21 + a22 + · · ·+ a2n)(a51 + a52 + · · ·+ a5n).

Replacing a1, a2, . . . , an with x
1/4
1 , x

1/4
2 , . . . , x

1/4
n , the inequality becomes

n(x1 + x2 + · · ·+ xn)2 ≥

≥
(
x
1/4
1 + x

1/4
2 + · · ·+ x1/4n

)(
x
1/2
1 + x

1/2
2 + · · ·+ x1/2n

)(
x
5/4
1 + x

5/4
2 + · · ·+ x5/4n

)
.

By Corollary 5 (case k = 5/4), if

x1 + x2 + · · ·+ xn = fixed, x
5/4
1 + x

5/4
2 + · · ·+ x5/4n = fixed,

then the sums x
1/4
1 + x

1/4
2 + · · ·+ x

1/4
n and x

1/2
1 + x

1/2
2 + · · ·+ x

1/2
n are maximum for

0 ≤ x1 = x2 = · · · = xn−1 ≤ xn.

Since the case a1 = a2 = · · · = an−1 = 0 is trivial, it suffices to consider the case a1 = a2 = · · · =
an−1 = 1, when the required inequality becomes f(a) ≥ 0, where

f(a) = (a4 + n− 1)2 − (a+ n− 1)(a2 + n− 1)(a5 + n− 1), a ≥ 1.

We have

f(a)

n− 1
= a8 − a7 − a6 − (n− 1)a5 + 2na4 − a3 − (n− 1)a2 − (n− 1)a+ n− 1

= a3A− (n− 1)B,

where
A = a5 − a4 − a3 + 2a− 1, B = a5 − 2a4 + a2 + a− 1.

Since
A = (a− 1)2(a3 + a2 − 1), B = (a− 1)2(a3 − a− 1),

we have
f(a) = (n− 1)(a− 1)2g(a),
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where
g(a) = a6 + a5 − na3 + (n− 1)a+ n− 1.

The inequality is true if g(a) ≥ 0. For n = 4, we have

g(a) = a6 + a5 − 4a3 + 3a+ 3 > 2a5 − 4a3 + 2a = 2a(a2 − 1)2 ≥ 0.

The equality occurs for a = b = c = d = 1.

Remark 1. Since g(a) ≥ 0 for n ≤ 16, the homogeneous inequality is true for all n ≤ 16.

Remark 2. Since

(a1 + a2 + · · ·+ an)(a51 + a52 + · · ·+ a5n) ≤ |(a1 + a2 + · · ·+ an)(a51 + a52 + · · ·+ a5n)|

≤ (|a1|+ |a2|+ · · ·+ |an|)(|a1|5 + |a2|5 + · · ·+ |an|5),

the homogeneous inequality is true for n ≤ 16 and real a1, a2, . . . , an.

P 5.89. If a, b, c, d are nonnegative real numbers such that

a+ b+ c+ d = 4,

then
13(a2 + b2 + c2 + d2)2 ≥ 12(a4 + b4 + c4 + d4) + 160.

(Vasile Cı̂rtoaje, 2020)

Solution. Write the inequality in the homogeneous form

104(a2 + b2 + c2 + d2)2 ≥ 96(a4 + b4 + c4 + d4) + 5(a+ b+ c+ d)4.

According to Corollary 5, for a+ b+ c+ d = fixed and a2 + b2 + c2 + d2 = fixed, the sum

S = a4 + b4 + c4 + d4

is maximum when a ≥ b = c = d. Therefore, it suffices to consider this case. Due to homogeneity,
for the nontrivial case b = c = d 6= 0, we may consider that b = c = d = 1. Thus we only need
to prove that

104(a2 + 3)2 ≥ 96(a4 + 3) + 5(a+ 3)4,

which is equivalent to
(a− 1)2(a− 9)2 ≥ 0.

The equality occurs for a = b = c = d = 1, and also for a = 3 and b = c = d =
1

3
(or any cyclic

permutation).
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P 5.90. If a1, a2, . . . , a8 are nonnegative real numbers, then

19(a21 + a22 + · · ·+ a28)
2 ≥ 12(a1 + a2 + · · ·+ a8)(a

3
1 + a32 + · · ·+ a38).

(Vasile C., 2007)

Solution. By Corollary 5 (case n = 8, k = 2, m = 3), if 0 ≤ a1 ≤ a2 ≤ · · · ≤ a8 and

a1 + a2 + · · ·+ a8 = fixed, a21 + a22 + · · ·+ a28 = fixed,

then the sum
S8 = a31 + a32 + · · ·+ a38

is maximum for a1 = a2 = · · · = a7 ≤ a8. Due to homogeneity, we only need to consider the
cases a1 = a2 = · · · = a7 = 0 and a1 = a2 = · · · = a7 = 1. For the second case (nontrivial), we
need to show that

19(7 + a28)
2 ≥ 12(7 + a8)(7 + a38),

which is equivalent to
a48 − 12a38 + 38a28 − 12a8 + 49 ≥ 0,

(a28 − 6a8 + 1)2 + 48 ≥ 0.

The equality holds for a1 = a2 = · · · = a8 = 0.

P 5.91. If a, b, c are nonnegative real numbers so that

5(a2 + b2 + c2) = 17(ab+ bc+ ca),

then

3

√
3

5
≤
√

a

b+ c
+

√
b

c+ a
+

√
c

a+ b
≤ 1 +

√
7√

2
.

(Vasile C., 2006)

Solution. Due to homogeneity, we may assume that a + b + c = 9. From the hypothesis
5(a2 + b2 + c2) = 17(ab+ bc+ ca), which is equivalent to

27(a2 + b2 + c2) = 17(a+ b+ c)2,

we get
a2 + b2 + c2 = 51.

Also, from 2(b2 + c2) ≥ (b+ c)2 and

b+ c = 9− a, b2 + c2 = 51− a2,

we get a ≤ 7. Write the desired inequality in the form

3

√
3

5
≤ f(a) + f(b) + f(c) ≤ 1 +

√
7√

2
.
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where

f(u) =

√
u

9− u
, 0 ≤ u ≤ 7.

We have

g(x) = f ′(x) =
9

2x1/2(9− x)3/2
,

g′′(x) =
27(8x2 − 36x+ 81)

8x5/2(9− x)7/2
.

Since g′′(x) > 0 for x ∈ (0, 7], g is strictly convex on (0, 7]. According to Corollary 1, if
0 ≤ a ≤ b ≤ c and

a+ b+ c = 9, a2 + b2 + c2 = 51,

then the sum S3 = f(a) + f(b) + f(c) is maximum for a = b ≤ c, and is minimum for either
a = 0 or 0 < a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c. From

a+ b+ c = 9, a2 + b2 + c2 = 51,

we get a = b = 1 and c = 7, therefore√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
=

1 +
√

7√
2

.

The original right inequality is an equality for a = b = c/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the cases a = 0 and 0 < a ≤ b = c.
For a = 0, from

a+ b+ c = 9, a2 + b2 + c2 = 51,

we get
b

c
+
c

b
=

17

5
,

therefore √
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
=

√
b

c
+

√
c

b
=

√
b

c
+
c

b
+ 2 = 3

√
3

5
.

The case 0 < a ≤ b = c is not possible, because from

a+ b+ c = 9, a2 + b2 + c2 = 51,

we get a = 7 and b = c = 1, which don’t satisfy the condition a ≤ b. The original left inequality
is an equality for

a = 0,
b

c
+
c

b
=

17

5

(or any cyclic permutation).



452 Vasile Ĉırtoaje

P 5.92. If a, b, c are nonnegative real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc+ ca),

then
19

12
≤ a

b+ c
+

b

c+ a
+

c

a+ b
≤ 141

88
.

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 5.91. Assume that a+ b+ c = 15,
which involves a2 + b2 + c2 = 81 and a ∈ [3, 7], then write the inequality in the form

19

12
≤ f(a) + f(b) + f(c) ≤ 141

88
,

where

f(u) =
u

15− u
, 3 ≤ u ≤ 7.

We have

g(x) = f ′(x) =
1

5
(15− x)2, g′′(x) =

90

(15− x)4
.

Since g is strictly convex on [3, 7], according to Corollary 1, if 0 ≤ a ≤ b ≤ c and

a+ b+ c = 15, a2 + b2 + c2 = 81,

then the sum S3 = f(a) + f(b) + f(c) is maximum for a = b ≤ c, and is minimum for either
a = 0 or 0 < a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c, which involves

a = b = 4, c = 7,

and
a

b+ c
+

b

c+ a
+

c

a+ b
=

141

88
.

The original right inequality is an equality for a = b = 4c/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the cases a = 0 and 0 < a ≤ b = c.
The first case is not possible, while the second case involves

a = 3, b = c = 6,

and
a

b+ c
+

b

c+ a
+

c

a+ b
=

19

12
.

The original left inequality is an equality for 2a = b = c (or any cyclic permutation).
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P 5.93. If a, b, c ∈ (0, 2] such that a+ b+ c = 3, then√
2(b+ c)

a
− 1 +

√
2(c+ a)

b
− 1 +

√
2(a+ b)

c
− 1 ≥ 9√

ab+ bc+ ca
.

(Vasile C., 2020)

Solution. Write the inequality in the form

f(a) + f(b) + f(c) ≤ −3
√

3√
ab+ bc+ ca

,

where

f(u) = −
√

2

u
− 1, 0 < u ≤ 2.

We have f(0+) = −∞ and

g(x) = f ′(x) = x−3/2(2− x)−1/2, g′(x) = (2x− 3)x−5/2(2− x)−3/2,

g′′(x) = (7x2 − 20x+ 15)x−7/2(2− x)−5/2 > 0.

Since g is strictly convex on (0, 2), according to Corollary 1, Note 1 and Note 2, if a ≥ b ≥ c > 0
and

a+ b+ c = 3, ab+ bc+ ca = fixed,

then the sum S3 = f(a) + f(b) + f(c) is maximum for a = 2 or a ≥ b = c. Thus, it suffices to
prove the desired inequality for these cases.

Case 1: a = 2. We need to prove the homogeneous inequality√
2(b+ c)

a
− 1 +

√
2(c+ a)

b
− 1 +

√
2(a+ b)

c
− 1 ≥ 3(a+ b+ c)√

ab+ bc+ ca

for
a = 2(b+ c).

The inequality is equivalent to√
2b

c
+ 1 +

√
2c

b
+ 1 ≥ 3

√
3(b+ c)√

2(b+ c)2 + bc
.

Let

x =
(b+ c)2

4bc
, x ≥ 1.

Since √
2c

b
+ 1 +

√
2b

c
+ 1 ≥ 2 4

√(
2b

c
+ 1

)(
2c

b
+ 1

)
= 2 4
√

8x+ 1,

the inequality becomes

4
√

8x+ 1 ≥ 3
√

3x√
8x+ 1

,
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(8x+ 1)3 ≥ 729x2.

Since

8x+ 1 ≥ 3(2x+ 1),

it suffices to show that

(2x+ 1)3 ≥ 27x2.

This is true because

2x+ 1 = x+ x+ 1 ≥ 3
3
√
x2.

Case 2: a ≥ b = c. We need to show that a+ 2c = 3 implies√
4c

a
− 1 + 2

√
2(a+ c)

c
− 1 ≥ 9√

2ac+ c2
,

that is √
2− a
a

+ 2

√
1 + a

3− a
≥ 6√

(1 + a)(3− a)
,

√
2− a
a
≥ 2(2− a)√

(1 + a)(3− a)
.

It is true if
1√
a
≥ 2

√
2− a√

(1 + a)(3− a)
,

which, by squaring, reduces to

(a− 1)2 ≥ 0.

The equality occurs for a = b = c = 1, and also for a = b =
1

2
and c = 2 (or any cyclic

permutation).

P 5.94. Let a, b, c and x, y, z be nonnegative real numbers such that

x3 + y3 + z3 = a3 + b3 + c3.

Then,
(a+ b+ c)(x+ y + z)

ab+ bc+ ca+ xy + yz + zx
≥ 3
√

3.

(Vasile Cı̂rtoaje, 2019)

Solution. Assume that

x+ y + z ≥ a+ b+ c

and denote

t =
x+ y + z

3
, t ≥ a+ b+ c

3
.
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Since
a+ b+ c

3
≤ x+ y + z

3
≤ 3

√
x3 + y3 + z3

3
=

3

√
a3 + b3 + c3

3
,

we have
t1 ≤ t ≤ t2,

where

t1 =
a+ b+ c

3
, t2 =

3

√
a3 + b3 + c3

3
.

It is enough to prove the inequality

1
3
√

3
(a+ b+ c)(x+ y + z) ≥ ab+ bc+ ca+

1

3
(x+ y + z)2.

For fixed a, b, c, we may write the required inequality as f(t) ≤ 0, where

f(t) = 3t2 − 3
√

9 (a+ b+ c)t+ ab+ bc+ ca

is a quadratic convex function. Thus, it is enough to show that f(t1) ≤ 0 and f(t2) ≤ 0. We
have

3f(t1) = 3(ab+ bc+ ca)−
(

3
√

9− 1
)

(a+ b+ c)2

≤ 3
(

2− 3
√

9
)

(ab+ bc+ ca) ≤ 0.

To prove the inequality f(t2) ≤ 0, we write it as

3t22 −
3
√

9 (a+ b+ c)t2 + ab+ bc+ ca ≤ 0.

According to Corollary 5, for a+ b+ c = fixed and an + bn + cn = fixed, the sum a2 + b2 + c2 is
minimum (hence the sum ab+ bc+ ca is maximum) for a ≥ b = c. Thus, due to homogeneity, it
is enough to prove the inequality for a = 1 and b = c ≤ 1. So, we need to prove that g(u) ≤ 0,
where

g(u) = u2 − (2c+ 1)u+
c2 + 2c

3
√

3
,

with
u =

3
√

2c3 + 1, c ∈ [0, 1].

Consider two cases: c ∈ [0, 4/5] and c ∈ [4/5, 1].

Case 1: c ∈ [0, 4/5]. Since 3
√

3 > 4/3, we have

g(u) ≤ u2 − (2c+ 1)u+
3(c2 + 2c)

4
=

(2u− 3c)(2u− c− 2)

4
.

Thus, we need to show that
3c

2
≤ u ≤ c+ 2

2
.

The left inequality is equivalent to

c ≤
√

8

11
.
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This is true since

c ≤ 4

5
<

√
8

11
.

The right inequality is equivalent to

c(2c+ 6− 5c2) ≥ 0.

Case 2: c ∈ [4/5, 1]. Since 3
√

3 > 7/5, we have g(u) < h(u), where

h(u) = u2 − (2c+ 1)u+
5(c2 + 2c)

7
.

It suffices to prove that h(u) ≤ 0. From

h′(u) = 2u− 2c− 1

and

(2u)3 − (2c+ 1)3 = 7 + 8c3 − 12c2 − 6c ≤ 7− 4c2 − 6c ≤ 7− 64

25
− 24

5
=
−9

25
< 0,

it follows that h′(u) < 0, hence h(u) is a decreasing function. Since

u > 1 +
c3

3
,

it follows that

h(u) < h

(
1 +

c3

3

)
= c

(
5c

7
+
c2

3
+
c5

9
− 4

7
− 2c3

3

)
.

Since
5c

7
+
c2

3
+
c5

9
≤ 5c

7
+
c

3
+
c3

9
=

22c

21
+
c3

9
,

it suffices to show that
22c

21
+
c3

9
− 4

7
− 2c3

3
≤ 0,

that is
22c

21
− 4

7
− 5c3

9
≤ 0.

Indeed, we have

4

7
+

5c3

9
=

2

7
+

2

7
+

5c3

9
≥ 3

3

√
20c3

49 · 9
>

22c

21
.

Thus, the proof is completed. If a ≥ b ≥ c and x ≥ y ≥ z, then the equality occurs for

a = b = c =
x
n
√

3
and y = z = 0, and for x = y = z =

a
n
√

3
and b = c = 0.



EV Method for Nonnegative Variables 457

P 5.95. If a, b, c, d are positive numbers such that

a+ b+ c+ d =
1

a
+

1

b
+

1

c
+

1

d
,

then
ab+ ac+ ad+ bc+ bd+ cd+ 3abcd ≥ 9.

(Vasile Cı̂rtoaje, 2019)

Solution. Write the inequality as

(a+ b+ c+ d)2 + 6abcd ≥ 18 + a2 + b2 + c2 + d2

and apply Corollary 4 for k = −1, and Corollary 5 for k = −1 and m = 2:
• If a, b, c, d are positive numbers such that

a+ b+ c+ d = fixed ,
1

a
+

1

b
+

1

c
+

1

d
= fixed, a ≤ b ≤ c ≤ d,

then the product abcd is minimum and the sum a2 + b2 + c2 + d2 is maximum for a = b = c ≤ d.
Thus, it suffices to consider this case. We need to show that

3a+ d =
3

a
+

1

d

involve
a2 + ad+ a3d ≥ 3.

From the hypothesis, we get

d =
3(1− a2) +

√
9a4 − 14a2 + 9

2a
.

So, the required inequality becomes as follows:

a2 + (a2 + 1)ad ≥ 3,

(a2 + 1)
√

9a4 − 14a2 + 9 ≥ 3a4 − 2a2 + 3,

(a2 + 1)2(9a4 − 14a2 + 9) ≥ (3a4 − 2a2 + 3)2,

16a2(a2 − 1)2 ≥ 0.

The equality occurs for a = b = c = d = 1.

P 5.96. If a1, a2, a3, a4, a5 are nonnegative real numbers, then

(a31 + a32 + a33 + a34 + a35)
2

a41 + a42 + a43 + a44 + a45
≥ 1

2

∑
i<j

aiaj.

(Vasile Cı̂rtoaje, 2019)
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Solution. Write the inequality in the form

4(a31 + a32 + a33 + a34 + a35)
2

a41 + a42 + a43 + a44 + a45
+ a21 + a22 + a23 + a24 + a25 ≥ (a1 + a2 + a3 + a4 + a5)

2.

According to Corollary 5, for a1 + a2 + a3 + a4 + a5 = fixed and a31 + a32 + a33 + a34 + a35 = fixed,
the sum a21 + a22 + a23 + a24 + a25 is minimum and the sum a41 + a42 + a43 + a44 + a45 is maximum for
a1 = a2 = a3 = a4 ≤ a5.Thus, it is enough to show that

4(4x3 + y3)2

4x4 + y4
+ 4x2 + y2 ≥ (4x+ y)2,

which can be written as

4x6 − 8x5y + 8x3y3 − 3x2y4 − 2xy5 + y6 ≥ 0,

(x− y)2(2x2 − y2)2 ≥ 0.

The proof is completed. The equality occurs for a1 = a2 = a3 = a4 = a5, and also for

a1 = a2 = a3 = a4 =
a5√

2
(or any cyclic permutation).

P 5.97. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an = n,

then

√
a1 +

√
a2 + · · ·+

√
an ≤

√√√√2n− 1 + 2

(
1− 1

n

)∑
i<j

aiaj.

(Vasile C., 2018)

Solution. Since

2
∑
i<j

aiaj = (a1 + a2 + · · ·+ an)2 − a21 − a22 − · · · − a2n = n2 − a21 − a22 − · · · − a2n,

we can write the inequality as

(
√
a1 +

√
a2 + · · ·+

√
an)

2 ≤ n2 + n− 1−
(

1− 1

n

)
(a21 + a22 + · · ·+ a2n).

Now, we can apply Corollary 5 for k = 2 and m = 1/2:

• If a1, a2, . . . , an are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n , a21 + a22 + · · ·+ a2n = fixed, a1 ≤ a2 ≤ · · · ≤ an,

then the sum √
a1 +

√
a2 + · · ·+

√
an
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is maximum for 0 ≤ a1 = · · · = an−1 ≤ an.

Thus, it suffices to show that

[(n− 1)x+ y]2 ≤ n2 + n− 1−
(

1− 1

n

)
[(n− 1)x4 + y4].

for
(n− 1)x2 + y2 = n, 0 ≤ x ≤ y

Write this inequality in the homogeneous form

[(n− 1)x+ y]2 ≤
(n2 + n− 1) [(n−1)x

2+y2]2

n
− (n− 1)[(n− 1)x4 + y4]

(n− 1)x2 + y2
,

which is equivalent to

(n− 1)2x4 − 2n(n− 1)x3y + (n2 + 2n− 2)x2y2 − 2nxy3 + y4 ≥ 0,

(x− y)2[(n− 1)x− y]2 ≥ 0.

The inequality is an equality for a1 = a2 = · · · = an = 1, and also for a1 = · · · = an−1 =
1

n− 1
and an = n− 1 (or any cyclic permutation).

P 5.98. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an =
∑
i<j

aiaj > 0,

then
(n− 1)(n− 2)

2
(a1 + a2 + · · ·+ an) +

∑
i<j

√
aiaj ≥ n(n− 1).

(Vasile C., 2020)

Solution. For n = 2, we need to show that a1 + a2 = a1a2 involves a1a2 ≥ 4. Indeed, this
follows from

a1a2 = a1 + a2 ≥ 2
√
a1a2,

Since
2
∑
i<j

aiaj = (a1 + a2 + · · ·+ an)2 − a21 − a22 − · · · − a2n

and
2
∑
i<j

√
aiaj = (

√
a1 +

√
a2 + · · ·+

√
an)2 − a1 − a2 − · · · − an,

we can apply Corollary 5 for k = 2 and m = 1/2:
• If a1, a2, . . . , an are nonnegative real numbers so that

a1 + a2 + · · ·+ an = fixed , a21 + a22 + · · ·+ a2n = fixed, a1 ≤ a2 ≤ · · · ≤ an,
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then the sum √
a1 +

√
a2 + · · ·+

√
an

is minimum for either 0 < a1 ≤ a2 = · · · = an or a1 = 0.
Thus, it suffices to consider the case a1 = x2, a2 = · · · = an = y2, 0 < x ≤ y, and the case a1 = 0.
In addition, we will use the induction method.

Case 1: a1 = x2, a2 = · · · = an = y2. We need to show that

x2 + (n− 1)y2 = (n− 1)x2y2 +
(n− 1)(n− 2)

2
y4

implies
(n− 2)

2
[x2 + (n− 1)y2] + xy +

(n− 2)

2
y2 ≥ n,

which can be written in the homogeneous form

(n− 2)x2 + 2xy + n(n− 2)y2 ≥ n
2(n− 1)x2y2 + (n− 1)(n− 2)y4

x2 + (n− 1)y2
.

For y = 1, the inequality becomes

(x2 + n− 1)[(n− 2)x2 + 2x+ n(n− 2)] ≥ 2n(n− 1)x2 + n(n− 1)(n− 2),

(n− 2)x4 + 2x3 − (3n− 2)x2 + 2(n− 1)x ≥ 0,

x(x− 1)2[(n− 2)x+ 2(n− 1)] ≥ 0.

Case 2: a1 = 0. We need to show that

a2 + a3 + · · ·+ an =
∑
2≤i<j

aiaj > 0 (1)

involves
(n− 1)(n− 2)

2
(a2 + a3 + · · ·+ an) +

∑
2≤i<j

√
aiaj ≥ n(n− 1). (2)

From
(a2 + a3 + · · ·+ an)2 ≤ (n− 1)(a22 + a32 + · · ·+ a2n)

= (n− 1)(a2 + a3 + · · ·+ an)2 − 2(n− 1)
∑
2≤i<j

aiaj,

we get

(n− 2)(a2 + a3 + · · ·+ an)2 ≥ 2(n− 1)
∑
2≤i<j

aiaj = 2(n− 1)(a2 + a3 + · · ·+ an),

hence

a2 + a3 + · · ·+ an ≥
2(n− 1)

n− 2
. (3)

On the other hand, by the induction hypothesis, (1) involves

(n− 2)(n− 3)

2
(a2 + a3 + · · ·+ an) +

∑
2≤i<j

√
aiaj ≥ (n− 1)(n− 2).
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According to this inequality, (2) is true if

(n− 1)(n− 2)

2
(a2 + a3 + · · ·+ an) + (n− 1)(n− 2)− (n− 2)(n− 3)

2
(a2 + a3 + · · ·+ an)

≥ n(n− 1),

which is equivalent to (3).

The inequality is an equality for a1 = a2 = · · · = an =
2

n− 1
, and also for a1 = 0 and

a2 = a3 = · · · = an =
2

n− 2
(or any cyclic permutation).

P 5.99. Let

F (a1, a2, . . . , an) = n(a21 + a22 + · · ·+ a2n)− (a1 + a2 + · · ·+ an)2 ,

where a1, a2, . . . , an are positive real numbers such that a1 = min{a1, a2, . . . , an} and

a21(a
2
2 + a23 + · · ·+ a2n) ≥ n− 1.

Then,

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
.

(Vasile C., 2020)

Solution. Assume that a1 ≤ a2 ≤ · · · ≤ an. For n = 2, we need to show that a1a2 ≥ 1 involves

(a21a
2
2 − 1)(a1 − a2)2 ≥ 0,

which is clearly true. For n ≥ 3, since F (a1, a2, . . . , an) ≥ 0 and F

(
1

a1
,

1

a2
, . . . ,

1

an

)
≥ 0, it

suffices to prove the homogeneous inequality

F (a1, a2, . . . , an) ≥ a21(a
2
2 + · · ·+ a2n)

n− 1
· F
(

1

a1
,

1

a2
, . . . ,

1

an

)
for a1 ≤ a2 ≤ · · · ≤ an and without the inequality constraint a21(a

2
2 + a23 + · · · + a2n) ≥ n − 1.

Due to homogeneity, we may set a1 = 1, hence 1 ≤ a2 ≤ · · · ≤ an. Thus, we need to show the
inequality

F (1, a2, . . . , an) ≥ a22 + · · ·+ a2n
n− 1

· F
(

1,
1

a2
, . . . ,

1

an

)
,

which is equivalent to

n(1 + S2)− (1 + a2 + · · ·+ an)2 − S2

n− 1
·
[
n(1 + Σ2)− (1 +

1

a2
+ · · ·+ 1

an
)2
]
≥ 0,
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where S2 = a22 + · · · + a2n and Σ2 =
1

a22
+ · · · + 1

a2n
. We will show first that the left hand side of

the inequality increases when S2 increases. This is true if

n− 1

n− 1

[
n(1 + Σ2)− (1 +

1

a2
+ · · ·+ 1

an
)2
]
≥ 0.

By Lemma bellow, it suffices to show that

n− 1

n− 1
· n

2

4
≥ 0,

which is clearly true. So, the left hand side of the inequality increases when S2 increases and
when Σ2 decreases. According to Corollary 5 (case k = −1), we have:

• If a2, a3, . . . , an are positive real numbers so that

a2 + a3 + · · ·+ an = fixed ,
1

a2
+

1

a3
+ · · ·+ 1

an
= fixed, a2 ≤ a3 ≤ · · · ≤ an,

then the sum S2 is minimum and the sum Σ2 is maximum for a2 ≤ a3 = · · · = an.

Thus, it suffices to consider the case 1 ≤ a2 ≤ a3 = · · · = an := x. We need to show that

n[1 + a22 + (n− 2)x2]− [1 + a2 + (n− 2)x]2 ≥ A

[
n

(
1 +

1

a22
+
n− 2

x2

)
−
(

1 +
1

a2
+
n− 2

x

)2
]
,

where A =
a22 + (n− 2)x2

n− 1
. Write this inequality as follows

(a2−1)2+(n−2)(x−1)2+(n−2)(a2−x)2 ≥ A

[
(a2 − 1)2

a22
+

(n− 2)(x− 1)2

x2
+

(n− 2)(a2 − x)2

a22x
2

]
,

(a2 − 1)2
(

1− A

a22

)
+ (n− 2)(x− 1)2

(
1− A

x2

)
+ (n− 2)(a2 − x)2

(
1− A

a22x
2

)
≥ 0.

Since a22x
2 ≥ A, it suffices to show that

(n− 2)(x− 1)2
(

1− A

x2

)
≥ (a2 − 1)2

(
A

a22
− 1

)
,

i.e. (
1− 1

x2

)2

(x2 − a22) ≥
(

1− 1

a22

)2

(x2 − a22),

which is true.

The equality occurs for a1 = a2 = · · · = an ≥ 1 and for
1

a1
= a2 = · · · = an ≥ 1.

Lemma. If x1, x2, . . . , xn ∈ [0, 1], then

n(1 + x22 + · · ·+ x2n)− (1 + x2 + · · ·+ xn)2 ≤ n2

4
.
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Proof. Since the function f(x) = x2 is convex on [0, 1], the left hand side of the inequality is
maximum when x1, x2, . . . , xn ∈ {0, 1} (see P 2.104 from Volume 1). Assuming that m numbers
xi are 1 and the others are 0, it suffices to show that

n(1 +m)− (1 +m)2 ≤ n2

4
.

Indeed,
n2

4
− n(1 +m) + (1 +m)2 =

(
1 +m− n

2

)2
≥ 0.

Remark. Since a1(a2 +a3 + · · ·+an) ≥ n−1 yields a21(a
2
2 +a23 + · · ·+a2n) ≥ n−1, the inequality

is also true for
a1(a2 + a3 + · · ·+ an) ≥ n− 1.

In addition, it is true in the particular case

a1, a2, . . . , an ≥ 1.

P 5.100. Let
F (a1, a2, . . . , an) = a1 + a2 + · · ·+ an − n n

√
a1a2 · · · an,

where a1, a2, . . . , an are positive real numbers such that a1 = min{a1, a2, . . . , an} and

a1(a2 + a3 + · · ·+ an) ≥ n− 1.

Then,

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
.

(Vasile C., 2020)

Solution. Assume that a1 ≤ a2 ≤ · · · ≤ an. For n = 2, we need to show that a1a2 ≥ 1 involves

(a1a2 − 1) (
√
a1 −

√
a2)

2 ≥ 0,

which is true. For n ≥ 3, the inequality has the form

a1 + a2 + · · ·+ an − n n
√
a1a2 · · · an ≥

1

a1
+

1

a2
+ · · ·+ 1

an
− n

n
√
a1a2 · · · an

.

According to Corollary 5 (case k = 0 and m = −1), we have:

• If a2, a3, . . . , an are positive real numbers so that

a2 + a3 + · · ·+ an = fixed , a2a3 · · · an = fixed, a2 ≤ a3 ≤ · · · ≤ an ,

then the sum
1

a2
+

1

a3
+ · · ·+ 1

an
is maximum for a2 ≤ a3 = · · · = an.
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Thus, we only need to show that

x+ y + (n− 2)z − n n
√
xyzn−2 ≥ 1

x
+

1

y
+
n− 2

z
− n

n
√
xyzn−2

for 0 < x ≤ y ≤ z and x[y+(n−2)z] ≥ n−1. Since both sides of the inequality are nonnegative,
it suffices to prove the homogeneous inequality[

x+ y + (n− 2)z − n n
√
xyzn−2

]
≥ x[y + (n− 2)z]

n− 1

[
1

x
+

1

y
+
n− 2

z
− n

n
√
xyzn−2

]
,

that is
(n− 1)

[
x+ y + (n− 2)z − n n

√
xyzn−2

]
≥

≥ y + (n− 2)z +
[y + (n− 2)z][(n− 2)y + z]

yz
x− n[y + (n− 2)z] n

√
xn−1

yzn−2
.

For fixed y and z, write this inequality as f(x) ≥ 0, x ∈ (0, y]. We will show that

f(x) ≥ f(y) ≥ 0.

To prove that f(x) ≥ f(y), we show that f ′(x) ≤ 0, which is equivalent to

n− 1− (n− 1)
n

√
yzn−2

xn−1
− [y + (n− 2)z][(n− 2)y + z]

yz
+ (n− 1)

y + (n− 2)z
n
√
xyzn−2

≤ 0 ,

(n− 2)

(
y

z
+
z

y
+ n− 3

)
+ (n− 1)

n

√
yzn−2

xn−1
≥ (n− 1)

y + (n− 2)z
n
√
xyzn−2

.

By the AM-GM inequality, we have

(n− 2) ·
(
y

z
+
z

y
+ n− 3

)
+ (n− 1)

n

√
yzn−2

xn−1
≥

≥ (n− 1)
n−1

√(
y

z
+
z

y
+ n− 3

)n−2

· (n− 1)
n

√
yzn−2

xn−1
.

Thus, it suffices to show that

n−1

√(
y

z
+
z

y
+ n− 3

)n−2

· (n− 1)
n

√
yzn−2

xn−1
≥ y + (n− 2)z

n
√
xyzn−2

,

which is equivalent to

(n− 1)

(
y

z
+
z

y
+ n− 3

)n−2

yzn−2 ≥ [y + (n− 2)z]n−1 .

Due to homogeneity, we may set z = 1, when the inequality becomes

(n− 1)Ay ≥ y + n− 2,
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where

A =

(
y + 1/y + n− 3

y + n− 2

)n−2

, 0 < y ≤ 1.

By Bernoulli’s inequality, we have

A =

(
1 +

1/y − 1

y + n− 2

)n−2

≥ 1 +
(n− 2)(1/y − 1)

y + n− 2
=

y2 + n− 2

y(y + n− 2)
,

hence

(n− 1)Ay − (y + n− 2) ≥ (n− 1)(y2 + n− 2)

y + n− 2
− (y + n− 2)

=
(n− 2)(y − 1)2

y + n− 2
≥ 0 .

The inequality f(y) ≥ 0 has the form

2y + (n− 2)z − n n
√
y2zn−2 ≥ y[y + (n− 2)z]

n− 1

[
2

y
+
n− 2

z
− n

n
√
y2zn−2

]
.

Due to homogeneity, we may set z = 1 (hence 0 < y ≤ 1), when the inequality becomes

2y + n− 2− n n
√
y2 ≥ y(y + n− 2)

n− 1

(
2

y
+ n− 2− n

n
√
y2

)
.

Denoting
t = n
√
y, 0 < t ≤ 1,

we need to show that g(t) ≥ 0, where

g(t) = (n− 1)(2tn − nt2 + n− 2)− (tn + n− 2)[(n− 2)tn − ntn−2 + 2]

= −(n− 2)t2n + nt2n−2 − (n− 2)(n− 4)tn + n(n− 2)tn−2 − n(n− 1)t2 + (n− 2)(n− 3) .

For n = 3, we have
g(t) = t(1− t)3(3 + 3t+ t2) ≥ 0,

and for n = 4, we have
g(t) = 2(1− t2)3(1 + t2) ≥ 0.

For n ≥ 5, we have
g′(t) = ntg1(t),

g1(t) = −2(n− 2)t2n−2 + 2(n− 1)t2n−4 − (n− 2)(n− 4)tn−2 + (n− 2)2tn−4 − 2(n− 1),

g′1(t) = (n− 2)tn−5(1− t2)[4(n− 1)tn + n− 2] ≥ 0 ,

hence g1(t) is increasing, g1(t) ≤ g1(1) = 0, g′(t) ≤ 0, g(t) is decreasing, g(t) ≥ g(1) = 0. Thus,
the proof is completed. The equality holds for a1 = a2 = · · · = an ≥ 1.

Remark 1. Since an−11 a2a3 · · · an ≥ 1 yields a1(a2 + a3 + · · ·+ an) ≥ n− 1, the inequality

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
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is also valid if a1, a2, . . . , an are positive real numbers such that

a1 ≤ a2 ≤ · · · ≤ an, an−11 a2a3 · · · an ≥ 1.

Also, it is valid in the particular case

a1, a2, . . . , an ≥ 1.

Remark 2. Since a1a2 · · · an ≥ 1, from P 5.100 it follows that

a1 + a2 + · · ·+ an ≥
1

a1
+

1

a2
+ · · ·+ 1

an

for
a1(a2 + a3 + · · ·+ an) ≥ n− 1.

P 5.101. Let

F (a1, a2, . . . , an) =

√
a21 + a22 + · · ·+ a2n

n
− a1 + a2 + · · ·+ an

n
,

where a1, a2, . . . , an are positive real numbers such that a1 = min{a1, a2, . . . , an} and

an−11 (a2 + a3 + · · ·+ an) ≥ n− 1.

Then,

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
.

(Vasile C., 2020)

Solution. Assume that a1 ≤ a2 ≤ · · · ≤ an. For n = 2, we need to show that a1a2 ≥ 1 involves

(a1a2 − 1)(
√

2(a21 + a22)− a1 − a2) ≥ 0,

which is true. For n ≥ 3, write the inequality in the form√
n(a21 + a22 + · · ·+ a2n)− (a1 + a2 + · · ·+ an)

≥

√
n

(
1

a21
+

1

a22
+ · · ·+ 1

a2n

)
− 1

a1
+

1

a2
+ · · ·+ 1

an
≥ 0 .

According to Corollary 5 (case k = −1), we have:

• If a2, a3, . . . , an are positive real numbers so that

a2 + a3 + · · ·+ an = fixed ,
1

a2
+

1

a3
+ · · ·+ 1

an
= fixed, a2 ≤ a3 ≤ · · · ≤ an,
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then the sum a22 + a23 + · · · + a2n is minimum and the sum
1

a22
+

1

a23
+ · · · + 1

a2n
is maximum for

a2 ≤ a3 = · · · = an.

Thus, it suffices to consider the case a2 ≤ a3 = · · · = an. We need to show that if x, y, z are
positive real numbers such that x ≤ y ≤ z and

xn−1[y + (n− 2)z] ≥ n− 1,

then E(x, y, z) ≥ 0, where

E(x, y, z) =
√
x2 + y2 + (n− 2)z2 − x+ y + (n− 2)z√

n

−
√

1

x2
+

1

y2
+
n− 2

z2
+

1√
n

(
1

x
+

1

y
+
n− 2

z

)
.

We will show that

E(x, y, z) ≥ E(x,w,w) ≥ 0,

where

w =
y + (n− 2)z

n− 1
, x ≤ y ≤ w ≤ z.

Write the inequality E(x, y, z) ≥ E(x,w,w) as follows:

y2 + (n− 2)z2 − (n− 1)w2√
x2 + y2 + (n− 2)z2 +

√
x2 + (n− 1)w2

+
1√
n

(
1

y
+
n− 2

z
− n− 1

w

)

≥
1
y2

+ n−2
z2

+ n−1
w2√

1
x2 + 1

y2
+ n−2

z2
+
√

1
x2 + n−1

w2

,

(n− 2)(y − z)2

n− 1
· 1√

x2 + y2 + (n− 2)z2 +
√
x2 + (n− 1)w2

+
(n− 2)(y − z)2√
nyz[y + (n− 2)z]

≥ (n− 2)(y − z)2[y2 + 2(n− 1)yz + (n− 2)z2]

y2z2[y + (n− 2)z]2
· 1√

1
x2 + 1

y2
+ n−2

z2
+
√

1
x2 + n−1

w2

,

which is true if

1

n− 1
· 1√

x2 + y2 + (n− 2)z2 +
√
x2 + (n− 1)w2

+
1√

nyz[y + (n− 2)z]

≥ y2 + 2(n− 1)yz + (n− 2)z2

y2z2[y + (n− 2)z]2
· 1√

1
x2 + 1

y2
+ n−2

z2
+
√

1
x2 + n−1

w2

.

Since x ≤ y, it is enough to show that

1

n− 1
· 1√

2y2 + (n− 2)z2 +
√
y2 + (n− 1)w2

+
1√

nyz[y + (n− 2)z]
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≥ y2 + 2(n− 1)yz + (n− 2)z2

y2z2[y + (n− 2)z]2
· 1√

2
y2

+ n−2
z2

+
√

1
y2

+ n−1
w2

.

In addition, since w ≤ z, it suffices to show that

1

n− 1
· 1√

2y2 + (n− 2)z2 +
√
y2 + (n− 1)z2

+
1√

nyz[y + (n− 2)z]

≥ y2 + 2(n− 1)yz + (n− 2)z2

y2z2[y + (n− 2)z]2
· 1√

2
y2

+ n−2
z2

+
√

1
y2

+ n−1
z2

.

Since

y2 + 2(n− 1)yz + (n− 2)z2 = [y2 + (n− 2)z2] + 2(n− 1)yz,

we rewrite the inequality as

A+B ≥ C +D,

where

A =
1

n− 1
· 1√

2y2 + (n− 2)z2 +
√
y2 + (n− 1)z2

,

B =
1√

nyz[y + (n− 2)z]
,

C =
y2 + (n− 2)z2

y2z2[y + (n− 2)z]2
· 1√

2
y2

+ n−2
z2

+
√

1
y2

+ n−1
z2

,

D =
2(n− 1)yz

y2z2[y + (n− 2)z]2
· 1√

2
y2

+ n−2
z2

+
√

1
y2

+ n−1
z2

.

We will show that

A ≥ C, B ≥ D.

Since the inequality B ≥ D is homogeneous, we may consider y = 1 and z ≥ 1, when it
becomes

[(n− 2)z + 1]
[√

2z2 + n− 2 +
√
z2 + n− 1

]
≥ 2
√
n(n− 1)z .

Since √
2z2 + n− 2 +

√
z2 + n− 1 ≥ 2z + n− 2√

n
+
z + n− 1√

n
=

3z + 2n− 3√
n

,

it is sufficient to show that

[(n− 2)z + 1](3z + 2n− 3) ≥ 2n(n− 1),

which is equivalent to

(z − 1)[3(n− 2)z + 2n2 − 4n+ 3] ≥ 0.

To show that A ≥ C, we see that xn−1[y + (n− 2)z] ≥ n− 1 yields

yn−1[y + (n− 2)z] ≥ n− 1.
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Thus, it suffices to prove the homogeneous inequality

A ≥ C0C, C0 =

[
yn−1[y + (n− 2)z]

n− 1

]2/n
,

that is
1√

2y2 + (n− 2)z2 +
√
y2 + (n− 1)z2

≥

≥ (n− 1)[y2 + (n− 2)z2]

y2z2[y + (n− 2)z]
· C0√

2
y2

+ n−2
z2

+
√

1
y2

+ n−1
z2

,

Due to homogeneity, we may set y = 1, hence z ≥ 1. The inequality becomes
√

2z2 + n− 2 +
√
z2 + n− 1 ≥

≥ (n− 1)[1 + (n− 2)z2]C1

z[1 + (n− 2)z]2

[√
2 + (n− 2)z2 +

√
1 + (n− 1)z2

]
,

where

C1 =

[
1 + (n− 2)z

n− 1

]2/n
.

By Bernoulli’s inequality, we have

C1 =

[
1 +

(n− 2)(z − 1)

n− 1

]2/n
≤ 1 +

2(n− 2)(z − 1)

n(n− 1)
=

2(n− 2)z + n2 − 3n+ 4)

n(n− 1)
.

Thus, it suffices to show that
√

2z2 + n− 2 +
√
z2 + n− 1 ≥

≥ [1 + (n− 2)z2][2(n− 2)z + n2 − 3n+ 4]

nz[1 + (n− 2)z]2

[√
2 + (n− 2)z2 +

√
1 + (n− 1)z2

]
.

We will show that

√
2z2 + n− 2 ≥ [1 + (n− 2)z2][2(n− 2)z + n2 − 3n+ 4]

nz[1 + (n− 2)z]2

√
(n− 1)z2 + 1

and √
z2 + n− 1 ≥ [1 + (n− 2)z2][2(n− 2)z + n2 − 3n+ 4]

nz[1 + (n− 2)z]2

√
(n− 2)z2 + 2 .

Since
2z2 + n− 2

(n− 1)z2 + 1
− z2 + n− 1

(n− 2)z2 + 2
=

(n− 3)(z2 − 1)2

[n− 1)z2 + 1][(n− 2)z2 + 2]
≥ 0 ,

it suffices to prove the second inequality. After squaring and making many calculations, this
inequality can be written as (z − 1)P (z) ≥ 0, where P (z) ≥ 0 for z ≥ 1.

To complete the proof, we need to show that E(x,w,w) ≥ 0 for xn−1w ≥ 1. Write the
required inequality as follows:

√
n[x2 + (n− 1)w2]− [x+ (n− 1)w] ≥

√
n

[
1

x2
+
n− 1

w2

]
−
(

1

x
+
n− 1

w

)
,
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(n− 1)(x− w)2√
x2 + (n− 1)w2 + x+(n−1)w√

n

≥ 1

xw
· (n− 1)(x− w)2√

(n− 1)x2 + w2 + (n−1)x+w√
n

.

This is true if√
(n− 1)x2 + w2 +

(n− 1)x+ w√
n

≥ 1

xw
·
[√

x2 + (n− 1)w2 +
x+ (n− 1)w√

n

]
.

Since xn−1w ≥ 1, it suffices to prove the homogeneous inequality

√
(n− 1)x2 + w2 +

(n− 1)x+ w√
n

≥ (xn−1w)2/n

xw
·
[√

x2 + (n− 1)w2 +
x+ (n− 1)w√

n

]
.

Due to homogeneity, we may set w = 1, which yields x ≤ 1. The inequality becomes

√
(n− 1)x2 + 1 +

(n− 1)x+ 1√
n

≥ x
n−2
n

[√
x2 + n− 1 +

x+ n− 1√
n

]
.

We can get this by summing the inequalities√
(n− 1)x2 + 1 ≥ x

n−2
n ·
√
x2 + n− 1

and
(n− 1)x+ 1√

n
≥ x

n−2
n · x+ n− 1√

n
.

Replacing x with x2 in the second inequality gives the first inequality. Thus,it suffices to prove
the second inequality, which can be rewritten as f(x) ≥ 0, where

f(x) = ln[(n− 1)x+ 1]− ln(x+ n− 1)− n− 2

n
lnx .

From

f ′(x) =
n− 1

(n− 1)x+ 1
− 1

x+ n− 1
− n− 2

nx
=
−(n− 1)(n− 2)(x− 1)2

nx[(n− 1)x+ 1]x + n− 1)
≤ 0 ,

it follows that f is decreasing, hence f(x) ≥ f(1) = 0.
The proof is completed. The equality holds for a1 = a2 = · · · = an ≥ 1.

Remark. The inequality

F (a1, a2, . . . , an) ≥ F

(
1

a1
,

1

a2
, . . . ,

1

an

)
is also valid in the particular case

a1, a2, . . . , an ≥ 1.
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P 5.102. If a1, a2, . . . , an (n ≥ 4) are positive real numbers such that

a1 + a2 + · · ·+ an = n, an = max{a1, a2, . . . , an},

then

n

(
1

a1
+

1

a2
+ · · ·+ 1

an−1

)
≥ 4(a21 + a22 + · · ·+ a2n) + n(n− 5).

(Vasile C., 2022)

Solution. Assume that an is fixed and a1 ≤ a2 ≤ · · · ≤ an. According to Corollary 5 (case
k = 2 and m = −1), we have:

• If a1, a2, . . . , an−1 are positive real numbers so that

a1 + a2 + · · ·+ an−1 = fixed, a21 + a22 + · · ·+ a2n−1 = fixed, a1 ≤ a2 ≤ · · · ≤ an−1,

then the sum
1

a1
+

1

a2
+ · · ·+ 1

an−1
is minimum for a1 = a2 = · · · = an−2 ≤ an−1.

Therefore, it suffices to consider the case a1 = a2 = · · · = an−2, that is to show that F (a, b) ≥ 0,
where

F (a, b) = n

(
n− 2

a
+

1

b

)
− 4(n− 2)a2 − 4b2 − 4c2 − n(n− 5), c = n− (n− 2)a− b,

with a, b positive real numbers such that a ≤ b ≤ c. From c ≥ b, we get

(n− 2)a+ 2b ≤ n.

We will show that
F (a, b) ≥ F (t, t) ≥ 0,

where

t =
(n− 2)a+ b

n− 1
, t ≤ 1.

Since

F (a, b)− F (t, t) = n

(
n− 2

a
+

1

b
− n− 1

t

)
− 4

[
(n− 2)a2 + b2 − (n− 1)t2

]
=
n(n− 2)(a− b)2

(n− 1)abt
− 4(n− 2)(a− b)2

n− 1

≥ n(n− 2)(a− b)2

(n− 1)ab
− 4(n− 2)(a− b)2

n− 1

=
(n− 2)(a− b)2(n− 4ab)

(n− 1)ab
,

it suffices to show that 4ab ≤ n. From

n ≥ (n− 2)a+ 2b ≥ 2
√

2(n− 2)ab,

we get

4ab− n ≤ n2

2(n− 2)
− n =

n(4− n)

n− 2
≤ 0.
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In addition,

F (t, t) =
n(n− 1)

t
− 4(n− 1)t2 − 4[n− (n− 1)t]2 − n(n− 5)

=
n(n− 1)(1− t)(1− 2t)2

t
≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
1

2
, an =

n+ 1

2
.

P 5.103. If a1, a2, . . . , an are positive real numbers such that

a1 + a2 + · · ·+ an = n,

then
1

a1
+

1

a2
+ · · ·+ 1

an
+ n− 2 ≥ n(n− 1)2∑

1≤i<j≤n

aiaj
.

(Vasile C., 2022)

Solution. For n = 2, the inequality is an identity. Consider further that n ≥ 3 and a1 ≤ a2 ≤
· · · ≤ an. By Corollary 5 (case k = 2 and m = −1), if 0 < a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n,
∑

1≤i<j≤n

aiaj = fixed,

then the sum
1

a1
+

1

a2
+ · · ·+ 1

an
is minimum for a1 = · · · = an−1 ≤ an. Therefore, we only need

to show that (n− 1)x+ y = n (0 < x ≤ y) involves

n− 1

x
+

1

y
+ n− 2 ≥ 2n(n− 1)

x[(n− 2)x+ 2y]
.

The inequality is equivalent to

n− 1

x
+

1

n− (n− 1)x
+ n− 2 ≥ 2(n− 1)

x(2− x)
,

n− 1

x
+

1

n− (n− 1)x
− n ≥ 2(n− 1)

[
1

x(2− x)
− 1

]
,

n(n− 1)(x− 1)2

n− (n− 1)x
≥ 2(n− 1)(x− 1)2

2− x
,

(n− 1)(n− 2)x(x− 1)2 ≥ 0.

For n ≥ 3, the equality occurs for a1 = a2 = · · · = an = 1.
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P 5.104. If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then
n∑

i=1

1

n− ai
≤ n− 2

n− 1
+

n∑
1≤i<j≤n

aiaj
.

(V. Cı̂rtoaje and L. Giugiuc, 2022)

Solution. For n = 2, the inequality is an identity. Consider further that n ≥ 3 and a1 ≤ a2 ≤
· · · ≤ an, and apply the EV-Theorem (Corollary 1) to the function f(u) =

1

n− u
defined on

[0, n). We have

f ′(u) =
1

(n− u)2
:= g(u), g′′(u) =

6

(n− u)4
> 0.

According to Corollary 1, if a1 + a2 + · · ·+ an = n (which implies ai < n for i = 1, 2, . . . , n) and∑
1≤i<j≤n

aiaj = fixed, the sum
n∑

i=1

1

n− ai
is maximum when a1 = · · · = an−1 ≤ an. Therefore,

we only need to show that (n− 1)x+ y = n (0 < x ≤ y) involves

n− 1

n− x
+

1

n− y
≤ n− 2

n− 1
+

2n

(n− 1)x[(n− 2)x+ 2y]
.

The inequality is equivalent to

(n− 1)2

n− x
+

1

x
≤ n− 2 +

2

x(2− x)
,

(n− 1)2

n− x
+

1

x
− n ≤ −2 +

2

x(2− x)
,

n(x− 1)2

n− x
≤ 2(x− 1)2

2− x
,

(n− 2)x(x− 1)2 ≥ 0.

For n ≥ 3, the equality occurs when a1 = a2 = · · · = an = 1.

P 5.105. If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then
n∑

i=1

1

n− ai
≥ 1 +

n

2
∑

1≤i<j≤n

aiaj
.

(V. Cı̂rtoaje and L. Giugiuc, 2022)
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Solution. We use the induction method and EV-Theorem (Corollary 1). For n = 2, the in-
equality reduces to (a1 − a2)

2 ≥ 0. Consider further that n ≥ 3 and a1 ≥ a2 ≥ · · · ≥ an.

According to Corollary 1 applied to the function f(u) =
1

n− u
(see the preceding problem), if

a1 + a2 + · · · + an = n and
∑

1≤i<j≤n

aiaj = fixed, the sum
n∑

i=1

1

n− ai
is minimum when either

a1 = · · · = an−1 ≥ an > 0 or an = 0. Therefore, we only need to consider these cases.

Case 1: a1 = · · · = an−1 ≥ an > 0. We need to show that

(n− 1)x+ y = n ( x ≥ y > 0 )

involves
n− 1

n− x
+

1

n− y
≥ 1 +

n

(n− 1)x[(n− 2)x+ 2y]
.

The inequality is equivalent to

(n− 1)2

n− x
+

1

x
≥ n− 1 +

1

x(2− x)
,

(n− 1)2

n− x
+

1

x
− n ≥ −1 +

1

x(2− x)
,

n(x− 1)2

n− x
≥ (x− 1)2

2− x
,

(x− 1)2y ≥ 0.

Case 2: an = 0. We need to show that a1 + a2 + · · ·+ an−1 = n involves

n−1∑
i=1

1

n− ai
+

1

n
≥ 1 +

n

2
∑

1≤i<j≤n−1 aiaj
.

Using the substitution

ai =
n

n− 1
xi, i = 1, 2, . . . , n− 1,

we need to show that x1 + x2 + · · ·+ xn−1 = n− 1 implies

n− 1

n

n−1∑
i=1

1

n− 1− xi
+

1

n
≥ 1 +

(n− 1)2

2n
∑

1≤i<j≤n−1 xixj
,

which is equivalent to the induction hypothesis

n−1∑
i=1

1

n− 1− xi
≥ 1 +

n− 1

2
∑

1≤i<j≤n−1 xixj
.

The proof is completed. The equality occurs for a1 = · · · = ak =
n

k
and ak+1 = · · · = an = 0,

where k = 2, 3, . . . , n.
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P 5.106. If a1, a2, . . . , an are nonnegative real numbers such that

n∑
i=1

1

2ai + n− 2
≤ 1,

then
2
∑

1≤i<j≤n

aiaj ≥ (n− 1)(a1 + a2 + · · ·+ an).

(L. Giugiuc and V. Cı̂rtoaje, 2022)

Solution. For n = 2, the conclusion coincides with the hypothesis. Consider now n ≥ 3, and
use the contradiction method and the EV-Theorem. By the contradiction method, it suffices to
show that

2
∑

1≤i<j≤n

aiaj < (n− 1)(a1 + a2 + · · ·+ an)

involves
f(a1) + f(a2) + · · ·+ f(an) < −1,

where

f(u) =
−1

2u+ n− 2
.

To prove this, we apply EV-Theorem (Corollary 1) to the function f(u) =
−1

2u+ n− 2
, which

satisfies

f ′(u) =
2

(2u+ n− 2)2
:= g(u), g′′(u) =

48

(2u+ n− 2)4
> 0.

According to EV-Theorem, for fixed
n∑

i=1

ai and
∑

1≤i<j≤n

aiaj, the sum f(a1) + f(a2) + · · ·+ f(an)

is maximum for a1 = a2 = · · · = an−1 ≤ an. Denoting the equal variables with x and an with y
(x ≤ y), we need to show that

(n− 2)x2 + 2xy < (n− 1)x+ y

involves
1

2y + n− 2
+

x− 1

2x+ n− 2
> 1.

Applying again the contradiction method, it suffices to show that

1

2y + n− 2
+

x− 1

2x+ n− 2
≤ 1

involves
(n− 2)x2 + (2x− 1)y ≥ (n− 1)x.

From the hypothesis, we get

y ≥ n− 2− (n− 3)x

2x− 1
, x >

1

2
.
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Thus, we have

(n− 2)x2 + (2x− 1)y − (n− 1)x ≥ (n− 2)x2 + n− 2− (n− 3)x− (n− 1)x

= (n− 2)(x− 1)2 ≥ 0.

The proof is completed. For n ≥ 3, the equality occurs when a1 = a2 = · · · = an = 1.

P 5.107. If a1, a2, . . . , an are positive real numbers such that

1

2a1 + n− 2
+

1

2a2 + n− 2
+ · · ·+ 1

2an + n− 2
= 1,

then
1

a1
+

1

a2
+ · · ·+ 1

an
+

n(n− 2)

a1 + a2 + · · ·+ an
≥ 2(n− 1).

(V. Cı̂rtoaje and L. Giugiuc, 2022)

Solution. We use the contradiction method and the EV-Theorem. For n = 2, the required
inequality is an identity. Consider further n ≥ 3 and a1 ≤ a1 ≤ · · · ≤ an. By the contradiction
method, assume that

1

a1
+

1

a2
+ · · ·+ 1

an
+

n(n− 2)

a1 + a2 + · · ·+ an
< 2(n− 1),

and show that
1

2a1 + n− 2
+

1

2a2 + n− 2
+ · · ·+ 1

2an + n− 2
< 1.

To prove this, we apply EV-Theorem (Corollary 2) to the function f(u) =
1

2u+ n− 2
, which

satisfies

f ′(u) =
−2

(2u+ n− 2)2
, g(x) = f ′

(
1√
x

)
=

−2x

[(n− 2)
√
x+ 2]2

,

g′′(x) =
12√

x [(n− 2)
√
x+ 2]4

> 0.

According to the EV-Theorem, for fixed a1 + a2 + · · · + an and
1

a1
+

1

a2
+ · · · + 1

an
, the sum

n∑
i=1

1

2ai + n− 2
is maximum when a1 = a2 = · · · = an−1 ≤ an. Denoting by x the equal variables

and by y the remaining variable (x ≤ y), we need to show that

n− 1

x
+

1

y
+

n(n− 2)

(n− 1)x+ y
< 2(n− 1)

involves
n− 1

2x+ n− 2
+

1

2y + n− 2
< 1.
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Using again the contradiction method, we need to show that

n− 1

2x+ n− 2
+

1

2y + n− 2
≥ 1

involves
n− 1

x
+

1

y
+

n(n− 2)

(n− 1)x+ y
≥ 2(n− 1).

From the hypothesis, we get

y ≤ n− 2− (n− 3)x

2x− 1
,

1

2
< x <

n− 2

n− 3
.

Clearly, it suffices to prove the required inequality

n− 1

x
+

1

y
− n ≥ (n− 2)

[
1− n

(n− 1)x+ y

]

for y =
n− 2− (n− 3)x

2x− 1
. The inequality is equivalent to

(n− 1)(n− 2)(x− 1)2

x[n− 2− (n− 3)x]
≥ 2(n− 1)(n− 2)(x− 1)2

2(n− 1)x2 − 2(n− 2)x+ n− 2
.

This is true if
1

x[n− 2− (n− 3)x]
≥ 2

2(n− 1)x2 − 2(n− 2)x+ n− 2
,

which reduces to
(n− 2)(2x− 1)2 ≥ 0.

The proof is completed. For n ≥ 3, the equality occurs when a1 = a2 = · · · = an = 1.

P 5.108. If a1, a2, . . . , an are positive real numbers such that

1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
= 1,

then
1

a1
+

1

a2
+ · · ·+ 1

an
+

n(3n− 4)

a1 + a2 + · · ·+ an
≥ 4(n− 1).

(V. Cı̂rtoaje and L. Giugiuc, 2022)

Solution. The proof is similar to the one of the preceding problem. For n = 2, the required
inequality reduces to (a+ b− 2)2 ≥ 0. For

a1 = a2 = · · · = an−1 = x, an = y,

we need to show that
n− 1

x+ n− 1
+

1

y + n− 1
= 1
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involves
n− 1

x
+

1

y
+

n(3n− 4)

(n− 1)x+ y
≥ 4(n− 1).

So, we need to show that

y =
n− 1− (n− 2)x

x
, 0 < x <

n− 1

n− 2
,

involves
n− 1

x
+

1

y
− n ≥ (3n− 4)

[
1− n

(n− 1)x+ y

]
.

The inequality is equivalent to

(n− 1)2(x− 1)2

x[n− 1− (n− 2)x]
≥ (n− 1)(3n− 4)(x− 1)2

(n− 1)x2 − (n− 2)x+ n− 1
.

This is true if
n− 1

x[n− 1− (n− 2)x]
≥ 3n− 4

(n− 1)x2 − (n− 2)x+ n− 1
.

which reduces to
[(2n− 3)x− n+ 1]2 ≥ 0.

The proof is completed. The equality occurs when a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
n− 1

2n− 3
and an = n− 1 (or any cyclic permutation).

P 5.109. If a1, a2, . . . , an are nonnegative real numbers such that

n∑
i=1

1

ai + 1
≥ n− 1,

then

(n− 2)
n∑

i=1

ai +
n

2
∑

1≤i<j≤n

aiaj
≥ 2n2 − 4n+ 1

n− 1
.

(V. Cı̂rtoaje and L. Giugiuc, Mathproblems, 3, 2023)

Solution. We use the contradiction method and the EV-Theorem. For n = 2, the required

inequality coincides with the hypothesis
1

a1 + 1
+

1

a2 + 1
≥ 1. Consider further n ≥ 3. By the

contradiction method, it suffices to show that

(n− 2)
n∑

i=1

ai +
n

2
∑

1≤i<j≤n aiaj
<

2n2 − 4n+ 1

n− 1

involves
f(a1) + f(a2) + · · ·+ f(an) > 1− n,



EV Method for Nonnegative Variables 479

where

f(u) =
−1

u+ 1
.

To prove this, we apply EV-Theorem (Corollary 1) to the function f , which satisfies

f ′(u) =
1

(u+ 1)2
:= g(u), g′′(u) =

6

(u+ 1)4
> 0.

According to EV-Theorem, for fixed
n∑

i=1

ai and
∑

1≤i<j≤n

aiaj, the sum
n∑

i=1

1

ai + 1
is maximum for

either a1 = a2 = · · · = an−1 ≥ an > 0 or an = 0. Thus, it suffices to consider these cases.
Applying again the contradiction method (only for these cases), it suffices to show that

n∑
i=1

1

ai + 1
≥ n− 1

involves

(n− 2)
n∑

i=1

ai +
n

2
∑

1≤i<j≤n

aiaj
≥ 2n2 − 4n+ 1

n− 1

(which is just the original statement).

Case 1: a1 = a2 = · · · = an−1 ≥ an > 0. We need to show that

n− 1

x+ 1
+

1

y + 1
≥ n− 1, x ≥ y > 0

involves

(n− 2)[(n− 1)x+ y] +
n

(n− 1)x[(n− 2)x+ 2y]
≥ 2n2 − 4n+ 1

n− 1
.

From the hypothesis, we have

y ≤ 1− (n− 2)x

(n− 1)x
, x <

1

n− 2
.

We claim that for fixed x, the function

F (y) = (n− 2)[(n− 1)x+ y] +
n

(n− 1)x[(n− 2)x+ 2y]

is decreasing. We need to show that F ′(y) ≤ 0, which is equivalent to

(n− 1)(n− 2)x[(n− 2)x+ 2y]2 ≤ 2n.

Since (n− 2)x < 1, it suffices to show that

(n− 1)[(n− 2)x+ 2y]2 ≤ 2n.

According to Lemma below, we have

(n− 1)[(n− 2)x+ 2y]2 ≤ n2

n− 1
< 2n.
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Since F (y) is decreasing, we have

F (y) ≥ F

(
1− (n− 2)x

(n− 1)x

)
,

and it suffices to show that

F

(
1− (n− 2)x

(n− 1)x

)
≥ 2n2 − 4n+ 1

n− 1
.

This inequality is equivalent to

[1− (n− 1)x]2[1− (n− 2)x][2− (n− 1)x] ≥ 0,

which is true for (n− 2)x < 1.

Case 2: an = 0. We need to prove that

n−1∑
i=1

1

ai + 1
≥ n− 2,

involves

(n− 2)S +
n

2
∑

1≤i<j≤n−1

aiaj
≥ 2n2 − 4n+ 1

n− 1
,

where

S =
n−1∑
i=1

ai.

Case 2a: S ≥ n− 1

n− 2
. Write the hypothesis as

n−1∑
i=1

ai
ai + 1

≤ 1.

From the Cauchy-Schwarz inequality(
n−1∑
i=1

ai
ai + 1

)[
n−1∑
i=1

ai(ai + 1)

]
≥

(
n−1∑
i=‘1

ai

)2

,

we get
n−1∑
i=1

a2i + S ≥ S2,

S2 − 2
∑

1≤i<j≤n−1

aiaj + S ≥ S2, 2
∑

1≤i<j≤n−1

aiaj ≤ S.

Thus, it suffices to show that

(n− 2)S +
n

S
≥ 2n2 − 4n+ 1

n− 1
,
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which is equivalent to the obvious inequality(
S − n− 1

n− 2

)(
S − n

n− 1

)
≥ 0.

Case 2b: S ≤ n− 1

n− 2
. Since

S2 ≥ 2(n− 1)

n− 2

∑
1≤i<j≤n−1

aiaj,

it suffices to show that

(n− 2)S +
n(n− 1)

(n− 2)S2
≥ 2n2 − 4n+ 1

n− 1
,

which is equivalent to (
n− 1

n− 2
− S

)(
1 +

n− 2

n− 1
S − n− 2

n
S2

)
≥ 0.

This inequality is true because

1 +
n− 2

n− 1
S − n− 2

n
S2 ≥ 1 +

n− 2

n− 1
S − n− 1

n
S = 1− 1

n(n− 1)
S > 0.

The proof is completed. For n ≥ 3, the equality occurs when a1 = a2 = · · · = an =
1

n− 1
, and

also for a1 = a2 = · · · = an−1 =
1

n− 2
and an = 0 (or any cyclic permutation).

P 5.110. If a1, a2, . . . , an are nonnegative real numbers such that

n∑
i=1

1

ai + n− 1
= 1,

then

2
∑

1≤i<j≤n

aiaj ≥
n2(n− 1)

a1 + a2 + · · ·+ an
.

(V. Cı̂rtoaje, 2022)

Solution. We use the contradiction method, the induction method and the EV-Theorem. For
n = 2, we need to prove that a1a2 = 1 implies a1 +a2 ≥ 2, which is true. Consider further n ≥ 3.
By the contradiction method, it suffices to show that

2
∑

1≤i<j≤n

aiaj <
n2(n− 1)

a1 + a2 + · · ·+ an
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involves
f(a1) + f(a2) + · · ·+ f(an) < −1,

where

f(u) =
−1

u+ n− 1
.

To prove this, we apply EV-Theorem (Corollary 1) to the function f , which satisfies

f ′(u) =
1

(u+ n− 1)2
:= g(u), g′′(u) =

6

(u+ n− 1)4
> 0.

According to EV-Theorem, for fixed
n∑

i=1

ai and
∑

1≤i<j≤n

aiaj, the sum
n∑

i=1

1

ai + n− 1
is maximum

for either a1 = a2 = · · · = an−1 ≥ an > 0 or an = 0. Thus, it suffices to consider these cases.
Applying again the contradiction method (only for these cases), it suffices to show that

n∑
i=1

1

ai + n− 1
≤ 1

involves

2
∑

1≤i<j≤n

aiaj ≥
n2(n− 1)

a1 + a2 + · · ·+ an

Case 1: a1 = a2 = · · · = an−1 ≥ an > 0. We need to show that

n− 1

x+ n− 1
+

1

y + n− 1
≤ 1, x ≥ y > 0

involves

(n− 2)x2 + 2xy − n ≥ n2

(n− 1)x+ y
− n.

From the hypothesis, we have

y ≥ n− 1− (n− 2)x

x
, x <

n− 1

n− 2
.

Thus, it is sufficient to show that

(n− 2)x2 + 2[n− 1− (n− 2)x]− n ≥ n2

(n− 1)x+
n− 1− (n− 2)x

x

− n,

that is

(n− 2)(x− 1)2 +
n(x− 1)2

(n− 1)x2 − (n− 2)x+ n− 1
≥ 0.

Case 2: an = 0. We need to prove that

n−1∑
i=1

1

ai + n− 1
≤ n− 2

n− 1
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involves

2
∑

1≤i<j≤n−1

aiaj ≥
n2(n− 1)

a1 + a2 + · · ·+ an−1
.

Using the substitution

ai =
n− 1

n− 2
xi, i = 1, 2, . . . , n− 1,

we need to show that
n−1∑
i=1

1

xi + n− 2
≤ 1

implies

2
∑

1≤i<j≤n−1

xixj ≥
n2(n− 2)3

(n− 1)2(x1 + x2 + · · ·+ xn−1)
.

By the induction hypothesis, we have

2
∑

1≤i<j≤n−1

xixj ≥
(n− 1)2(n− 2)

x1 + x2 + · · ·+ xn−1
.

Thus, it suffices to show that

(n− 1)2(n− 2)

x1 + x2 + · · ·+ xn−1
≥ n2(n− 2)3

(n− 1)2(x1 + x2 + · · ·+ xn−1)
,

This is true if (n−1)4 ≥ n2(n−2)2, which is true if (n−1)2 ≥ n(n−2). The proof is completed.
The equality occurs for a1 = a2 = · · · = an = 1.

P 5.111. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

ai + n− 1
≤ 1,

then
n

a1 + a2 + · · ·+ an
− 1 + k

[
2

n(n− 1)

∑
1≤i<j≤n

aiaj − 1

]
≥ 0,

where

k =
4(n− 1)2

(n− 2)(3n− 4)
.

(L. Giugiuc and V. Cı̂rtoaje, Recreatii Matematice, no. 1, 2022)

Solution. By the contradiction method, it suffices to show that

n

a1 + a2 + · · ·+ an
− 1 + k

[
2

n(n− 1)

∑
1≤i<j≤n

aiaj − 1

]
< 0
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involves
n∑

i=1

1

ai + n− 1
> 1.

To prove this, we apply EV-Theorem (Corollary 1) to the function f(u) =
−1

u+ n− 1
, which

satisfies

f ′(u) =
1

(u+ n− 1)2
:= g(u), g′′(u) =

6

(u+ n− 1)4
> 0.

According to EV-Theorem, for fixed
n∑

i=1

ai and
∑

1≤i<j≤n

aiaj, the sum
n∑

i=1

1

ai + n− 1
is minimum

for a1 = a2 = · · · = an−1 ≤ an. Thus, it suffices to consider a1 = a2 = · · · = an−1 = x and
an = y, x ≤ y. We need to prove that

n

(n− 1)x+ y
− 1 +

k

n
[(n− 2)x2 + 2xy − n] < 0

involves
n− 1

x+ n− 1
+

1

y + n− 1
> 1.

Applying again the contradiction method, it suffices to show that

n− 1

x+ n− 1
+

1

y + n− 1
≤ 1

involves
n

(n− 1)x+ y
− 1 +

k

n
[(n− 2)x2 + 2xy − n] ≥ 0.

From the hypothesis, we get

y ≥ n− 1

x
− n+ 2.

Having in view Lemma below, we only need to prove the inequality for y =
n− 1

x
−n+ 2. Since

n

(n− 1)x+ y
− 1 =

−(n− 1)(x− 1)2

(n− 1)(x2 + 1)− (n− 2)x

and

(n− 2)x2 + 2xy − n = (n− 2)(x− 1)2,

we need to show that
−(n− 1)

(n− 1)(x2 + 1)− (n− 2)x
+
k(n− 2)

n
≥ 0,

which is equivalent to
4(n− 1)

n(3n− 4)
≥ 1

(n− 1)(x2 + 1)− (n− 2)x
,

[2(n− 1)x− n+ 2]2 ≥ 0.
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The proof is completed. The equality occurs when a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
n− 2

2(n− 1)
and an =

n2 − 2

n− 2
(or any cyclic permutation)

Lemma. For fixed x > 0, define the function

f(y) =
n

(n− 1)x+ y
+

2k

n
xy,

where n ≥ 3 and k =
4(n− 1)2

(n− 2)(3n− 4)
. The function f is strictly increasing for

y ≥ n− 1

x
− n+ 2.

Proof. We need to show that f ′(y) ≥ 0, that is

2kx[(n− 1)x+ y]2 ≥ n2.

Since

(n− 1)x+ y ≥ (n− 1)x+
n− 1

x
− n+ 2 = (n− 1)

(
x+

1

x

)
− n+ 2,

we need to prove that

2kx

[
(n− 1)

(
x+

1

x

)
− n+ 2

]2
≥ n2.

In addition, since

(n− 1)

(
x+

1

x

)
− n+ 2 ≥ 2(n− 1)− n+ 2 = n,

it is sufficient to show that

2kx

[
(n− 1)

(
x+

1

x

)
− n+ 2

]
≥ n,

which is equivalent to

8(n− 1)2

(n− 2)(3n− 4)

[
(n− 1)(x2 + 1)− (n− 2)x

]
≥ n.

Since
n− 1

n− 2
> 1,

3(n− 1)

3n− 4
> 1,

it suffices to show that

(n− 1)(x2 + 1)− (n− 2)x ≥ 3

8
n.

For n = 3, we have

(n− 1)(x2 + 1)− (n− 2)x− 3

8
n = 2(x2 + 1)− x− 9

8
> 2(x2 + 1)− x− 15

8
=

1

8
(4x− 1)2 ≥ 0.

Also, for n ≥ 4, we have

(n− 1)(x2 + 1)− (n− 2)x− 3

8
n > (n− 2)(x2 − x+ 1)− 3

8
n ≥ 3

4
(n− 2)− 3

8
n =

3

8
(n− 4) ≥ 0.
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P 5.112. If a1, a2, . . . , an are positive real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

n

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
+ n(n− 2) ≥ 2(n− 1)(a1 + a2 + · · ·+ an).

(V. Cı̂rtoaje and L. Giugiuc, 2022)

Solution. For n = 2, we need to show that a1a2 = 1 involves a1a2 ≥ 1, which is true. Consider
further n ≥ 3 and apply EV-Theorem (Corollary 5, case k = 2 and m = −1): For fixed

a1 + a2 + · · · + an and
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, the sum

1

a1
+

1

a2
+ · · · + 1

an
is minimum when

a1 = a2 = · · · = an−1 ≤ an. Thus, it suffices to consider a1 = a2 = · · · = an−1 = x and an = y
(0 < x ≤ 1 ≤ y). Thus, we need to show that

n

(
n− 1

x
+

1

y

)
+ n(n− 2) ≥ 2(n− 1)[(n− 1)x+ y]

for

(n− 2)x2 + 2xy = n, y =
n− (n− 2)x2

2x
.

Write the inequality to be proved as follows:

n

(
n− 1

x
+

1

y
− n

)
≥ 2(n− 1)[(n− 1)x+ y − n],

n2(x− 1)2[(n− 2)x+ n− 1]

x[n− (n− 2)x2]
≥ n(n− 1)(x− 1)2

x
.

This is true if
n[(n− 2)x+ n− 1]

n− (n− 2)x2
≥ n− 1,

which is equivalent to

(n− 2)x[(n− 1)x+ n] ≥ 0.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1.

Remark 1. Since a1 + a2 + · · ·+ an ≥ n, from P 5.112 we get

n

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
+ (n− 2)(a1 + a2 + · · ·+ an) ≥ 2(n− 1)(a1 + a2 + · · ·+ an).

Thus, the following statement is true:

• If a1, a2, . . . , an are positive real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

1

a1
+

1

a2
+ · · ·+ 1

an
≥ a1 + a2 + · · ·+ an.
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Remark 2. Since

a1 + a2 + · · ·+ an ≥ 2n− n2

a1 + a2 + · · ·+ an
,

from P 5.112 we get

• If a1, a2, . . . , an are positive real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

1

a1
+

1

a2
+ · · ·+ 1

an
+

2n(n− 1)

a1 + a2 + · · ·+ an
≥ 3n− 2.

P 5.113. If a1, a2, . . . , an are nonnegative real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1
− n

2
+ k

(
n

a1 + a2 + · · ·+ an
− 1

)
≤ 0,

where

k =
1

2
(n− 1)

√
n(n− 2).

(V. Cı̂rtoaje and L. Giugiuc, 2022)

Solution. For n = 2, the inequality is an identity. Consider further n ≥ 3 and apply EV-

Theorem (Corollary 1) to the function f(u) =
−1

u+ 1
, which satisfies

f ′(u) =
1

(u+ 1)2
:= g(u), g′′(u) =

6

(u+ 1)4
> 0.

According to EV-Theorem, for fixed
n∑

i=1

ai and
∑

1≤i<j≤n

aiaj, the sum
n∑

i=1

1

ai + 1
is maximum for

either a1 = a2 = · · · = an−1 ≥ an > 0 or an = 0. Thus, it suffices to consider these cases.

Case 1: a1 = a2 = · · · = an−1 ≥ an > 0. We need to show that

y =
n− (n− 2)x2

2x
, 0 < x <

√
n

n− 2
,

involves
n− 1

x+ 1
+

1

y + 1
− n

2
+ k

[
n

(n− 1)x+ y
− 1

]
≤ 0,

which is equivalent to
n(n− 2)(x− 1)2

2[n+ 2x− (n− 2)x2]
− k(x− 1)2

x2 + 1
≤ 0.

This is true if
n(n− 2)

n+ 2x− (n− 2)x2
− 2k

x2 + 1
≤ 0,
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that is

√
n− 2

[
(n− 1)

√
n− 2 +

√
n
]
x2 − 2(n− 1)x−

√
n
[
(n− 1)

√
n−
√
n− 2

]
≤ 0,

(x
√
n− 2−

√
n)(ax+ b) ≤ 0,

where

a = (n− 1)
√
n− 2 +

√
n, b = (n− 1)

√
n−
√
n− 2.

Case 2: an = 0. We need to prove that∑
1≤i<j≤n−1

aiaj =
n(n− 1)

2

involves

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an−1 + 1
− n− 2

2
+ k

(
n

a1 + a2 + · · ·+ an−1
− 1

)
≤ 0,

which is equivalent to

a1
a1 + 1

+
a2

a2 + 1
+ · · ·+ an−1

an−1 + 1
− n

2
≥ k

(
n

a1 + a2 + · · ·+ an−1
− 1

)
.

Denoting

a1 + a2 + · · ·+ an−1 = (n− 1)S,

from the known inequality

(a1 + a2 + · · ·+ an−1)
2 ≥ 2(n− 1)

n− 2

∑
1≤i<j≤n−1

aiaj,

we get

S ≥
√

n

n− 2
.

On the other hand, by the Cauchy-Schwarz inequality, we have[
n−1∑
i=1

ai(ai + 1)

](
n−1∑
i=1

ai
ai + 1

)
≥

(
n−1∑
i=1

ai

)2

,

hence
n−1∑
i=1

ai
ai + 1

≥ (n− 1)2S2

n−1∑
i=1

a2i + (n− 1)S

=
(n− 1)2S2

(n− 1)2S2 − 2
∑

1≤i<j≤n−1

aiaj + (n− 1)S
=

(n− 1)S2

(n− 1)S2 + S − n
.
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Therefore, it suffices to show that

(n− 1)S2

(n− 1)S2 + S − n
− n

2
≥ k

[
n

(n− 1)S
− 1

]
,

which is equivalent to

2k[(n− 1)S − n]

(n− 1)S
≥ [(n− 1)S − n][(n− 2)S + n]

(n− 1)S2 + S − n
.

Since

(n− 1)S − n ≥ (n− 1)

√
n

n− 2
− n > 0,

we need to show that
2k

(n− 1)S
≥ (n− 2)S + n

(n− 1)S2 + S − n
,

which is equivalent to √
n(n− 2) ≥ (n− 2)S2 + nS

(n− 1)S2 + S − n
,(

S
√
n− 2−

√
n
)

(aS + b) ≥ 0,

where
a = (n− 1)

√
n−
√
n− 2, b = n

√
n− 2.

Clearly, the last inequality is true.
The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =

√
n

n− 2
and an = 0 (or any cyclic permutation).

P 5.114. If a1, a2, . . . , an are nonnegative real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1
− n

2
+ k

(
n

a1 + a2 + · · ·+ an
− 1

)
≥ 0,

where

k =
n(n− 2)

2(n− 1)2

(√
n2 − 2n+ 2− 1

)
.

(V. Cı̂rtoaje and L. Giugiuc, 2022)

Solution. For n = 2, we need to show that a1a2 = 1 involves a1a2 ≤ 1, which is true. Consider

further n ≥ 3 and apply the EV-Theorem (Corollary 1) to the function f(x) =
−1

x+ 1
, which

satisfies

f ′(x) =
1

(x+ 1)2
:= g(x), g′′(x) =

6

(x+ 1)4
> 0.
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According to the EV-Theorem, for fixed
n∑

i=1

ai and
∑

1≤i<j≤n

aiaj, the sum
n∑

i=1

1

ai + 1
is minimum

for a1 = a2 = · · · = an−1 ≤ an. Thus, it suffices to consider that a1 = a2 = · · · = an−1 = x and
an = y. So, we need to show that

(n− 1)(n− 2)

2
x2 + (n− 1)xy =

n(n− 1)

2
,

that is

y =
n− (n− 2)x2

2x
, 0 < x <

√
n

n− 2
,

involves
n− 1

x+ 1
+

1

y + 1
− n

2
+ k

[
n

(n− 1)x+ y
− 1

]
≥ 0,

which is equivalent to
n(n− 2)(x− 1)2

2[n+ 2x− (n− 2)x2]
− k(x− 1)2

x2 + 1
≥ 0.

This is true if
n(n− 2)

n+ 2x− (n− 2)x2
− 2k

x2 + 1
≥ 0,

that is
(n− 2)(2k + n)x2 − 4kx+ n(n− 2− 2k) ≥ 0,[

x− 2k

(n− 2)(2k + n)

]2
≥ 0,(

x+ n− 1−
√
n2 − 2n+ 2

)2
≥ 0.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also for
a1 = a2 = · · · = an−1 =

√
n2 − 2n+ 2− n + 1 and an =

√
n2 − 2n+ 2 + (n− 1)2 (or any cyclic

permutation).

P 5.115. If a1, a2, . . . , an are nonnegative real numbers such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
, then

(n− 2)(a1 + a2 + · · ·+ an) ≥ 2

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1

)
+ n(n− 3).

(V. Cı̂rtoaje and L. Giugiuc, 2022)

Solution. For n = 2, we need to show that a1a2 = 1 involves a1a2 ≤ 1, which is true. Consider

further n ≥ 3 and apply EV-Theorem (Corollary 1) to the function f(u) =
−1

u+ 1
, which satisfies

f ′(u) =
1

(u+ 1)2
:= g(u), g′′(u) =

6

(u+ 1)4
> 0.
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According to EV-Theorem, for fixed
n∑

i=1

ai and
∑

1≤i<j≤n

aiaj, the sum
n∑

i=1

1

ai + 1
is maximum for

either a1 = a2 = · · · = an−1 ≥ an > 0 or an = 0. Thus, it suffices to consider these cases.

Case 1: a1 = a2 = · · · = an−1 ≥ an > 0. We need to show that

y =
n− (n− 2)x2

2x
, 0 < x <

√
n

n− 2

involves

(n− 2)[(n− 1)x+ y] ≥ 2

(
n− 1

x+ 1
+

1

y + 1

)
+ n(n− 3),

which is equivalent to

(n− 2)[(n− 1)x+ y − n] ≥ 2(n− 1)

x+ 1
+

2

y + 1
− n,

n(n− 2)(x− 1)2

2x
≥ n(n− 2)(x− 1)2

n+ 2x− (n− 2)x2
,

n(n− 2)(x− 1)2[n− (n− 2)x2] ≥ 0.

Clearly, the last inequality is true.

Case 2: an = 0. We need to prove that∑
1≤i<j≤n−1

aiaj =
n(n− 1)

2

involves

(n− 2)
n−1∑
i=1

ai ≥ 2
n−1∑
i=1

1

ai + 1
+ n2 − 3n+ 2,

which is equivalent to

(n− 2)
n−1∑
i=1

ai + 2
n−1∑
i=1

ai
ai + 1

≥ n(n− 1).

Denoting
a1 + a2 + · · ·+ an−1 = (n− 1)S,

from the known inequality

(a1 + a2 + · · ·+ an−1)
2 ≥ 2(n− 1)

n− 2

∑
1≤i<j≤n−1

aiaj,

we get

S ≥
√

n

n− 2
.

On the other hand, by the Cauchy-Schwarz inequality, we have[
n−1∑
i=1

ai(ai + 1)

](
n−1∑
i=1

ai
ai + 1

)
≥

(
n−1∑
i=1

ai

)2

,
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hence
n−1∑
i=1

ai
ai + 1

≥ (n− 1)2S2

n−1∑
i=1

a2i + (n− 1)S

=
(n− 1)2S2

(n− 1)2S2 − 2
∑

1≤i<j≤n−1

aiaj + (n− 1)S
=

(n− 1)S2

(n− 1)S2 + S − n
.

Therefore, it suffices to show that

(n− 1)(n− 2)S +
2(n− 1)S2

(n− 1)S2 + S − n
≥ n(n− 1),

which is equivalent to

(n− 1)(n− 2)S3 − n(n− 2)S2 − n(n− 1)S + n2 ≥ 0,

[(n− 1)S − n][(n− 2)S2 − n] ≥ 0.

Since

(n− 1)S − n ≥ (n− 1)

√
n

n− 2
− n > 0,

the last inequality is clearly true.
The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =

√
n

n− 2
and an = 0 (or any cyclic permutation).

P 5.116. If a1, a2, . . . , an are positive real numbers such that

1

a1
+

1

a2
+ · · ·+ 1

an
= n,

then

2(n+ 1)

(
1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1

)
≥ n2(n− 1)

a1 + a2 + · · ·+ an
+ 2n.

(V. Cı̂rtoaje, 2022)

Solution. For n = 2, we need to show that a1 +a2 = 2a1a2 involves a1a2 ≥ 1. This follows from

0 ≤ (a1 − a2)2 = (a1 + a2)
2 − 4a1a2 = 4a21a

2
2 − 4a1a2 = 4a1a2(a1a2 − 1).

Consider further n ≥ 3 and apply the EV-Theorem (Corollary 2) to the function f(x) =
1

x+ 1
,

which satisfies

f ′(x) =
−1

(x+ 1)2
, g(x) = f ′

(
1√
x

)
=

−x
(
√
x+ 1)2

,



EV Method for Nonnegative Variables 493

g′′(x) =
3

2
√
x(
√
x+ 1)4

> 0.

According to the EV-Theorem, for fixed a1 + a2 + · · ·+ an and
1

a1
+

1

a2
+ · · ·+ 1

an
= n, the sum

n∑
i=1

1

ai + 1
is minimum when a1 ≤ a2 = a3 = · · · = an. Thus, it suffices to consider this case. We

only need to show that
1

x
+
n− 1

y
= n, x ≤ y,

that is

y =
(n− 1)x

nx− 1
, x >

1

n
,

involves

2(n+ 1)

(
1

x+ 1
+
n− 1

y + 1

)
≥ n2(n− 1)

x+ (n− 1)y
+ 2n,

that is

n(n− 1)

[
1− n

x+ (n− 1)y

]
≥ (n+ 1)

(
n− 2

x+ 1
− 2n− 2

y + 1

)
.

Since

1− n

x+ (n− 1)y
=

(x− 1)2

x(x+ n− 2)

and

n− 2

x+ 1
− 2n− 2

y + 1
=

n(x− 1)2

(x+ 1)[(2n− 1)x− 1]
,

the inequality becomes

n(n− 1)(x− 1)2

x(x+ n− 2)
≥ n(n+ 1)(x− 1)2

(x+ 1)[(2n− 1)x− 1]
.

This inequality holds if
n− 1

x(x+ n− 2)
≥ n+ 1

(x+ 1)[(2n− 1)x− 1]
,

which is equivalent to
(nx− 1)[2(n− 2)x+ n− 1] ≥ 0.

This inequality is clearly true.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1.

P 5.117. If a1, a2, . . . , an are positive real numbers such that

1

a1
+

1

a2
+ · · ·+ 1

an
= n,

then

a21 + a22 + · · ·+ a2n +
2n2

a1 + a2 + · · ·+ an
≥ 3n.

(V. Cı̂rtoaje, 2022)
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Solution. For n = 2, we need to show that a1 + a2 = 2a1a2 involves

(a1a2 − 1)(2a21a
2
2 + a1a2 − 2) ≥ 0.

This is true if a1a2 ≥ 1. Indeed, we have

0 ≤ (a1 − a2)2 = (a1 + a2)
2 − 4a1a2 = 4a21a

2
2 − 4a1a2 = 4a1a2(a1a2 − 1),

hence a1a2 ≥ 1. Consider further n ≥ 3 and apply the EV-Theorem (Corollary 2) to the function
f(x) = x2, which satisfies

f ′(x) = 2x, g(x) = f ′
(

1√
x

)
=

2√
x
, g′′(x) =

3

2x2
√
x
> 0.

According to the EV-Theorem, for fixed a1 + a2 + · · ·+ an and
1

a1
+

1

a2
+ · · ·+ 1

an
= n, the sum

a21 + a22 + · · · + a2n is minimum when a1 ≤ a2 = a3 = · · · = an. Thus, it suffices to consider this
case. We only need to show that

1

x
+
n− 1

y
= n, x ≤ y,

that is

y =
(n− 1)x

nx− 1
,

1

n
< x ≤ 1,

involves

x2 + (n− 1)y2 +
2n2

x+ (n− 1)y
≥ 3n,

that is

x2 + (n− 1)y2 − n ≥ 2n

[
1− n

x+ (n− 1)y

]
.

Since

x2 + (n− 1)y2 − n =
n(x− 1)2[nx2 + 2(n− 1)x− 1]

(nx− 1)2

and

1− n

x+ (n− 1)y
=

(x− 1)2

x(x+ n− 2)
,

the inequality becomes

n(x− 1)2[nx2 + 2(n− 1)x− 1]

(nx− 1)2
≥ 2n(x− 1)2

x(x+ n− 2)
.

This inequality holds if
nx2 + 2(n− 1)x− 1

(nx− 1)2
≥ 2

x(x+ n− 2)
.

Since nx > 1, we have

nx2 + 2(n− 1)x− 1 > x+ 2(n− 1)x− 1 = (2n− 1)x− 1.



EV Method for Nonnegative Variables 495

Thus, it suffices to show that

(2n− 1)x− 1

(nx− 1)2
≥ 2

x(x+ n− 2)
.

which is equivalent to
(1− x)[3nx− (2n− 1)x2 − 2] ≥ 0.

This inequality is true because

3nx− (2n− 1)x2 − 2 = nx(3− 2x) + x2 − 2 > (3− 2x) + x2 − 2 = (x− 1)2 ≥ 0.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1.

P 5.118. If a1, a2, . . . , an are nonnegative real numbers such that a1 + a2 + · · ·+ an = n, then∑ 1

a21 + (n2 − n+ 1)(a22 + · · ·+ a2n)
≤ 1

n2 − 2n+ 2
.

(V. Cı̂rtoaje, 2022)

Solution. For n = 2, we need to show that a1 + a2 = 2 involves

3(a41 + a42) + 10a21a
2
2 ≥ 8(a21 + a22),

which is equivalent to
3(a41 + a42) + 10a21a

2
2 ≥ 2(a1 + a2)

2(a21 + a22),

(a1 − a2)4 ≥ 0.

Consider further n ≥ 3 and write the inequality in the homogeneous form∑ 1

(n2 − n+ 1)(a21 + a22 + · · ·+ a2n)− n(n− 1)a21
≤ n2

(n2 − 2n+ 2)(a1 + a2 + · · ·+ an)2
.

Without loss of generality, assume that

a21 + a22 + · · ·+ a2n =
n2 − n

n2 − n+ 1
.

We need to show that

f(a1) + f(a2) + · · ·+ f(an) ≤ n3(n− 1)

(n2 − 2n+ 2)(a1 + a2 + · · ·+ an)2
,

where

f(x) =
1

1− x2
, 0 ≤ x < 1.

Since

g(x) = f ′(x) =
2x

(1− x2)2
, g′′(x) =

24x(x2 + 1)

(1− x2)4
≥ 0,



496 Vasile Ĉırtoaje

according to the EV-Theorem, for fixed a1 + a2 + · · · + an and a21 + a22 + · · · + a2n, the sum
f(a1) + f(a2) + · · · + f(an) is maximum when a1 = a2 = · · · = an−1 ≤ an. Thus, it suffices to
prove the homogeneous inequality for a1 = a2 = · · · = an−1 = 0 and a1 = a2 = · · · = an−1 = 1.
In the first case, the inequality becomes

n− 1

n2 − n+ 1
+ 1 ≤ n2

n2 − 2n+ 2
,

n ≥ 1.

In the second case, when a21 + a22 + · · ·+ a2n = a2n + n− 1, we need to show that

n− 1

(n2 − n+ 1)a2n + (n− 1)3
+

1

a2n + (n− 1)(n2 − n+ 1)
≤ n2

(n2 − 2n+ 2)(an + n− 1)2
.

Using the substitutions an = x and n = k + 1, the inequality can be written as follows:

k

(k2 + k + 1)x2 + k3
+

1

x2 + k(k2 + k + 1)
≤ (k + 1)2

(k2 + 1)(x+ k)2
,

x2 + k2

[(k2 + k + 1)x2 + k3][x2 + k(k2 + k + 1)]
≤ 1

(k2 + 1)(x+ k)2
,

x4 − 2(k2 + 1)x3 + (k4 + 4k2 + 1)x2 − 2k2(k2 + 1)x+ k4 ≥ 0,

(x− 1)2(x− k2)2 ≥ 0.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
1

n− 1
and an = n− 1 (or any cyclic permutation).

P 5.119. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

1

(5a+ 2b+ 2c)2
+

1

(2a+ 5b+ 2c)2
+

1

(2a+ 2b+ 5c)2
≤ 1

27
.

(V. Cı̂rtoaje, 2022)

Solution. Write the inequality in the homogeneous form

1

(5a+ 2b+ 2c)2
+

1

(2a+ 5b+ 2c)2
+

1

(2a+ 2b+ 5c)2
≤ 1

9(ab+ bc+ ca)
.

Due to homogeneity, we may consider a+ b+ c = 3, 0 ≤ a ≤ b ≤ c, when the inequality becomes

f(a) + f(b) + f(c) +
1

ab+ bc+ ca
≥ 0,

where

f(x) =
−1

(x+ 2)2
, x ≥ 0.
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To prove it, we apply Corollary 1 to the function f . We have

g(x) = f ′(x) =
2

(x+ 2)3
, g′′(x) =

24

(x+ 2)5
.

Since g′′(x) > 0, g is strictly convex. According to Corollary 1, if

a+ b+ c = 3, ab+ bc+ ca = fixed, 0 ≤ a ≤ b ≤ c,

then the sum f(a) + f(b) + f(c) is minimum for either a = 0 or 0 < a ≤ b = c. Thus, we only
need to consider these cases.

Case 1: a = 0. The homogeneous inequality becomes

1

4(b+ c)2
+

1

(5b+ 2c)2
+

1

(5c+ 2b)2
≤ 1

9bc
.

Since
1

9bc
− 1

4(b+ c)2
≥ 1

9bc
− 1

16bc
>

2

48bc
>

2

49bc
,

it suffices to show that
2

49bc
≥ 1

(5b+ 2c)2
+

1

(5c+ 2b)2
,

which is equivalent to

200(b4 + c4)− 261bc(b2 + c2) + 122b2c2 ≥ 0,

200(b2 + c2)2 − 261bc(b2 + c2)− 278b2c2 ≥ 0,

(b2 + c2 − 2bc)(200b2 + 200c2 + 139bc) ≥ 0.

Case 2: b = c. For b = c = 1, the homogeneous inequality becomes

1

(5a+ 4)2
+

2

(2a+ 7)2
≤ 1

9(2a+ 1)
,

100a4 − 112a3 − 21a2 − 22a+ 55 ≥ 0,

(a− 1)2(100a2 + 88a+ 55) ≥ 0.

The equality holds for a = b = c = 1.

P 5.120. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

1

(3a+ b+ c)2
+

1

(a+ 3b+ c)2
+

1

(a+ b+ 3c)2
≤ 1

8
.

(V. Cı̂rtoaje, 2022)
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Solution. Write the inequality in the homogeneous form

1

(3a+ b+ c)2
+

1

(a+ 3b+ c)2
+

1

(a+ b+ 3c)2
≤ 3

8(ab+ bc+ ca)
.

As we showed in the previous P 5.119, it is sufficient to consider the cases a = 0 and 0 < a ≤ b = c.

Case 1: a = 0. The homogeneous inequality becomes

1

(b+ c)2
+

1

(3b+ c)2
+

1

(3c+ b)2
≤ 3

8bc
.

Since
3

8bc
− 1

(b+ c)2
≥ 3

8bc
− 1

4bc
=

1

8bc
,

it suffices to show that
1

8bc
≥ 1

(3b+ c)2
+

1

(3c+ b)2
,

which is equivalent to

9(b2 + c2)2 − 20bc(b2 + c2) + 4b2c2 ≥ 0,

(b2 + c2 − 2bc)(9b2 + 9c2 − 2bc) ≥ 0.

Case 2: b = c. For b = c = 1, the homogeneous inequality becomes

1

(3a+ 2)2
+

2

(a+ 4)2
≤ 3

8(2a+ 1)
.

a(27a3 − 52a2 + 68a+ 32) ≥ 0.

It is true since

27a3 − 52a2 + 68a+ 32 > 27a3 − 54a2 + 27a = 27a(a− 1)2 ≥ 0.

The equality holds for a = 0 and b = c =
√

3 (or any cyclic permutation).

P 5.121. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

1

(a+ 4b+ 4c)2
+

1

(4a+ b+ 4c)2
+

1

(4a+ 4b+ c)2
≤ 1

27
.

(V. Cı̂rtoaje, 2022)

Solution. Write the inequality in the homogeneous form

1

(a+ 4b+ 4c)2
+

1

(4a+ b+ 4c)2
+

1

(4a+ 4b+ c)2
≤ 1

9(ab+ bc+ ca)
.
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Due to homogeneity, we may consider a+ b+ c = 3, 0 ≤ a ≤ b ≤ c, when the inequality becomes

f(a) + f(b) + f(c) ≤ 1

ab+ bc+ ca
,

where

f(x) =
1

(4− x)2
, x ∈ [0, 1].

To prove it, we apply Corollary 1 to the function f . We have

g(x) = f ′(x) =
2

(4− x)3
, g′′(x) =

24

(4− x)5
.

Since g′′(x) > 0, g is strictly convex. According to Corollary 1, if

a+ b+ c = 3, ab+ bc+ ca = fixed, 0 ≤ a ≤ b ≤ c,

then the sum f(a) + f(b) + f(c) is maximum for a = b ≤ c. Thus, we only need to prove the
homogeneous inequality for a = b = 1, that is

2

4c+ 1
+

1

c+ 8
≤ 1

9(2c+ 1)
,

16c4 − 28c3 + 231c2 − 442c+ 223 ≥ 0,

(c− 1)2(16c2 + 4c+ 223) ≥ 0.

The equality holds for a = b = c = 1.

P 5.122. If n ≥ 3, 1 < k ≤ n and a1, a2, . . . , an are nonnegative real numbers,then

(n− 1)k−1(ak1 + · · ·+ akn) + n[nk−1 − (n− 1)k−1](a1 · · · an)k/n ≥ (a1 + a2 + · · ·+ an)k.

(Petru Mironescu, 2022)

Solution. According to Corollary 4, if 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, ak1 + ak2 + · · ·+ akn = fixed,

then the product P = a1a2 · · · an has the minimum value for either an = 0 or a1 = · · · = an−1 ≥
an > 0. Thus, it suffices to prove the desired inequality for these two cases.

Case 1: an = 0. We need to show that

(n− 1)k−1(ak1 + · · ·+ akn−1) ≥ (a1 + a2 + · · ·+ an−1)
k,

which is a consequence of the power mean inequality.

Case 2: a1 = · · · = an−1 ≥ an > 0. Due to homogeneity, we need to prove that f(x) ≥ 0 for
x ≥ 1, where

f(x) = (n− 1)k−1[(n− 1)xk + 1] + nAxk(n−1)/n− [(n− 1)x+ 1]k, A = nk−1− (n− 1)k−1 > 0.
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We have

f ′(x) = k(n− 1)kxk−1 + k(n− 1)Axk(n−1)/n−1 − k(n− 1)[(n− 1)x+ 1]k−1 = k(n− 1)xk−1g(x),

where

g(x) = (n− 1)k−1 + Ax−k/n −
(
n− 1 +

1

x

)k−1

,

with

g′(x) =
k − 1

x2

(
n− 1 +

1

x

)k−2

− k

n
Ax−k/n−1 =

1

nx2

(
n− 1 +

1

x

)k−2

h(x),

where

h(x) = (k − 1)n− kAh1(x), h1(x) = x1−k/n
(
n− 1 +

1

x

)2−k

.

We will show that h1(x) is strictly increasing for x ≥ 1. If k ≥ 2, this is obvious. For 1 < k < 2,
we have

h′1(x) =

(
1− k

n

)
x−k/n

(
n− 1 +

1

x

)2−k

− (2− k)x−1−k/n
(
n− 1 +

1

x

)1−k

= x−1−k/n
(
n− 1 +

1

x

)1−k

h2(x),

where

h2(x) =

(
1− k

n

)
[(n− 1)x+ 1]− 2 + k.

Since h2(x) ≥ h2(1) = n − 2 > 0, we have h′1(x) > 0, h1(x) is strictly increasing and h(x) is
strictly decreasing. We will show that h(1) > 0. We have

h(1)

n
= k

(
1− 1

n

)k−1

− 1,
n− 1

n2
h(1) = k

(
1− 1

n

)k

− 1 +
1

n
.

If 2 ≤ k ≤ n, by Bernoulli’s inequality, we get

h(1)

n
> k

(
1− k − 1

n

)
− 1 =

(k − 1)(n− k)

n
≥ 0.

Also, for 1 < k < 2, we have

n− 1

n2
h(1) > k

(
1− k

n

)
− 1 +

1

n
=

(k − 1)(n− k − 1)

n
>

(k − 1)(n− 3)

n
≥ 0.

Since h(x) is strictly decreasing, h(1) > 0, limx→∞ h(x) < 0, there is x1 > 1 such that h(x1) = 0,
h(x) > 0 for x ∈ [1, x1), and h(x) < 0 for x ∈ (x1,∞). Since g′(x) has the same sign as h(x),
g(x) is increasing on [1, x1] and decreasing on [x1,∞). So, from

g(1) = 0, lim
x→∞

g(x) = 0,

it follows that g(x) ≥ 0, therefore f(x) is increasing and f(x) ≥ f(1) = 0.
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The proof is completed. The equality occurs for a1 = a2 = · · · = an and also for a1 = · · · = an−1
and an = 0 (or any cyclic permutation).

Remark 1. The inequality is also true for n = 2, when it becomes as follows:

xk + x−k

2
+ k − 1 ≥ k

(
x+ x−1

2

)k

,

where k ≥ 2 and x > 0.

Remark 2. For k = 2, we get Shleifer’s inequality:

(n− 1)(a21 + a22 + · · ·+ a2n) + n(a1a2 · · · an)2/n ≥ (a1 + a2 + · · ·+ an)2.

For n = 4, Shleifer’s inequality turns into Turkevich’s inequality:

a21 + a22 + a23 + a24 + 2
√
a1a2a3a4 ≥ a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4.

Remark 3. In the same conditions, the following inequality (Petru Mironescu) is also true:

(n− 1)1−1/k(ak1 + · · ·+ akn)1/k + n1/k[n1−1/k − (n− 1)1−1/k](a1 · · · an)1/n ≥ a1 + a2 + · · ·+ an,

with equality for a1 = a2 = · · · = an and also for a1 = · · · = an−1 and an = 0 (or any cyclic
permutation).

For a1a2 · · · an = 0, the inequality is a consequence of the power mean inequality. For
a1a2 · · · an > 0, the inequality follows from P 5.122. Due to homogeneity, we may assume

a1a2 · · · an = 1. Denoting m =
n− 1

n
< 1 and x =

a1 + a2 + · · ·+ an
n

≥ 1, the inequality in P

5.122 and the desired inequality become

(n− 1)k−1(ak1 + · · ·+ akn) ≥ nk(xk − 1 +mk−1)

and
(n− 1)k−1(ak1 + · · ·+ akn) ≥ nk(x− 1−m1−1/k)k,

respectively. So, it suffices to show that

xk − 1 +mk−1 ≥ (x− 1 +m1−1/k)k,

which is equivalent to f(x) ≥ 0, where

f(x) = xk − 1 +mk−1 − (x− 1 +m1−1/k)k.

Since k > 1, m < 1 and x ≥ 1, we have

1

k
f ′(x) = xk−1 − (x− 1 +m1−1/k)k−1 > xk−1 − xk−1 = 0,

f(x) is increasing, therefore f(x) ≥ f(1) = 0.
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P 5.123. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

(n− 1)ai + 1
= 1.

then
a1 + a2 + · · ·+ an ≥ n n−2

√
a1a2 · · · an.

(V. Cı̂rtoaje, 2022)

Solution. Consider a1 ≤ a2 ≤ · · · ≤ an. If n ≥ 4, we may apply Theorem 2 for m = 1.
So, since for fixed a1 + a2 + · · · + an, the product a1a2 · · · an has the maximum value when
a1 ≤ a2 = a3 = · · · = an, we only need to show that if

1

(n− 1)x+ 1
+

n− 1

(n− 1)y + 1
= 1, 0 < x ≤ y,

that is

y =
(n− 2)x+ 1

(n− 1)x
,

then
x+ (n− 1)y ≥ n n−2

√
xyn−1 ,

that is
x+ (n− 1)y ≥ ny n−2

√
xy ,

x2 + (n− 2)x+ 1 ≥ n

n− 1
[(n− 2)x+ 1]

n−2

√
(n− 2)x+ 1

n− 1
.

By Bernoulli’s inequality, we have

n−2

√
(n− 2)x+ 1

n− 1
=

n−2

√
1 +

(n− 2)(x− 1)

n− 1
≤ 1 +

x− 1

n− 1
=
x+ n− 2

n− 1
.

So, it suffices to show that

x2 + (n− 2)x+ 1 ≥ n

(n− 1)2
[(n− 2)x+ 1](x+ n− 2),

which is equivalent to (x− 1)2 ≥ 0.
For n = 3, we need to show that

a1 + a2 + a3 ≥ 3a1a2a3

for
1

2a1 + 1
+

1

2a2 + 1
+

1

2a3 + 1
= 1,

that is
4a1a2a3 = a1 + a2 + a3 + 1.

Denote t = 3
√
a1a2a3. From the AM-GM inequality, we have

4t3 = a1 + a2 + a3 + 1 ≥ 3t+ 1,
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(t− 1)(2t+ 1)2 ≥ 0,

hence a1a2a3 ≥ 1. Finally, we get

a1 + a2 + a3 − 3a1a2a3 = a1a2a3 − 1 ≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1.

P 5.124. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

(n− 1)ai + 1
= 1,

then
a1 + a2 + · · ·+ an − n ≤ k(a1a2 · · · an − 1),

where k =

(
n− 1

n− 2

)n−1

.

(V. Cı̂rtoaje and L. Giugiuc, Creat. Math. Inform, 2, 2022)

Solution. Consider a1 ≤ a2 ≤ · · · ≤ an. For n = 3, the inequality is an identity. Consider
further n ≥ 4. According to Theorem 2 (case m = 1), for fixed a1 + a2 + · · · + an, the product
a1a2 · · · an is minimum when a1 = a2 = · · · = an−1 ≤ an. We need to show that if

n− 1

(n− 1)x+ 1
+

1

(n− 1)y + 1
= 1 ,

which leads to

y =
1

(n− 1)x− n+ 2
,

n− 2

n− 1
< x ≤ y,

then
(n− 1)x+ y − n ≤ k(xn−1y − 1),

which is equivalent to

1 + [(n− 1)x− n+ 2][(n− 1)x− n] ≤ k[xn−1 − (n− 1)x+ n− 2], (*)

or
(n− 1)2(x− 1)2 ≤ kf(x), f(x) = xn−1 − 1− (n− 1)(x− 1).

Since
f(x) = (x− 1)(xn−2 + xn−3 + · · ·+ x− n+ 2) = (x− 1)2g(x),

where
g(x) = xn−3 + 2xn−4 + · · ·+ (n− 2),

we only need to show that
(n− 1)2 ≤ kg(x).
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Since g is an increasing function, it suffices to show that

(n− 1)2 ≤ kg

(
n− 2

n− 1

)
.

This inequality is true if the inequality (*) holds for x =
n− 2

n− 1
. Indeed, in this case, (**) is an

identity.

For n ≥ 4, the equality occurs when a1 = a2 = · · · = an = 1.

Remark. From P 5.123 and P 5.124, we get the following nice double inequality:

• If a1, a2, . . . , an (n ≥ 4) are nonnegative real numbers such that

n∑
i=1

1

(n− 1)ai + 1
= 1,

then
n−2
√
a1a2 · · · an ≤

a1 + a2 + · · ·+ an
n

≤ a1a2 · · · an.

By the AM-HM inequality[
n−1∑
i=1

((n− 1)ai + 1)

](
n−1∑
i=1

1

(n− 1)ai + 1

)
≥ n2,

we get a1 + a2 + · · ·+ an ≥ n. As a consequence, the inequality in P 5.124 involves

a1a2 · · · an ≥ 1.

So, denoting p = a1a2 · · · an (p ≥ 1 ), the inequality in P 5.124 leads to

na1a2 · · · an − (a1 + a2 + · · ·+ an) ≥ np− k(p− 1)− n = (n− k)(p− 1) ≥ 0.

P 5.125. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

(n− 1)ai + 1
= 1,

then

(n− 2)(a1 + a2 + · · ·+ an) + a1a2 · · · an ≥ (n− 1)2.

(V. Cı̂rtoaje and L. Giugiuc, Creat. Math. Inform, 2, 2022)
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Solution. Consider a1 ≥ a2 ≥ · · · ≥ an. According to Theorem 2 (case m = n − 1), for fixed
a1 + a2 + · · · + an, the product a1a2 · · · an has the minimum value for either a1 = a2 = · · · =
an−1 ≥ an > 0 or an = 0. Thus, it suffices to consider these cases.

Case 1: a1 = a2 = · · · = an−1 ≥ an > 0. We need to show that if

n− 1

x+ 1
+

1

y + 1
= 1 ,

which leads to

y =
n− 1− (n− 2)x

x
, 0 < y ≤ x <

n− 1

n− 2
,

then
(n− 2)[(n− 1)x+ y] + xn−1y ≥ (n− 1)2,

which is equivalent to

(n− 2)y + xn−1y ≥ (n− 1)[n− 1− (n− 2)x].

Since n− 1− (n− 2)x = xy, we only need to show that

n− 2 + xn−1 ≥ (n− 1)x,

which is just the AM-GM inequality.

Case 2: an = 0. We need to show that

n−1∑
i=1

1

ai + n− 1
=
n− 2

n− 1

involves
(n− 2)(a1 + a2 + · · ·+ an−1) ≥ (n− 1)2.

This follows immediately from the AM-HM inequality[
n−1∑
i=1

(ai + n− 1)

](
n−1∑
i=1

1

ai + n− 1

)
≥ (n− 1)2.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
n− 1

n− 2
and an = 0 (or any cyclic permutation).

P 5.126. If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

n∑
i=1

1

2ai + n− 2
= 1,

then
a1 + a2 + · · ·+ an − n ≥ 2n−1(a1a2 · · · an − 1).

(V. Cı̂rtoaje and L. Giugiuc, Creat. Math. Inform, 2, 2022)
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Solution. Consider a1 ≥ a2 ≥ · · · ≥ an. For n = 3, the inequality is an identity. For n ≥ 4,
according to Theorem 1 (case m = n− 2), for fixed a1 + a2 + · · ·+ an, the product a1a2 · · · an
attains its maximum value when a1 ≥ a2 = a3 = · · · = an. Thus, we only need to show that

y + (n− 1)x− n ≥ 2n−1(yxn−1 − 1)

for
1

2y + n− 2
+

n− 1

2x+ n− 2
= 1 ,

which implies

y =
n− 2− (n− 3)x

2x− 1
,

1

2
< x ≤ y.

The required inequality is equivalent to

n− 2− (n− 3)x+ (2x− 1)[(n− 1)x− n]

2n−1 ≥

≥ (n− 2)(xn−1 − 1)− (n− 3)(xn − 1)− 2(x− 1), (*)

or
(n− 1)(x− 1)2

2n−2 ≥ (x− 1)f(x),

where

f(x) = (n− 2)(xn−2 + xn−3 + · · ·+ x+ 1)− (n− 3)(xn−1 + xn−2 + · · ·+ x+ 1)− 2

= (n− 2)[(xn−2− 1) + (xn−3− 1) + · · ·+ (x− 1)]− (n− 3)[(xn−1− 1) + (xn−2− 1) + · · ·+ (x− 1)]

= (x− 1)g(x),

g(x) = (n− 2)[xn−3 + 2xn−4 + · · ·+ (n− 2)]− (n− 3)[xn−2 + 2xn−3 + · · ·+ (n− 1)]

= −(n− 3)xn−2 − (n− 4)xn−3 − · · · − x2 + 1.

So, we only need to show that
n− 1

2n−2 ≥ g(x).

Since g is a decreasing function, it suffices to show that

n− 1

2n−2 ≥ g

(
1

2

)
.

This is true if the inequality (*) holds for x =
1

2
. It is easy to show that (*) is an identity.

For n ≥ 4, the equality occurs when a1 = a2 = · · · = an = 1.
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P 5.127. Let n ≥ 3, and let a1 ≥ a2 ≥ · · · ≥ an > 0 such that
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
. Then

(a)
1

a21
+

1

a22
+ · · ·+ 1

a2n
− n ≥

(
3− 4

n

)(
an−1
an

+
an
an−1

− 2

)
;

(b)
1

a21
+

1

a22
+ · · ·+ 1

a2n
− n ≥

(
3− 4

n

)
(an−1 − an)2.

(V. Cı̂rtoaje, 2024)

Solution. Since an−1an ≤ 1, the inequality (b) follows from the inequality (a). We write now
the equality constraint as follows:

2
∑

1≤i<j≤n−1

aiaj + 2an

n−1∑
i=1

ai = n(n− 1),

(
n−1∑
i=1

ai

)2

−
n−1∑
i=1

a2i + 2an

n−1∑
i=1

ai = n(n− 1),

and fix an,
n−1∑
i=1

ai and
n−1∑
i=1

a2i . To prove the inequality (a), we denote

E(an−1) =
an−1
an

+
an
an−1

− 2,

will use Lemma below and Corollary 5 for a1 ≥ a2 ≥ · · · ≥ an−1 > 0, k = 2 and m = −2:

• For a1 ≥ a2 ≥ · · · ≥ an−1 > 0, if S1 =
n−1∑
i=1

ai and S2 =
n−1∑
i=1

a2i are fixed, then the sum

1

a21
+

1

a22
+ · · ·+ 1

a2n−1

has the minimum value when a1 ≥ a2 = · · · = an−1.

On the other hand,

E ′(an−1) =
1

an
− an
a2n−1

≥ 0,

E(an−1) is increasing and has the maximum value when an−1 is maximum, hence when a1 ≥ a2 =
· · · = an−1 (see Lemma below). So, it suffices to prove the inequality (a) for a1 ≥ a2 = · · · = an−1.
To do it, write the inequality in the homogeneous form

2

( ∑
1≤i<j≤n

aiaj

)(
n∑

i=1

1

a2i

)
− n2(n− 1) ≥ (n− 1)(3n− 4)(an−1 − an)2

an−1an
.

Due to homogeneity, we may set an = 1. Denoting a1 := x and a2 = · · · = an−1 := y, we need to
prove that x ≥ y ≥ 1 implies f(x) ≥ 0, where

f(x) =
[
2(n− 2)xy + 2x+ (n− 2)(n− 3)y2 + 2(n− 2)y

]( 1

x2
+
n− 2

y2
+ 1

)
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−n2(n− 1)− (n− 1)(3n− 4)(y − 1)2

y
.

We have

f ′(x)

2
= [(n− 2)y + 1]

(
1

x2
+
n− 2

y2
+ 1

)
− 2(n− 2)xy + 2x+ (n− 2)(n− 3)y2 + 2(n− 2)y

x3
,

f ′′(x)

2
=
−2[(n− 1)y + 1]

x3
+

4(n− 2)y + 4

x3
+

3(n− 2)[(n− 3)y2 + 2y]

x4

=
2x[(n− 2)y + 1] + 3(n− 2)[(n− 3)y2 + 2y]

x4
.

Since f ′′(x) > 0, f ′(x) is increasing, therefore

f ′(x)

2
≥ f ′(y)

2
= [(n− 2)y + 1]

(
n− 1

y2
+ 1

)
− 2(n− 2)y2 + 2y + (n− 2)(n− 3)y2 + 2(n− 2)y

y3

=
(n− 2)y3 + y2 − n+ 1

y2
=

(y − 1)[(n− 2)y2 + (n− 1)y + n− 1]

y2
≥ 0.

Since f ′(x) ≥ 0, f(x) is increasing, therefore

f(x)

n− 1
≥ f(y)

n− 1
= [(n− 2)y2 + 2y]

(
n− 1

y2
+ 1

)
− n2 − (3n− 4)(y − 1)2

y

=
[(n− 2)y + 2n− 2](y − 1)2 − (3n− 4)(y − 1)2

y
=

(n− 2)(y − 1)3

y
≥ 0.

The proof is completed. The inequalities (a) and (b) become equalities for a1 = a2 = · · · =
an = 1.

Lemma. Let n ≥ 3, and let the fixed sums S1 = a1+a2+ · · ·+an−1 and S2 = a21+a22+ · · ·+a2n−1,
where a1, a2, . . . , an−1 are positive real numbers satisfying a1 ≥ a2 ≥ · · · ≥ an−1. Then the number
an−1 has the maximum value when a1 ≥ a2 = · · · = an−1.

Proof. Let

S =
a2 + · · ·+ an−1

n− 2
,

hence
S1 = a1 + (n− 2)S.

From the known inequality
a22 + · · ·+ a2n−1 ≥ (n− 2)S2

(with equality for a2 = · · · = an−1), we have

S2 ≥ a21 + (n− 2)S2 = [S1 − (n− 2)S]2 + (n− 2)S2,

therefore
(n− 1)(n− 2)S2 − 2(n− 2)S1S + S2

1 − S2 ≤ 0,

(n− 1)S ≤ S1 −
√
S2
1 − (n− 1)/(n− 2) · (S2

1 − S2).
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Since an−1 ≤ S (with equality for a2 = · · · = an−1), we obtain

(n− 1)an−1 ≤ S1 −
√
S2
1 − (n− 1)/(n− 2) · (S2

1 − S2),

with equality for a2 = · · · = an−1.
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Chapter 6

EV Method for Real Variables

6.1 Theoretical Basis

The Equal Variables Method may be extended to solve some difficult symmetric inequalities in
real variables.

EV-Theorem (Vasile Cı̂rtoaje, 2010). Let x1, x2, . . . , xn (n ≥ 3) be real numbers such that
x1 ≤ x2 ≤ · · · ≤ xn, let k be an even positive integer, and let f be a differentiable function on R
so that the joined function g : R→ R defined by

g(x) = f ′
(

k−1
√
x
)

is strictly convex on R. For fixed x1 + x2 + · · ·+ xn and xk1 + xk2 + · · ·+ xkn, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the minimum value for x2 = x3 = · · · = xn, and the maximum value for x1 = x2 = · · · = xn−1.

To prove this theorem, we will use EV-Lemma and EV-Proposition below.

EV-Lemma. Let x, y, z be real numbers such that x ≤ y ≤ z. For fixed x+y+z and xk+yk+zk,
where k is an even positive integer, there exist two real numbers m and M so that

(1) y ∈ [m,M ];
(2) y = m if and only if x = y;
(3) y = M if and only if y = z.

Proof. We may consider x and z as functions of y. From

x′ + z′ = −1, xk−1x′ + zk−1z′ = −yk−1,

we get

x′ =
yk−1 − zk−1

zk−1 − xk−1
, z′ =

yk−1 − xk−1

xk−1 − zk−1
. (*)

The two-sided inequality

x(y) ≤ y ≤ z(y)

511
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is equivalent to the inequalities f1(y) ≤ 0 and f2(y) ≥ 0, where

f1(y) = x(y)− y, f2(y) = z(y)− y.

Using (*), we get

f ′1(y) =
yk−1 − zk−1

zk−1 − xk−1
− 1

and

f ′2(y) =
yk−1 − xk−1

xk−1 − zk−1
− 1.

Since f ′1(y) ≤ −1 and f ′2(y) ≤ −1, f1 and f2 are strictly decreasing. Thus, the inequality
f1(y) ≤ 0 involves y ≥ m, where m is the root of the equation x(y) = y, while the inequality
f2(y) ≥ 0 involves y ≤ M , where M is the root of the equation z(y) = y. Moreover, y = m if
and only if x = y, and y = M if and only if y = z.

EV-Proposition. Let x, y, z be real numbers such that x ≤ y ≤ z, let k be an even positive
integer, and let f be a differentiable function on R so that the joined function g : R→ R defined
by

g(x) = f ′
(

k−1
√
x
)

is strictly convex on R. For fixed x+ y + z and xk + yk + zk, the sum

S = f(x) + f(y) + f(z)

has the minimum value for y = z, and the maximum value for x = y.

Proof. Assume that x and z are functions of y. Thus, we have

S = f(x(y)) + f(y) + f(z(y)) := F (y).

According to EV-Lemma, it suffices to show that F (y) is maximum for y = m and is minimum
for y = M . Using (*), we have

F ′(y) = x′f ′(x) + f ′(y) + z′f ′(z)

=
yk−1 − zk−1

zk−1 − xk−1
g(xk−1) + g(yk−1) +

yk−1 − xk−1

xk−1 − zk−1
g(zk−1),

hence

F ′(y)

(yk−1 − xk−1)(yk−1 − zk−1)
=

g(xk−1)

(xk−1 − yk−1)(xk−1 − zk−1)

+
g(yk−1)

(yk−1 − zk−1)(yk−1 − xk−1)
+

g(zk−1)

(zk−1 − xk−1)(zk−1 − yk−1)
.

Since g is strictly convex, the right hand side is positive. Moreover, since

(yk−1 − xk−1)(yk−1 − zk−1) < 0,

we have F ′(y) < 0 for y ∈ (m,M), hence F is strictly decreasing on [m,M ]. Therefore, F is
maximum for y = m and is minimum for y = M .
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Proof of EV-Theorem. For n = 3, EV-Theorem follows immediately from EV-Proposition.
Consider next that n ≥ 4. Since X = (x1, x2, . . . , xn) is defined in EV-Theorem as a compact
set in Rn, Sn attains its minimum and maximum. Using this property and EV-Proposition, we
can prove EV-Theorem via contradiction. Thus, for the sake of contradiction, assume that Sn

attains its maximum at (b1, b2, . . . , bn), where b1 ≤ b2 ≤ · · · ≤ bn and b1 < bn−1. Let x1, xn−1
and xn be real numbers so that

x1 = xn−1 ≤ xn, x1 + xn−1 + xn = b1 + bn−1 + bn, xk1 + xkn−1 + xkn = bk1 + bkn−1 + bkn.

According to EV-Proposition, we have

f(x1) + f(xn−1) + f(xn) > f(b1) + f(bn−1) + f(bn),

which is a contradiction. Similarly, we can prove that Sn is minimum for x2 = x3 = · · · = xn.

Corollary 1. Let x1, x2, . . . , xn (n ≥ 3) be real variables such that

x1 ≤ x2 ≤ · · · ≤ xn,

and let f be a differentiable function on R so that the derivative f ′ is strictly convex on R. For
fixed x1 + x2 + · · ·+ xn and x21 + x22 + · · ·+ x2n, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the minimum value for x2 = x3 = · · · = xn, and the maximum value for x1 = x2 = · · · = xn−1.

Corollary 2. Let x1, x2, . . . , xn (n ≥ 3) be real variables such that

x1 ≤ x2 ≤ · · · ≤ xn,

and let k be an even positive integer and m an odd integer such that m > k. For fixed x1 + x2 +
· · ·+ xn and xk1 + xk2 + · · ·+ xkn, the power sum

Sn = xm1 + xm2 + · · ·+ xmn

has the minimum value for x2 = x3 = · · · = xn, and the maximum value for x1 = x2 = · · · = xn−1.

Proof. We apply the EV-Theorem the function f(u) = um. The joined function

g(x) = f ′
(

k−1
√
x
)

= m
k−1
√
xm−1

is strictly convex on R because its derivative

g′(x) =
m(m− 1)

k − 1

k−1
√
xm−k

is strictly increasing on R.

Theorem 1. Let x1, x2, . . . , xn (n ≥ 3) be real numbers such that x1 + x2 + · · · + xn and
x21 + x22 + · · ·+ x2n are fixed.

(a) The power sum
A4 = x41 + x42 + · · ·+ x4n
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has the minimum and maximum values when the set (x1, x2, . . . , xn) has at most two distinct
values.

(b) For m = 6 and m = 8, the power sum

Am = xm1 + xm2 + · · ·+ xmn

has the maximum values when the set (x1, x2, . . . , xn) has at most two distinct values.

The proof of Theorem 1 is based on the following Proposition 1 below.

Proposition 1. Let x, y, z be real numbers such that x+ y + z and x2 + y2 + z2 are fixed.

(a) The power sum
A4 = x4 + y4 + z4

has the minimum and maximum values when two of x, y, z are equal to each other.

(b) For m = 6 and m = 8, the power sum

Am = xm1 + xm2 + · · ·+ xmn

has the maximum values when two of x, y, z are equal to each other.

Proof. Let
p = x+ y + z, q = xy + yz + zx, r = xyz.

From
(x− y)2(y − z)2(z − x)2 ≥ 0,

which is equivalent to
−27r2 − 2(2p3 − 9pq)r + p2q2 − 4q3 ≥ 0,

we get r ∈ [r1, r2], where

r1 =
9pq − 2p3 − 2(p2 − 3q)

√
p2 − 3q

27
, r2 =

9pq − 2p3 + 2(p2 − 3q)
√
p2 − 3q

27
.

From
−27(r − r1)(r − r2) = (x− y)2(y − z)2(z − x)2 ≥ 0,

it follows that the product r = xyz attains its minimum r1 and its maximum r2 when two of
x, y, z are equal to each other. For fixed p and q, we have

A4 = 4pr + h4(p, q) := g4(r),

A6 = 3r2 + f6(p, q)r + h6(p, q) := g6(r),

A8 = 4(3p2 − 2q)r2 + f8(p, q)r + h8(p, q) := g8(r).

(a) Since g4(r) is monotone, A4 has the minimum and maximum values for r = r1 or r = r2;
that is, when two of x, y, z are equal to each other.

(b) Since

3p2 − 2q =
7

3
p2 +

2

3
(p2 − 3q) > 0,
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the functions g6 and g8 are strictly convex, hence A6 and A8 has the maximum value only for
r = r1 or r = r2; that is, when two of x, y, z are equal.

Open problem. The point (b) in Theorem 1 is valid for any integer number m ≥ 3.

Note. The EV-Theorem for real variables and Corollary 1 are also valid under the conditions
in Note 2 and Note 3 from the preceding chapter 5, where m,M ∈ R.
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6.2 Applications

6.1. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then(
a2 + b2 + c2 + d2 +

8

3

)2

≥ 4

(
a3 + b3 + c3 + d3 +

64

9

)
.

6.2. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)

(
a2 + b2 + c2 + d2 +

76

3

)
≥ 8(a3 + b3 + c3 + d3 − 4).

6.3. If a, b, c are real numbers so that a+ b+ c = 3, then

(a2 + b2 + c2 − 3)(a2 + b2 + c2 + 93) ≥ 24(a3 + b3 + c3 − 3).

6.4. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 116) ≥ 24(a3 + b3 + c3 + d3 − 4).

6.5. Let a, b, c, d be real numbers so that a+ b+ c+ d = 4, and let

E = a2 + b2 + c2 + d2 − 4, F = a3 + b3 + c3 + d3 − 4.

Prove that

E

(√
E

3
+ 3

)
≥ F.

6.6. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1).

If m is an odd number (m ≥ 3), then

n− 1− (n− 1)m ≤ am1 + am2 + · · ·+ amn ≤ (n− 1)m − n+ 1.

6.7. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 + n− 1.

If m is an odd number (m ≥ 3), then

(n− 1)

(
1 +

2

n

)m

−
(
n− 2

n

)m

≤ am1 + am2 + · · ·+ amn ≤ nm − n+ 1.
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6.8. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 − 3n+ 3.

If m is an odd number (m ≥ 3), then

n− 1− (n− 2)m ≤ am1 + am2 + · · ·+ amn ≤
(
n− 2 +

2

n

)m

− (n− 1)

(
1− 2

n

)m

.

6.9. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = a21 + a22 + · · ·+ a2n = n− 1.

If m is an odd number (m ≥ 3), then

n− 1 ≤ am1 + am2 + · · ·+ amn ≤ (n− 1)

(
1− 2

n

)m

+

(
2− 2

n

)m

.

6.10. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a21 + a22 + · · ·+ a2n = n+ 3.

If m is an odd number (m ≥ 3), then(
2

n

)m

+ (n− 1)

(
1 +

2

n

)m

≤ am1 + am2 + · · ·+ amn ≤ 2m + n− 1.

6.11. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = a41 + a42 + · · ·+ a4n = n− 1,

then
a51 + a52 + · · ·+ a5n ≥ n− 1.

6.12. If a, b, c are real numbers so that a2 + b2 + c2 = 3, then

a3 + b3 + c3 + 3 ≥ 2(a+ b+ c).

6.13. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1),

then
a41 + a42 + · · ·+ a4n ≤ n(n− 1)(n2 − 3n+ 3).
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6.14. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a21 + a22 + · · ·+ a2n = 4n2 + n− 1,

then
a41 + a42 + · · ·+ a4n ≤ 16n4 + n− 1.

6.15. If n is an odd number and a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n2 − 1),

then
a41 + a42 + · · ·+ a4n ≥ n(n2 − 1)(n2 + 3).

6.16. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − n− 1, a21 + a22 + · · ·+ a2n = n3 + 2n2 − n− 1,

then
a41 + a42 + · · ·+ a4n ≥ n4 + (n− 1)(n+ 1)4.

6.17. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 2n− 1, a21 + a22 + · · ·+ a2n = n3 + 2n+ 1,

then
a41 + a42 + · · ·+ a4n ≥ (n+ 1)4 + (n− 1)n4.

6.18. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 3n− 2, a21 + a22 + · · ·+ a2n = n3 + 2n2 − 3n− 2,

then
a41 + a42 + · · ·+ a4n ≥ 2n4 + (n− 2)(n+ 1)4.

6.19. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 36) ≤ 12(a4 + b4 + c4 + d4 − 4).

6.20. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1),

then
a61 + a62 + · · ·+ a6n ≤ (n− 1)6 + n− 1.
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6.21. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 + n− 1,

then
a61 + a62 + · · ·+ a6n ≤ n6 + n− 1.

6.22. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1),

then
a81 + a82 + · · ·+ a8n ≤ (n− 1)8 + n− 1.

6.23. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 + n− 1,

then
a81 + a82 + · · ·+ a8n ≤ n8 + n− 1.

6.24. Let a1, a2, . . . , an (n ≥ 2) be real numbers (not all equal), and let

A =
a1 + a2 + · · ·+ an

n
, B =

a21 + a22 + · · ·+ a2n
n

, C =
a31 + a32 + · · ·+ a3n

n
.

Then,

1

4

(
1−

√
1 +

2n2

n− 1

)
≤ B2 − AC

B2 − A4
≤ 1

4

(
1 +

√
1 +

2n2

n− 1

)
.

6.25. If a, b, c, d are real numbers so that

a+ b+ c+ d = 2,

then

a4 + b4 + c4 + d4 ≤ 40 +
3

4
(a2 + b2 + c2 + d2)2.

6.26. If a, b, c, d, e are real numbers, then

a4 + b4 + c4 + d4 + e4 ≤ 31 + 18
√

3

8
(a+ b+ c+ d+ e)4 +

3

4
(a2 + b2 + c2 + d2 + e2)2.
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6.27. Let a, b, c, d, e 6= −5

4
be real numbers so that a+ b+ c+ d+ e = 5. Then,

a(a− 1)

(4a+ 5)2
+

b(b− 1)

(4b+ 5)2
+

c(c− 1)

(4c+ 5)2
+
d(d− 1)

(4d+ 5)2
+

e(e− 1)

(4e+ 5)2
≥ 0.

6.28. If a, b, c are real numbers so that

a+ b+ c = 9, ab+ bc+ ca = 15,

then
19

175
≤ 1

b2 + bc+ c2
+

1

c2 + ca+ a2
+

1

a2 + ab+ b2
≤ 7

19
.

6.29. If a, b, c are real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc+ ca),

then
419

175
≤ a2

b2 + bc+ c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
≤ 311

19
.

6.30. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 10, then

2(a21 + a22 + · · ·+ a2n)2 − n(a31 + a32 + · · ·+ a3n) ≥ n2.
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6.3 Solutions

P 6.1. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then(
a2 + b2 + c2 + d2 +

8

3

)2

≥ 4

(
a3 + b3 + c3 + d3 +

64

9

)
.

(Vasile Cı̂rtoaje, 2010)

Solution. Apply Corollary 2 for n = 4, k = 2, m = 3:

• If a, b, c, d are real numbers so that a ≤ b ≤ c ≤ d and

a+ b+ c+ d = 4, a2 + b2 + c2 + d2 = fixed,

then
S4 = a3 + b3 + c3 + d3

is maximum for a = b = c ≤ d.

Thus, we only need to show that 3a+ d = 4 involves(
3a2 + d2 +

8

3

)2

≥ 4

(
3a3 + d3 +

64

9

)
.

This inequality is equivalent to
(a− 1)2(3a− 2)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = b = c =
2

3
, d = 2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n,

then (
a21 + a22 + · · ·+ a2n +

n3

8n− 8

)2

≥ n
(
a31 + a32 + · · ·+ a3n

)
+
n4(n2 + 16n− 16)

64(n− 1)2
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
n

2n− 2
, an =

n

2

(or any cyclic permutation).
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P 6.2. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)

(
a2 + b2 + c2 + d2 +

76

3

)
≥ 8(a3 + b3 + c3 + d3 − 4).

(Vasile Cı̂rtoaje, 2010)

Solution. As shown in the preceding P 6.1, we only need to show that

3a+ d = 4

involves

(3a2 + d2 − 4)

(
3a2 + d2 +

76

3

)
≥ 8(3a3 + d3 − 4).

This inequality is equivalent to

(a− 1)2(3a− 1)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = b = c =
1

3
, d = 3

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n,

then (
a21 + · · ·+ a2n − n

) [
a21 + · · ·+ a2n +

n(n2 + n− 1)

n− 1

]
≥ 2n

(
a31 + · · ·+ a3n − n

)
,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = a2 = · · · = an−1 =
1

n− 1
, an = n− 1

(or any cyclic permutation).

P 6.3. If a, b, c are real numbers so that a+ b+ c = 3, then

(a2 + b2 + c2 − 3)(a2 + b2 + c2 + 93) ≥ 24(a3 + b3 + c3 − 3).

(Vasile Cı̂rtoaje, 2010)
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Solution. As shown in the proof of P 6.1, we only need to show that

2a+ c = 3

involves
(2a2 + c2 − 3)(2a2 + c2 + 93) ≥ 24(2a3 + c3 − 3).

This inequality is equivalent to
(a2 − 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = −1, c = 5

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a, b, c be real numbers so that a + b + c = 3. For any real k, the following inequality
holds

(a2 + b2 + c2 − 3)(a2 + b2 + c2 + 6k2 + 36k − 3) ≥ 12k(a3 + b3 + c3 − 3),

with equality for a = b = c = 1, and also for

a = b = 1− k, c = 1 + 2k

(or any cyclic permutation).

P 6.4. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 116) ≥ 24(a3 + b3 + c3 + d3 − 4).

(Vasile Cı̂rtoaje, 2010)

Solution. As shown in the proof of P 6.1, we only need to show that

3a+ d = 4

involves
(3a2 + d2 − 4)(3a2 + d2 + 116) ≥ 24(3a3 + d3 − 4).

This inequality is equivalent to
(a2 − 1)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = b = c = −1, d = 7

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
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• Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = n.

If k is a real number, then

k(a31 + · · ·+ a3n − n)

a21 + · · ·+ a2n − n
≤ a21 + · · ·+ a2n + n(n− 1)(n− 2)2k2 + 6n(n− 1)k − n

2n(n− 1)
,

with equality for

a1 = · · · = an−1 = 1− (n− 2)k, an = 1 + (n− 1)(n− 2)k

(or any cyclic permutation).

For k =
−6

n− 2
, we get the following nice inequality

(
a21 + a22 + · · ·+ a2n − n

)2
+

12n(n− 1)

n− 2

(
a31 + a32 + · · ·+ a3n − n

)
≥ 0,

with equality for a1 = a2 = · · · = an = 1, and also for

a1 = · · · = an−1 = 7, an = 7− 6n

(or any cyclic permutation).

P 6.5. Let a, b, c, d be real numbers so that a+ b+ c+ d = 4, and let

E = a2 + b2 + c2 + d2 − 4, F = a3 + b3 + c3 + d3 − 4.

Prove that

E

(√
E

3
+ 3

)
≥ F.

(Vasile Cı̂rtoaje, 2016)

Solution. As shown in the proof of P 6.1, we only need to prove the desired inequality for
3a+ d = 4 and

E = 3a2 + d2 − 4, F = 3a3 + d3 − 4.

Since
E = 12(1− a)2, F = 12(5− 2a)(1− a)2,

we get

E

(√
E

3
+ 3

)
− F = 12(1− a)2(2|1− a|+ 3)− 12(5− 2a)(1− a)2

= 24(1− a)2[|1− a| − (1− a)] ≥ 0.
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The equality holds for

a = b = c =
4− d

3
≤ 1

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n, and let

E = a21 + a22 + · · ·+ a2n − n, F = a31 + a32 + · · ·+ a3n − n.

Then,

E

[
(n− 2)

√
E

n(n− 1)
+ 3

]
≥ F,

with equality for

a1 = · · · = an−1 =
n− an
n− 1

≤ 1

(or any cyclic permutation).

P 6.6. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1).

If m is an odd number (m ≥ 3), then

n− 1− (n− 1)m ≤ am1 + am2 + · · ·+ amn ≤ (n− 1)m − n+ 1.

(Vasile Cı̂rtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

(a) Consider the right inequality. For n = 2, we need to show that

a1 + a2 = 0, a21 + a22 = 2

implies

am1 + am2 ≤ 0.

We have

a1 = −1, a2 = 1,

therefore am1 + am2 = 0. Assume now that n ≥ 3. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn
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is maximum for a1 = a2 = · · · = an−1. Thus, we only need to show that

(n− 1)a+ b = 0, (n− 1)a2 + b2 = n(n− 1), a ≤ b

involve
(n− 1)am + bm ≤ (n− 1)m − n+ 1.

From the equations above, we get

a = −1, b = n− 1;

therefore,
(n− 1)am + bm = (n− 1)(−1)m + (n− 1)m = (n− 1)m − n+ 1.

The equality holds for
a1 = · · · = an−1 = −1, an = n− 1

(or any cyclic permutation).

(b) The left inequality follows from the right inequality by replacing a1, a2, . . . , an with
−a1,−a2, . . . ,−an, respectively. The equality holds for

a1 = −n+ 1, a2 = a3 = · · · = an = 1

(or any cyclic permutation).

P 6.7. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 + n− 1.

If m is an odd number (m ≥ 3), then

(n− 1)

(
1 +

2

n

)m

−
(
n− 2

n

)m

≤ am1 + am2 + · · ·+ amn ≤ nm − n+ 1.

(Vasile Cı̂rtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n = 2, we need to show that

a1 + a2 = 1, a21 + a22 = 5,

implies
2m − 1 ≤ am1 + am2 ≤ 2m − 1.

We have
a1 = −1, a2 = 2,



EV Method for Real Variables 529

for which am1 + am2 = 2m − 1. Assume now that n ≥ 3.

(a) Consider the right inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn

is maximum for a1 = a2 = · · · = an−1. Thus, we only need to show that

(n− 1)a+ b = 1, (n− 1)a2 + b2 = n2 + n− 1, a ≤ b

involve
(n− 1)am + bm ≤ nm − n+ 1.

From the equations above, we get
a = −1, b = n;

therefore,
(n− 1)am + bm = (n− 1)(−1)m + nm = nm − n+ 1.

The equality holds for
a1 = a2 = · · · = an−1 = −1, an = n

(or any cyclic permutation).

(b) Consider the left inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn

is minimum for a2 = a3 = · · · = an. Thus, we only need to show that

a+ (n− 1)b = 1, a2 + (n− 1)b2 = n2 + n− 1, a ≤ b

involve

am + (n− 1)bm ≥ (n− 1)

(
1 +

2

n

)m

−
(
n− 2

n

)m

.

From the equations above, we get

a = −n+
2

n
, b = 1 +

2

n
;

therefore,

am + (n− 1)bm =

(
−n+

2

n

)m

+ (n− 1)

(
1 +

2

n

)m

= (n− 1)

(
1 +

2

n

)m

−
(
n− 2

n

)m

.

The equality holds for

a1 = −n+
2

n
, a2 = a3 = · · · = an = 1 +

2

n

(or any cyclic permutation).



530 Vasile Ĉırtoaje

P 6.8. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 − 3n+ 3.

If m is an odd number (m ≥ 3), then

n− 1− (n− 2)m ≤ am1 + am2 + · · ·+ amn ≤
(
n− 2 +

2

n

)m

− (n− 1)

(
1− 2

n

)m

.

(Vasile Cı̂rtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n = 2, we need to show that

a1 + a2 = 1, a21 + a22 = 1,

implies
1 ≤ am1 + am2 ≤ 1.

We have
a1 = 0, a2 = 1,

when am1 + am2 = 1. Assume now that n ≥ 3.

(a) Consider the left inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn

is minimum for a2 = a3 = · · · = an. Thus, we only need to show that

a+ (n− 1)b = 1, a2 + (n− 1)b2 = n2 − 3n+ 3, a ≤ b

involve
am + (n− 1)bm ≤ n− 1− (n− 2)m.

From the equations above, we get

a = 2− n, b = 1;

therefore,
am + (n− 1)bm = (2− n)m + n− 1 = n− 1− (n− 2)m.

The equality holds for
a1 = 2− n, a2 = a3 = · · · = an = 1

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn
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is maximum for a1 = a2 = · · · = an−1. Thus, we only need to show that

(n− 1)a+ b = 1, (n− 1)a2 + b2 = n2 − 3n+ 3, a ≤ b

involve

(n− 1)am + bm ≤
(
n− 2 +

2

n

)m

− (n− 1)

(
1− 2

n

)m

.

From the equations above, we get

a = −1 +
2

n
, b = n− 2 +

2

n
;

therefore,

(n− 1)am + bm = (n− 1)

(
−1 +

2

n

)m

+

(
n− 2 +

2

n

)m

=

(
n− 2 +

2

n

)m

− (n− 1)

(
1− 2

n

)m

.

The equality holds for

a1 = · · · = an−1 = −1 +
2

n
, an = n− 2 +

2

n

(or any cyclic permutation).

P 6.9. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = a21 + a22 + · · ·+ a2n = n− 1.

If m is an odd number (m ≥ 3), then

n− 1 ≤ am1 + am2 + · · ·+ amn ≤ (n− 1)

(
1− 2

n

)m

+

(
2− 2

n

)m

.

(Vasile Cı̂rtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n = 2, we need to show that

a1 + a2 = 1, a21 + a22 = 1,

implies
1 ≤ am1 + am2 ≤ 1.

The above equations involve
a1 = 0, a2 = 1,
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hence am1 + am2 = 1. Assume now that n ≥ 3.

(a) Consider the left inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn

is minimum for a2 = a3 = · · · = an. Thus, we only need to show that

a+ (n− 1)b = n− 1, a2 + (n− 1)b2 = n− 1, a ≤ b

involve

am + (n− 1)bm ≥ n− 1.

From the equations above, we get

a = 0, b = 1;

therefore,

am + (n− 1)bm = n− 1.

The equality holds for

a1 = 0, a2 = · · · = an = 1

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn

is maximum for a1 = a2 = · · · = an−1. Thus, we only need to show that

(n− 1)a+ b = n− 1, (n− 1)a2 + b2 = n− 1, a ≤ b

involve

(n− 1)am + bm ≤ (n− 1)

(
1− 2

n

)m

+

(
2− 2

n

)m

.

From the equations above, we get

a = 1− 2

n
, b = 2− 2

n
,

when

(n− 1)am + bm = (n− 1)

(
1− 2

n

)m

+

(
2− 2

n

)m

.

The equality holds for

a1 = a2 = · · · = an−1 = 1− 2

n
, an = 2− 2

n

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
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• Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = k, a21 + a22 + · · ·+ a2n = n2 + (2k − 1)n+ k(k − 2),

where k is a real number, k ≥ −n. If m is an odd number (m ≥ 3), then(
2k

n
+ 1− n− k

)m

+ (n− 1)

(
2k

n
+ 1

)m

≤ am1 + am2 + · · ·+ amn ≤ (n+ k − 1)m − n+ 1.

The left inequality is an equality for

a1 =
2k

n
+ 1− n− k, a2 = · · · = an =

2k

n
+ 1

(or any cyclic permutation). The right inequality is an equality for

a1 = · · · = an−1 = −1, an = n+ k − 1

(or any cyclic permutation).

For k = 0 and k = 1, we get the inequalities in P 6.6 and P 6.7, respectively. For k = −1
and k = −n + 1, by replacing k with −k and a1, a2, . . . , an with −a1,−a2, . . . ,−an, we get the
inequalities in P 6.8 and P 6.9, respectively.

P 6.10. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a21 + a22 + · · ·+ a2n = n+ 3.

If m is an odd number (m ≥ 3), then(
2

n

)m

+ (n− 1)

(
1 +

2

n

)m

≤ am1 + am2 + · · ·+ amn ≤ 2m + n− 1.

(Vasile Cı̂rtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n = 2, we need to show that

a1 + a2 = 3, a21 + a22 = 5,

implies
2m + 1 ≤ am1 + am2 ≤ 2m + 1.

We get
a1 = 1, a2 = 2,

when am1 + am2 = 2m + 1. Assume now that n ≥ 3.
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(a) Consider the left inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn

is minimum for a2 = a3 = · · · = an. Thus, we only need to show that

a+ (n− 1)b = n+ 1, a2 + (n− 1)b2 = n+ 3, a ≤ b

involve

am + (n− 1)bm ≥
(

2

n

)m

+ (n− 1)

(
1 +

2

n

)m

.

From the equations

a+ (n− 1)b = n+ 1, a2 + (n− 1)b2 = n+ 3,

we get

a =
2

n
, b = 1 +

2

n
;

therefore,

am + (n− 1)bm =

(
2

n

)m

+ (n− 1)

(
1 +

2

n

)m

.

The equality holds for

a1 =
2

n
, a2 = · · · = an = 1 +

2

n

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

Sn = am1 + am2 + · · ·+ amn

is maximum for a1 = a2 = · · · = an−1. Thus, we only need to show that

(n− 1)a+ b = n+ 1, (n− 1)a2 + b2 = n+ 3, a ≤ b

involve
(n− 1)am + bm ≤ 2m + n− 1.

From the equations

(n− 1)a+ b = n+ 1, (n− 1)a2 + b2 = n+ 3,

we get
a = 1, b = 2;

therefore,
(n− 1)am + bm = n− 1 + 2m.

The equality holds for
a1 = · · · = an−1 = 1, an = 2

(or any cyclic permutation).
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Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = k, a21 + a22 + · · ·+ a2n = n2 − (2k + 1)n+ k(k + 2),

where k is a positive number, k > n. If m is an odd number (m ≥ 3), then(
2k

n
− 1 + n− k

)m

+ (n− 1)

(
2k

n
− 1

)m

≤ am1 + am2 + · · ·+ amn ≤ (k − n+ 1)m + n− 1.

The left inequality is an equality for

a1 =
2k

n
− 1 + n− k, a2 = · · · = an =

2k

n
− 1

(or any cyclic permutation). The right inequality is an equality for

a1 = · · · = an−1 = 1, an = k − n+ 1

(or any cyclic permutation).

For k = n+ 1, we get the inequalities in P 6.10.

P 6.11. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = a41 + a42 + · · ·+ a4n = n− 1,

then
a51 + a52 + · · ·+ a5n ≥ n− 1.

(Vasile Cı̂rtoaje, 2010)

Solution. For n = 2, we need to show that

a1 + a2 = 1, a41 + a42 = 1,

implies
a51 + a52 ≥ 1.

We have
a1 = 0, a2 = 1,

or
a1 = 1, a2 = 0.

For each of these cases, the inequality is an equality. Assume now that n ≥ 3 and

a1 ≤ a2 ≤ · · · ≤ an.

According to Corollary 2, the sum

Sn = a51 + a52 + · · ·+ a5n
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is minimum for a2 = a3 = · · · = an. Thus, we only need to show that

a+ (n− 1)b = a4 + (n− 1)b4 = n− 1, a ≤ b

involve
a5 + (n− 1)b5 ≥ n− 1.

The equations
a+ (n− 1)b = n− 1, a4 + (n− 1)b4 = n− 1,

are equivalent to

(1− b)[(n− 1)3(1− b)3 − 1− b− b2 − b3] = 0, a = (n− 1)(1− b);

that is,
b = 1, a = 0,

and
a3 = 1 + b+ b2 + b3, a = (n− 1)(1− b).

For the second case, the condition a ≤ b involves

b3 ≥ 1 + b+ b2 + b3,

which is not possible. Therefore, it suffices to show that

a5 + (n− 1)b5 ≥ n− 1

for a = 0 and b = 1, that is clearly true. Thus, the proof is completed. The equality holds for

a1 = 0, a2 = · · · = an = 1

(or any cyclic permutation).

P 6.12. If a, b, c are real numbers so that

a2 + b2 + c2 = 3,

then
a3 + b3 + c3 + 3 ≥ 2(a+ b+ c).

(Vasile Cı̂rtoaje, 2010)

Solution. Assume that
a ≤ b ≤ c.

According to Corollary 2, for a ≤ b ≤ c and

a+ b+ c = fixed, a2 + b2 + c2 = 3,



EV Method for Real Variables 537

the sum
S3 = a3 + b3 + c3

is minimum for a ≤ b = c. Thus, we only need to show that

a2 + 2b2 = 3, a ≤ b,

involves
a3 + 2b3 + 3 ≥ 2(a+ 2b).

We will show this by two methods. From a2 + 2b2 = 3 and a ≤ b, it follows that

−
√

3 ≤ a ≤ 1, −
√

3

2
< b ≤

√
3

2
.

Method 1. Write the desired inequality as

a3 + b(3− a2) + 3 ≥ 2(a+ 2b),

a3 − 2a+ 3 ≥ b(a2 + 1).

For a ≥ 0, we have
a3 − 2a+ 3 ≥ −2a+ 3 > 0,

and for a ≤ 0, we have

a3 − 2a+ 3 = a(a2 − 3) + a+ 3 = −2ab2 + a+ 3 ≥ a+ 3 > 0.

Thus, it suffices to show that

(a3 − 2a+ 3)2 ≥ b2(a2 + 1)2,

which is equivalent to
2(a3 − 2a+ 3)2 ≥ (3− a2)(a2 + 1)2,

(a− 1)2f(a) ≥ 0,

where
f(a) = a4 + 2a3 + 2a+ 5.

We need to prove that f(a) ≥ 0. For a ≥ −1, we have

f(a) = (a+ 2)(a3 + 2) + 1 > 0.

For a ≤ −1, we have

f(a) = (a+ 1)2(a+ 2)2 + g(a), g(a) = −4a3 − 13a2 − 10a+ 1.

It suffices to show that g(a) ≥ 0. Since

g(a) = −(a+ 1)

(
2a+

7

2

)2

+ 5h(a), h(a) = a2 +
13

4
a+

53

20
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and

h(a) =

(
a+

13

8

)2

+
3

320
> 0,

the conclusion follows. The equality holds for a = b = c = 1.

Method 2. Write the desired inequality as follows:

2(a3 − 2a+ 1) + 4(b3 − 2b+ 1) ≥ 0,

2(a3 − 2a+ 1) + 4(b3 − 2b+ 1) ≥ a2 + 2b2 − 3,

(2a3 − a2 − 4a+ 3) + 2(b3 − b2 − 4b+ 3) ≥ 0,

(a− 1)2(2a+ 3) + 2(b− 1)2(2b+ 3) ≥ 0.

Since 2b+ 3 > 0, the inequality is true for a ≥ −3/2. Consider further that

−
√

3 ≤ a ≤ −3

2
,

and rewrite the desired inequality as follows:

2(a3 − 2a+ 1) + 4(b3 − 2b+ 1) + 4(a2 + 2b2 − 3) ≥ 0,

(2a3 + 4a2 − 4a− 2) + 2(2b3 + 4b2 − 4b− 2) ≥ 0,(
2a3 + 4a2 − 4a− 33

4

)
+

(
4b3 + 8b2 − 8b+

9

4

)
≥ 0,

(2a+ 3)

(
a2 +

1

2
a− 11

4

)
+ f(b) ≥ 0,

where

f(b) = 4b3 + 8b2 − 8b+
9

4
.

Since 2a+ 3 ≤ 0 and

a2 +
1

2
a− 11

4
≤ 3 +

1

2
a− 11

4
=

1

4
(2a+ 1) < 0,

it suffices to show that f(b) ≥ 0. For b ≥ 0, we have

f(b) > 8b2 − 8b+ 2 = 2(2b− 1)2 ≥ 0,

and for b ≤ 0, we have
f(b) > 4b3 + 8b2 = 4b2(b+ 2) ≥ 0.

P 6.13. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1),

then
a41 + a42 + · · ·+ a4n ≤ n(n− 1)(n2 − 3n+ 3).

(Vasile Cı̂rtoaje, 2010)
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Solution. For n = 2, we need to show that

a1 + a2 = 0, a21 + a22 = 2,

implies
a41 + a42 ≤ 2.

We have
a1 = −1, a2 = 1,

or
a1 = 1, a2 = −1.

For each of these cases, the desired inequality is an equality. Assume now that n ≥ 3. According
to Theorem 1, the sum

Sn = a41 + a42 + · · ·+ a4n

is maximum for
a1 = · · · = aj, aj+1 = · · · = an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja21 + (n− j)a2n = n(n− 1)

involve
ja41 + (n− j)a4n ≤ n(n− 1)(n2 − 3n+ 3).

From the equations above, we get

a21 =
(n− j)(n− 1)

j
, a2n =

j(n− 1)

n− j
;

therefore,

ja41 + (n− j)a4n =
(n− j)3 + j3

j(n− j)
(n− 1)2 =

[
n2

j(n− j)
− 3

]
n(n− 1)2.

Since
j(n− j)− (n− 1) = (j − 1)(n− j − 1) ≥ 0,

we get

ja41 + (n− j)a4n ≤
[

n2

n− 1
− 3

]
n(n− 1)2 = n(n− 1)(n2 − 3n+ 3).

The equality holds for
a1 = −n+ 1, a2 = · · · = an = 1

and for
a1 = n− 1, a2 = · · · = an = −1

(or any cyclic permutation).
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P 6.14. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a21 + a22 + · · ·+ a2n = 4n2 + n− 1,

then
a41 + a42 + · · ·+ a4n ≤ 16n4 + n− 1.

(Vasile Cı̂rtoaje, 2010)

Solution. Replacing n by 2n+ 1 in the preceding P 6.13, we get the following statement:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a21 + a22 + · · ·+ a22n+1 = 2n(2n+ 1),

then
a41 + a42 + · · ·+ a42n+1 ≤ 2n(2n+ 1)(4n2 − 2n+ 1),

with equality for
a1 = −2n, a2 = · · · = a2n+1 = 1

and for
a1 = 2n, a2 = · · · = a2n+1 = −1

(or any cyclic permutation).

Putting
an+1 = · · · = a2n+1 = −1,

it follows that

a1 + a2 + · · ·+ an − n− 1 = 0, a21 + a22 + · · ·+ a2n + n+ 1 = 2n(2n+ 1)

involve
a41 + a42 + · · ·+ a4n + n+ 1 ≤ 2n(2n+ 1)(4n2 − 2n+ 1).

This is equivalent to the desired statement. The equality holds for

a1 = 2n, a2 = · · · = an = −1

(or any cyclic permutation).

P 6.15. If n is an odd number and a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n2 − 1),

then
a41 + a42 + · · ·+ a4n ≥ n(n2 − 1)(n2 + 3).

(Vasile Cı̂rtoaje, 2010)
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Solution. According to Theorem 1, the sum

Sn = a41 + a42 + · · ·+ a4n

is minimum for

a1 = · · · = aj, aj+1 = · · · = an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja21 + (n− j)a2n = n(n2 − 1)

involve

ja41 + (n− j)a4n ≤ n(n2 − 1)(n2 + 3).

From the equations above, we get

a21 =
(n− j)(n2 − 1)

j
, a2n =

j(n2 − 1)

n− j
;

therefore,

ja41 + (n− j)a4n =
(n− j)3 + j3

j(n− j)
(n2 − 1)2 =

[
n2

j(n− j)
− 3

]
n(n2 − 1)2.

Since
n2 − 1

4
− j(n− j) =

(n− 2j)2 − 1

4
≥ 0,

we get

ja41 + (n− j)a4n ≥
(

4n2

n2 − 1
− 3

)
n(n2 − 1)2 = n(n2 − 1)(n2 + 3).

The equality holds when
n− 1

2
of a1, a2, . . . , an are equal to −n − 1 and the other

n+ 1

2
are

equal to n− 1, and also when
n− 1

2
of a1, a2, . . . , an are equal to n+ 1 and the other

n+ 1

2
are

equal to −n+ 1.

P 6.16. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − n− 1, a21 + a22 + · · ·+ a2n = n3 + 2n2 − n− 1,

then

a41 + a42 + · · ·+ a4n ≥ n4 + (n− 1)(n+ 1)4.

(Vasile Cı̂rtoaje, 2010)
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Solution. Replacing a1, a2, . . . , an by 2a1, 2a2, . . . , 2an and then n by 2n + 1, the preceding P
6.15 becomes as follows:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a21 + a22 + · · ·+ a22n+1 = n(n+ 1)(2n+ 1),

then
a41 + a42 + · · ·+ a42n+1 ≥ n(n+ 1)(2n+ 1)(n2 + n+ 1),

with equality when n of a1, a2, . . . , a2n+1 are equal to −n− 1 and the other n+ 1 are equal to n,
and also when n of a1, a2, . . . , a2n+1 are equal to n+ 1 and the other n+ 1 are equal to −n.

Putting
an+1 = · · · = a2n = −n, a2n+1 = n+ 1,

it follows that
a1 + a2 + · · ·+ an + n(−n) + (n+ 1) = 0

and
a21 + a22 + · · ·+ a2n + n(−n)2 + (n+ 1)2 = n(n+ 1)(2n+ 1)

involve
a41 + a42 + · · ·+ a4n + n(−n)4 + (n+ 1)4 ≤ n(n+ 1)(2n+ 1)(n2 + n+ 1).

This is equivalent to the desired statement. The equality holds for

a1 = · · · = an−1 = n+ 1, an = −n

(or any cyclic permutation).

P 6.17. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 2n− 1, a21 + a22 + · · ·+ a2n = n3 + 2n+ 1,

then
a41 + a42 + · · ·+ a4n ≥ (n+ 1)4 + (n− 1)n4.

(Vasile Cı̂rtoaje, 2010)

Solution. As shown in the proof of the preceding P 6.16, the following statement holds:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a21 + a22 + · · ·+ a22n+1 = n(n+ 1)(2n+ 1),

then
a41 + a42 + · · ·+ a42n+1 ≥ n(n+ 1)(2n+ 1)(n2 + n+ 1),

with equality when n of a1, a2, . . . , a2n+1 are equal to −n− 1 and the other n+ 1 are equal to n,
and also when n of a1, a2, . . . , a2n+1 are equal to n+ 1 and the other n+ 1 are equal to −n.
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Putting
an+1 = · · · = a2n−1 = −n− 1, a2n = a2n+1 = n,

it follows that
a1 + a2 + · · ·+ an + (n− 1)(−n− 1) + 2n = 0

and
a21 + a22 + · · ·+ a2n + (n− 1)(−n− 1)2 + 2n2 = n(n+ 1)(2n+ 1)

involve

a41 + a42 + · · ·+ a4n + (n− 1)(−n− 1)4 + 2n4 ≤ n(n+ 1)(2n+ 1)(n2 + n+ 1),

which is equivalent to the desired statement. The equality holds for

a1 = −n− 1, a2 = · · · = an = n

(or any cyclic permutation).

P 6.18. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 3n− 2, a21 + a22 + · · ·+ a2n = n3 + 2n2 − 3n− 2,

then
a41 + a42 + · · ·+ a4n ≥ 2n4 + (n− 2)(n+ 1)4.

(Vasile Cı̂rtoaje, 2010)

Solution. As shown in the proof of P 6.16, the following statement holds:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a21 + a22 + · · ·+ a22n+1 = n(n+ 1)(2n+ 1),

then
a41 + a42 + · · ·+ a42n+1 ≥ n(n+ 1)(2n+ 1)(n2 + n+ 1),

with equality when n of a1, a2, . . . , a2n+1 are equal to −n− 1 and the other n+ 1 are equal to n,
and also when n of a1, a2, . . . , a2n+1 are equal to n+ 1 and the other n+ 1 are equal to −n.

Putting
an+1 = · · · = a2n−1 = −n, a2n = a2n+1 = n+ 1,

it follows that
a1 + a2 + · · ·+ an + (n− 1)(−n) + 2(n+ 1) = 0

and
a21 + a22 + · · ·+ a2n + (n− 1)(−n)2 + 2(n+ 1)2 = n(n+ 1)(2n+ 1)

involve

a41 + a42 + · · ·+ a4n + (n− 1)(−n)4 + 2(n+ 1)4 ≤ n(n+ 1)(2n+ 1)(n2 + n+ 1),
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which is equivalent to the desired statement. The equality holds for

a1 = a2 = −n, a3 = · · · = an = n+ 1

(or any permutation).

P 6.19. If a, b, c, d are real numbers so that a+ b+ c+ d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 36) ≤ 12(a4 + b4 + c4 + d4 − 4).

(Vasile Cı̂rtoaje, 2010)

Solution. By Theorem 1, for a + b + c + d = 4 and a2 + b2 + c2 + d2 = fixed, the sum
a4 + b4 + c4 + d4 is maximum when the set (a, b, c, d) has at most two distinct values. Therefore,
it suffices to consider the following two cases.

Case 1: a = b and c = d. We need to show that a+ c = 2 involves

(a2 + c2 − 2)(a2 + c2 + 18) ≤ 6(a4 + c4 − 2).

Since
a2 + c2 − 2 = (a+ c)2 − 2ac− 2 = 2(1− ac), a2 + c2 + 18 = 2(11− ac),

a4 + c4 − 2 = (a2 + c2)2 − 2a2c2 − 2 = 2(1− ac)(7− ac),
the inequality becomes

(1− ac)(11− ac) ≤ 3(1− ac)(7− ac),
(1− ac)(5− ac) ≥ 0.

It is true because

ac ≤ 1

4
(a+ c)2 = 1.

Case 2: b = c = d. We need to show that a+ 3b = 4 involves

(a2 + 3b2 − 4)(a2 + 3b2 + 36) ≤ 12(a4 + 3b4 − 4).

Since
a2 + 3b2 − 4 = 12(b− 1)2, a2 + 3b2 + 36 = 4(3b2 − 6b+ 13),

a4 + 3b4 − 4 = (4− 3b)4 + 3b4 − 4 = 12(b− 1)2(7b2 − 22b+ 21),

the inequality becomes

(b− 1)2[(3b2 − 6b+ 13) ≤ 3(b− 1)2(7b2 − 22b+ 21),

(b− 1)2(3b− 5)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = −1, b = c = d =
5

3

(or any cyclic permutation).
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P 6.20. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1),

then
a61 + a62 + · · ·+ a6n ≤ (n− 1)6 + n− 1.

(Vasile Cı̂rtoaje, 2010)

Solution. For n = 2, we need to show that

a1 + a2 = 0, a21 + a22 = 2,

implies
a61 + a62 ≤ 2.

We have
a1 = −1, a2 = 1,

or
a1 = 1, a2 = −1.

For each of these cases, the desired inequality is an equality. According to Theorem 1, the sum

Sn = a61 + a62 + · · ·+ a6n

is maximum for
a1 = · · · = aj, aj+1 = · · · = an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja21 + (n− j)a2n = n(n− 1)

involve
ja61 + (n− j)a6n ≤ (n− 1)6 + n− 1.

From the equations above, we get

a21 =
(n− j)(n− 1)

j
, a2n =

j(n− 1)

n− j
.

Thus, the desired inequality becomes

(n− j)5 + j5

j2(n− j)2
≤ (n− 1)5 + 1

(n− 1)2
,

(n− j)4 − (n− j)3j + (n− j)2j2 − (n− j)j3 + j4

j2(n− j)2
≤

≤ (n− 1)4 − (n− 1)3 + (n− 1)2 − (n− 1) + 1

(n− 1)2
,

(n− j)2

j2
− n− j

j
− j

n− j
+

j2

(n− j)2
≤ (n− 1)2 − (n− 1)− 1

n− 1
+

1

(n− 1)2
,
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which can be written as
f(a) ≥ f(b),

where

f(x) = x2 − x− 1

x
+

1

x2
,

a = n− 1, b =
n

j
− 1.

Since a ≥ b and

ab− 1 = (n− 1)

(
n

j
− 1

)
− 1 = n

(
n− 1

j
− 1

)
≥ 0,

we have

f(a)− f(b) = (a− b)
(
a+ b− 1 +

1

ab
− a+ b

a2b2

)
= (a− b)

(
1− 1

ab

)[
(a+ b)

(
1 +

1

ab

)
− 1

]
≥ 0.

The equality holds for
a1 = −n+ 1, a2 = · · · = an = 1,

and for
a1 = n− 1, a2 = · · · = an = −1

(or any cyclic permutation).

P 6.21. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 + n− 1,

then
a61 + a62 + · · ·+ a6n ≤ n6 + n− 1.

(Vasile Cı̂rtoaje, 2010)

Solution. The inequality follows from the preceding P 6.20 by replacing n with n+ 1, and then
making an+1 = −1. The equality holds for

a1 = n, a2 = · · · = an = −1

(or any cyclic permutation).

P 6.22. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a21 + a22 + · · ·+ a2n = n(n− 1),

then
a81 + a82 + · · ·+ a8n ≤ (n− 1)8 + n− 1.

(Vasile Cı̂rtoaje, 2010)
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Solution. For n = 2, we need to show that

a1 + a2 = 0, a21 + a22 = 2,

implies
a81 + a82 ≤ 2.

We have
a1 = −1, a2 = 1,

or
a1 = 1, a2 = −1.

For each of these cases, the desired inequality is an equality. According to Theorem 1, the sum

Sn = a81 + a82 + · · ·+ a8n

is maximum for
a1 = · · · = aj, aj+1 = · · · = an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja21 + (n− j)a2n = n(n− 1)

involve
ja81 + (n− j)a8n ≤ (n− 1)8 + n− 1.

From the equations above, we get

a21 =
(n− j)(n− 1)

j
, a2n =

j(n− 1)

n− j
.

Thus, the desired inequality becomes

(n− j)7 + j7

j3(n− j)3
≤ (n− 1)7 + 1

(n− 1)4
,

(n− j)3

j3
− (n− j)2

j2
+
n− j
j

+
j

n− j
− j2

(n− j)2
+

j3

(n− j)3
≤

≤ (n− 1)3 − (n− 1)2 + (n− 1) +
1

n− 1
− 1

(n− 1)2
+

1

(n− 1)3
,

f(a) ≥ f(b),

where
a = n− 1, b =

n

j
− 1,

f(x) = x3 − x2 + x+
1

x
− 1

x2
+

1

x3
, x > 0.

Since

f(x) = (t− 1)(t2 − 2), t = x+
1

x
≥ 2,
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it suffices to show that

a+
1

a
≥ b+

1

b
.

We have a ≥ b,

ab− 1 = (n− 1)

(
n

j
− 1

)
− 1 = n

(
n− 1

j
− 1

)
≥ 0,

therefore

a+
1

a
− b− 1

b
= (a− b)

(
1− 1

ab

)
≥ 0.

The equality holds for

a1 = −n+ 1, a2 = · · · = an = 1

and for

a1 = n− 1, a2 = · · · = an = −1

(or any cyclic permutation).

P 6.23. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a21 + a22 + · · ·+ a2n = n2 + n− 1,

then

a81 + a82 + · · ·+ a8n ≤ n8 + n− 1.

(Vasile Cı̂rtoaje, 2010)

Solution. The inequality follows from the preceding P 6.22 by replacing n with n + 1, and
making an+1 = −1. The equality holds for

a1 = n, a2 = · · · = an = −1

(or any cyclic permutation).

P 6.24. Let a1, a2, . . . , an (n ≥ 2) be real numbers (not all equal), and let

A =
a1 + a2 + · · ·+ an

n
, B =

a21 + a22 + · · ·+ a2n
n

, C =
a31 + a32 + · · ·+ a3n

n
.

Then,

1

4

(
1−

√
1 +

2n2

n− 1

)
≤ B2 − AC

B2 − A4
≤ 1

4

(
1 +

√
1 +

2n2

n− 1

)
.

(Vasile Cı̂rtoaje, 2010)
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Solution. It is well-known that B > A2, hence B2 > A4.

(a) For n = 2, the right inequality reduces to (a21 − a22)2 ≥ 0. Consider further that n ≥ 3.
Since the right inequality remains unchanged by replacing a1, a2, . . . , an with −a1,−a2, . . . ,−an,
we may suppose that A ≥ 0. Assuming that

A = fixed, B = fixed,

we only need to consider the case when C is minimum. Thus, according to Corollary 2, it suffices
to prove the required inequality for a1 < a2 = a3 = · · · = an. Setting

a1 := a, a2 = a3 = · · · = an := b, a < b,

the inequality becomes[
a2 + (n− 1)b2

n

]2
− a+ (n− 1)b

n
· a

3 + (n− 1)b3

n[
a2 + (n− 1)b2

n

]2
−
[
a+ (n− 1)b

n

]4 ≤ 1

4

(
1 +

√
1 +

2n2

n− 1

)
,

After dividing the numerator and denominator of the left fraction by (a − b)2, the inequality
reduces to

−4n2ab

(n+ 1)a2 + 2(n− 1)ab+ (2n2 − 3n+ 1)b
≤ 1 +

√
1 +

2n2

n− 1
,

−2ab

(n+ 1)a2 + 2(n− 1)ab+ (2n2 − 3n+ 1)b
≤ 1√

(n2 − 1)(2n− 1)− n+ 1
,

(
a+

√
2n2 − 3n+ 1

n+ 1
b

)2

≥ 0.

The equality holds for

−

√
n+ 1

(n− 1)(2n− 1)
a1 = a2 = · · · = an

(or any cyclic permutation).

(b) For n = 2, the left inequality reduces to (a1 − a2)4 ≥ 0. For n ≥ 3, the proof is similar
to the one of the right inequality. The equality holds for√

n+ 1

(n− 1)(2n− 1)
a1 = a2 = · · · = an

(or any cyclic permutation).
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P 6.25. If a, b, c, d are real numbers so that

a+ b+ c+ d = 2,

then

a4 + b4 + c4 + d4 ≤ 40 +
3

4
(a2 + b2 + c2 + d2)2.

(Vasile Cı̂rtoaje, 2010)

Solution. Write the inequality in the homogeneous form

10(a+ b+ c+ d)4 + 3(a2 + b2 + c2 + d2)2 ≥ 4(a4 + b4 + c4 + d4).

By Theorem 1, for a+ b+ c+ d = fixed and a2 + b2 + c2 + d2 = fixed, the sum a4 + b4 + c4 + d4

is maximum when the set (a, b, c, d) has at most two distinct values. Therefore, it suffices to
consider the following two cases.

Case 1: a = b and c = d. The inequality reduces to

41(a2 + c2)2 + 160ac(a2 + c2) + 164a2c2 ≥ 0,

which can be written in the obvious form

(a2 + c2)2 + 40(a2 + c2 + 2ac)2 + 4a2c2 ≥ 0.

Case 2: b = c = d. The inequality reduces to the obvious form

(a+ 5b)2(3a2 + 10ab+ 11b2) ≥ 0.

Since the homogeneous inequality becomes an equality for

−a
5

= b = c = d

(or any cyclic permutation), the original inequality is an equality for

a = 5, b = c = d = −1

(or any cyclic permutation).

P 6.26. If a, b, c, d, e are real numbers, then

a4 + b4 + c4 + d4 + e4 ≤ 31 + 18
√

3

8
(a+ b+ c+ d+ e)4 +

3

4
(a2 + b2 + c2 + d2 + e2)2.

(Vasile Cı̂rtoaje, 2010)
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Solution. We proceed as in the proof of the preceding P 6.25. Taking into account Theorem 1,
it suffices to consider the cases b = c = d = e, and a = b and c = d = e.

Case 1: b = c = d = e. Due to homogeneity, we may consider b = c = d = e = 0 and
b = c = d = e = 1. The first case is trivial. In the second case, the inequality becomes

a4 + 4 ≤ 31 + 18
√

3

8
(a+ 4)4 +

3

4
(a2 + 4)2,

(
a+ 2 + 2

√
3
)2 [

f(a) + 2
√

3 g(a)
]
≥ 0,

where

f(a) = 29a2 + 164a+ 272, g(a) = 9a2 + 50a+ 76.

It suffices to show that f(a) ≥ 0 and g(a) ≥ 0. Indeed, we have

f(a) > 25a2 + 164a+ 269 =

(
5a+

82

5

)2

+
1

25
> 0,

g(a) > 9a2 + 50a+ 70 =

(
3a+

25

3

)2

+
5

9
> 0.

Case 2: a = b and c = d = e. It suffices to show that

a4 + b4 + c4 + d4 + e4 ≤ 3

4
(a2 + b2 + c2 + d2 + e2)2,

which reduces to

2a4 + 3c4 ≤ 3

4
(2a2 + 3c2)2,

3(2a2 + 3c2)2 ≥ 4(2a4 + 3c4),

4a4 + 36a2c2 + 15c4 ≥ 0.

The equality holds for
−a

2(1 +
√

3)
= b = c = d = e

(or any cyclic permutation).

P 6.27. Let a, b, c, d, e 6= −5

4
be real numbers so that a+ b+ c+ d+ e = 5. Then,

a(a− 1)

(4a+ 5)2
+

b(b− 1)

(4b+ 5)2
+

c(c− 1)

(4c+ 5)2
+
d(d− 1)

(4d+ 5)2
+

e(e− 1)

(4e+ 5)2
≥ 0.

(Vasile Cı̂rtoaje, 2010)
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Solution. Write the inequality as∑[
180a(a− 1)

(4a+ 5)2
+ 1

]
≥ 5,

∑ (14a− 5)2

(4a+ 5)2
≥ 5.

By the Cauchy-Schwarz inequality, we have∑ (14a− 5)2

(4a+ 5)2
≥ [
∑

(4a+ 5)(14a− 5)]2∑
(4a+ 5)4

.

Therefore, it suffices to show that(
56
∑

a2 + 125
)2
≥ 5

∑
(4a+ 5)4.

Using the substitution

a1 =
4a+ 5

9
, a2 =

4b+ 5

9
, . . . , a5 =

4e+ 5

9
,

we need to prove that a1 + a2 + a3 + a4 + a5 = 5 involves(
7

5∑
i=1

a2i − 25

)2

≥ 20
5∑

i=1

a4i .

Rewrite this inequality in the homogeneous form7
5∑

i=1

a2i −

(
5∑

i=1

ai

)2
2

≥ 20
5∑

i=1

a4i .

By Theorem 1, for a1 + a2 + a3 + a4 + a5 = 5 and a21 + a22 + a23 + a24 + a25 = fixed, the sum
a41 +a42 +a43 +a44 +a45 is maximum when the set (a1, a2, a3, a4, a5) has at most two distinct values.
Therefore, we need to consider the following two cases.

Case 1: a1 = x and a2 = a3 = a4 = a5 = y. The homogeneous inequality reduces to

(3x2 + 6y2 − 4xy)2 ≥ 5(x4 + 4y4),

which is equivalent to the obvious inequality

(x− y)2(x− 2y)2 ≥ 0.

Case 2: a1 = a2 = x and a3 = a4 = a5 = y. The homogeneous inequality becomes

(5x2 + 6y2 − 6xy)2 ≥ 5(2x4 + 3y4),

which is equivalent to the obvious inequality

(x− y)2[5(x− y)2 + 2y2] ≥ 0.



EV Method for Real Variables 553

The equality holds for a = b = c = d = e = 1, and also for

a =
5

2
, b = c = d = e =

5

8

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

• Let x1, x2, . . . , xn 6= −k be real numbers so that x1 + x2 + · · ·+ xn = n, where

k ≥ n

2
√
n− 1

.

Then,
x1(x1 − 1)

(x1 + k)2
+
x2(x2 − 1)

(x2 + k)2
+ · · ·+ xn(xn − 1)

(xn + k)2
≥ 0,

with equality for x1 = x2 = · · · = xn = 1. If k =
n

2
√
n− 1

, then the equality holds also for

x1 =
n

2
, x2 = · · · = xn =

n

2(n− 1)

(or any cyclic permutation).

P 6.28. If a, b, c are real numbers so that

a+ b+ c = 9, ab+ bc+ ca = 15,

then
19

175
≤ 1

b2 + bc+ c2
+

1

c2 + ca+ a2
+

1

a2 + ab+ b2
≤ 7

19
.

(Vasile C., 2011)

Solution. From
(b+ c)2 ≥ 4bc

and
b+ c = 9− a, bc = 15− a(b+ c) = 15− a(9− a) = a2 − 9a+ 15,

we get a ≤ 7. Since

b2 + bc+ c2 = (a+ b+ c)(b+ c)− (ab+ bc+ ca) = 9(9− a)− 15 = 3(22− 3a),

we may write the inequality in the form

57

175
≤ f(a) + f(b) + f(c) ≤ 21

19
.

where

f(u) =
1

22− 3u
, u ≤ 7.
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We have

g(x) = f ′(x) =
3

(22− 3x)2
,

g′′(x) =
162

(22− 3x)4
.

Since g′′(x) > 0 for x ≤ 7, g is strictly convex on (−∞, 7]. According to Corollary 1, if a ≤ b ≤ c
and

a+ b+ c = 9, a2 + b2 + c2 = 51,

then the sum S3 = f(a) + f(b) + f(c) is maximum for a = b ≤ c, and is minimum for a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c. From

a+ b+ c = 9, ab+ bc+ ca = 15,

we get a = b = 1 and c = 7, therefore

1

b2 + bc+ c2
+

1

c2 + ca+ a2
+

1

a2 + ab+ b2
=

7

19
.

The original right inequality is an equality for a = b = 1 and c = 7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the case a ≤ b = c, which involves
a = −1 and b = c = 5, hence

1

b2 + bc+ c2
+

1

c2 + ca+ a2
+

1

a2 + ab+ b2
=

19

175
.

The original left inequality is an equality for a = −1 and b = c = 5 (or any cyclic permutation).

P 6.29. If a, b, c are real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc+ ca),

then
419

175
≤ a2

b2 + bc+ c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
≤ 311

19
.

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that

a+ b+ c = 9, a2 + b2 + c2 = 51.

Next, the proof is similar to the one of the preceding P 6.28. Write the inequality in the form

1257

175
≤ f(a) + f(b) + f(c) ≤ 933

19
.

where

f(u) =
u2

22− 3u
, u ≤ 7.
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We have

g(x) = f ′(x) =
−3x2 + 44x

(22− 3x)2
, g′′(x) =

8712

(22− 3x)4
.

Since g is strictly convex on (−∞, 7], according to Corollary 1, the sum S3 = f(a) + f(b) + f(c)
is maximum for a = b ≤ c, and is minimum for a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c, which involves

a = b = 1, c = 7,

and
a2

b2 + bc+ c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
=

311

19
.

The original right inequality is an equality for a = b = c/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the case a ≤ b = c, which involves
a = −1 and b = c = 5, hence

a2

b2 + bc+ c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
=

419

175
.

The original left inequality is an equality for −5a = b = c (or any cyclic permutation).

P 6.30. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 10, then

2(a21 + a22 + · · ·+ a2n)2 − n(a31 + a32 + · · ·+ a3n) ≥ n2.

(Vasile Cı̂rtoaje, 2020)

Solution. Write the inequality in the homogeneous form

2n2(a21 + a22 + · · ·+ a2n)2 − n2(a1 + a2 + · · ·+ an)(a31 + a32 + · · ·+ a3n) ≥ (a1 + a2 + · · ·+ an)4.

According to Corollary 2, for a1 + a2 + · · ·+ an = fixed > 0 and a21 + a22 + · · ·+ a2n = fixed, the
sum

S = a31 + a32 + · · ·+ a3n

is maximum when n − 1 of a1, a2, . . . , an are equal. Therefore, it suffices to consider the case
a2 = a3 = · · · = an. Due to homogeneity, for the nontrivial case a2 = a3 = · · · = an 6= 0, we may
consider that a2 = a3 = · · · = an = 1. Thus we only need to prove that

2n2(a21 + n− 1)2 − n2(a1 + n− 1)(a31 + n− 1) ≥ (a1 + n− 1)4,

which is equivalent to
(a1 − 1)2(Aa21 −Ba1 + C) ≥ 0,

where
A = n(n+ 1), B = n(n2 − 2n+ 2), C = n(n− 1)(2n− 1).

The inequality is true because

4AC −B2 = n4(−n2 + 12n− 12) ≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1.
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a1, a2, . . . , an are nonnegative real numbers, then

a1 + a2 + · · ·+ an ≥ n n
√
a1a2 · · · an,

with equality if and only if a1 = a2 = · · · = an.

2. WEIGHTED AM-GM INEQUALITY

Let p1, p2, . . . , pn be positive real numbers satisfying

p1 + p2 + · · ·+ pn = 1.

If a1, a2, . . . , an are nonnegative real numbers, then

p1a1 + p2a2 + · · ·+ pnan ≥ ap11 a
p2
2 · · · apnn ,

with equality if and only if a1 = a2 = · · · = an.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ n2,

with equality if and only if a1 = a2 = · · · = an.

557
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a1, a2, . . . , an,

Mk =


(

ak1+ak2+···+akn
n

) 1
k
, k 6= 0

n
√
a1a2 · · · an, k = 0

,

is an increasing function with respect to k ∈ R. For instant, M2 ≥M1 ≥M0 ≥M−1 is equivalent
to √

a21 + a22 + · · ·+ a2n
n

≥ a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an ≥

n
1

a1
+

1

a2
+ · · ·+ 1

an

.

5. BERNOULLI’S INEQUALITY

For any real number x ≥ −1, we have
a) (1 + x)r ≥ 1 + rx for r ≥ 1 and r ≤ 0;
b) (1 + x)r ≤ 1 + rx for 0 ≤ r ≤ 1.

If a1, a2, . . . , an are real numbers such that either a1, a2, . . . , an ≥ 0 or

−1 ≤ a1, a2, . . . , an ≤ 0,

then
(1 + a1)(1 + a2) · · · (1 + an) ≥ 1 + a1 + a2 + · · ·+ an.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality holds

ak(a− b)(a− c) + bk(b− c)(b− a) + ck(c− a)(c− b) ≥ 0,

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as follows

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c+ a),

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc+ ca),

a2 + b2 + c2 +
9abc

a+ b+ c
≥ 2(ab+ bc+ ca),

(b− c)2(b+ c− a) + (c− a)2(c+ a− b) + (a− b)2(a+ b− c) ≥ 0.

For k = 2, we get the fourth degree Schur’s inequality, which holds for any real numbers a, b, c,
and can be rewritten as follows

a4 + b4 + c4 + abc(a+ b+ c) ≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2),
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a4 + b4 + c4 − a2b2 − b2c2 − c2a2 ≥ (ab+ bc+ ca)(a2 + b2 + c2 − ab− bc− ca),

(b− c)2(b+ c− a)2 + (c− a)2(c+ a− b)2 + (a− b)2(a+ b− c)2 ≥ 0,

6abcp ≥ (p2 − q)(4q − p2), p = a+ b+ c, q = ab+ bc+ ca.

A generalization of the fourth degree Schur’s inequality, which holds for any real numbers
a, b, c and any real number m, is the following (Vasile Cı̂rtoaje, 2004)∑

(a−mb)(a−mc)(a− b)(a− c) ≥ 0,

with equality for a = b = c, and also for a/m = b = c (or any cyclic permutation). This
inequality is equivalent to∑

a4 +m(m+ 2)
∑

a2b2 + (1−m2)abc
∑

a ≥ (m+ 1)
∑

ab(a2 + b2),∑
(b− c)2(b+ c− a−ma)2 ≥ 0.

7. CAUCHY-SCHWARZ INEQUALITY

If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

(a21 + a22 + · · ·+ a2n)(b21 + b22 + · · ·+ b2n) ≥ (a1b1 + a2b2 + · · ·+ anbn)2,

with equality for
a1
b1

=
a2
b2

= · · · = an
bn
.

Notice that the equality conditions are also valid for ai = bi = 0, where 1 ≤ i ≤ n.

8. HÖLDER’S INEQUALITY

If xij (i = 1, 2, · · · ,m; j = 1, 2, · · ·n) are nonnegative real numbers, then

m∏
i=1

(
n∑

j=1

xij

)
≥

 n∑
j=1

m

√√√√ m∏
i=1

xij

m

.

9. CHEBYSHEV’S INEQUALITY

Let a1 ≥ a2 ≥ · · · ≥ an be real numbers.

a) If b1 ≥ b2 ≥ · · · bn, then

n
n∑

i=1

aibi ≥

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
;
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b) If b1 ≤ b2 ≤ · · · ≤ bn, then

n
n∑

i=1

aibi ≤

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
.

10. REARRANGEMENT INEQUALITY

(1) If a1, a2, . . . , an and b1, b2, . . . , bn are two increasing (or decreasing) real sequences, and
(i1, i2, · · · , in) is an arbitrary permutation of (1, 2, · · · , n), then

a1b1 + a2b2 + · · ·+ anbn ≥ a1bi1 + a2bi2 + · · ·+ anbin .

(2) If a1, a2, . . . , an is decreasing and b1, b2, . . . , bn is increasing, then

a1b1 + a2b2 + · · ·+ anbn ≤ a1bi1 + a2bi2 + · · ·+ anbin .

(3) Let b1, b2, . . . , bn and c1, c2, . . . , cn be two real sequences such that

b1 + · · ·+ bk ≥ c1 + · · ·+ ck, k = 1, 2, · · · , n.

If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

a1b1 + a2b2 + · · ·+ anbn ≥ a1c1 + a2c2 + · · ·+ ancn.

11. SQUARE PRODUCT INEQUALITY

Let a, b, c be real numbers, and let

p = a+ b+ c, q = ab+ bc+ ca, r = abc,

s =
√
p2 − 3q =

√
a2 + b2 + c2 − ab− bc− ca.

From the identity

(a− b)2(b− c)2(c− a)2 = −27r2 + 2(9pq − 2p3)r + p2q2 − 4q3,

it follows that

−2p3 + 9pq − 2(p2 − 3q)
√
p2 − 3q

27
≤ r ≤ −2p3 + 9pq + 2(p2 − 3q)

√
p2 − 3q

27
,

which is equivalent to
p3 − 3ps2 − 2s3

27
≤ r ≤ p3 − 3ps2 + 2s3

27
.

Therefore, for constant p and q, the product r is minimum and maximum when two of a, b, c are
equal.
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12. KARAMATA’S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence

A = (a1, a2, . . . , an), ai ∈ I,

majorizes a decreasingly ordered sequence

B = (b1, b2, . . . , bn), bi ∈ I,

then
f(a1) + f(a2) + · · ·+ f(an) ≥ f(b1) + f(b2) + · · ·+ f(bn).

We say that a sequence A = (a1, a2, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an majorizes a sequence
B = (b1, b2, . . . , bn) with b1 ≥ b2 ≥ · · · ≥ bn, and write it as

A � B,

if
a1 ≥ b1,

a1 + a2 ≥ b1 + b2,
· · · · · · · · · · · · · · · · · · · · ·

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1,
a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn.

13. POPOVICIU’S INEQUALITY

Theorem. If f is a convex function on a real interval I and a1, a2, . . . , an ∈ I, then

f(a1) + f(a2) + · · ·+ f(an) + n(n− 2)f

(
a1 + a2 + · · ·+ an

n

)
≥

≥ (n− 1)[f(b1) + f(b2) + · · ·+ f(bn)],

where

bi =
1

n− 1

∑
j 6=i

aj, i = 1, 2, · · · , n.

In the same conditions, the following similar inequality holds:

f(a1) + f(a2) + · · ·+ f(an) +
n

n− 2
f

(
a1 + a2 + · · ·+ an

n

)
≥ 2

n− 2

∑
1≤i<j≤n

f

(
ai + aj

2

)
.

14. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

f(αx+ βy) ≤ αf(x) + βf(y)



562 Vasile Ĉırtoaje

for all x, y ∈ I and any α, β ≥ 0 with α + β = 1. If the inequality is reversed, then f is said to
be concave.
If f is differentiable on I, then f is (strictly) convex if and only if the derivative f ′ is (strictly)
increasing. If f ′′ ≥ 0 on I, then f is convex on I. Also, if f ′′ ≥ 0 on (a, b) and f is continuous
on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p1, p2, . . . , pn be positive real numbers. If f is a convex function on a
real interval I, then for any a1, a2, . . . , an ∈ I, the inequality holds

p1f(a1) + p2f(a2) + · · ·+ pnf(an)

p1 + p2 + · · ·+ pn
≥ f

(
p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

)
.

For p1 = p2 = · · · = pn, Jensen’s inequality becomes

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
.

Right Half Convex Function Theorem (Vasile Cı̂rtoaje, 2004). Let f be a real function
defined on an interval I and convex on I≥S, where S ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
(1)

holds for all a1, a2, . . . , an ∈ I satisfying
a1 + a2 + · · ·+ an

n
= S if and only if it holds for all

a1, a2, . . . , an ∈ I such that
a1 ≤ a2 = a3 = · · · = an.

Left Half Convex Function Theorem (Vasile Cı̂rtoaje, 2004). Let f be a real function defined
on an interval I and convex on I≤S, where S ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
(3)

holds for all a1, a2, . . . , an ∈ I satisfying
a1 + a2 + · · ·+ an

n
= S if and only if it holds for all

a1, a2, . . . , an ∈ I such that
a1 = a2 = · · · = an−1 ≤ an.

Left Convex-Right Concave Function Theorem (Vasile Cı̂rtoaje, 2004). Let a < c be real
numbers, let f(x) be a continuous function defined on I = [a,∞), strictly convex for x ≤ c and
strictly concave for x ≥ c, and let

E(a1, a2, . . . , an) = f(a1) + f(a2) + · · ·+ f(an).

If a1, a2, . . . , an ∈ I so that

a1 + a2 + · · ·+ an = S = constant,
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then
(a) E is minimum for a1 = a2 = · · · = an−1 ≤ an;
(b) E is maximum for either a1 = a or a < a1 ≤ a2 = · · · = an.

Right Half Convex Function Theorem for Ordered Variables (Vasile Cı̂rtoaje, 2008). Let
f be a real function defined on an interval I and convex on I≥s, where s ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I such that

x ≤ s ≤ y, x+ (n−m)y = (1 + n−m)s.

Left Half Convex Function Theorem for Ordered Variables (Vasile Cı̂rtoaje, 2008). Let
f be a real function defined on an interval I and convex on I≤s, where s ∈ int(I). The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I such tht

x ≥ s ≥ y, x+ (n−m)y = (1 + n−m)s.

Right Partially Convex Function Theorem (Vasile Cı̂rtoaje, 2012). Let f be a real function
defined on an interval I and convex on [s, s0], where s, s0 ∈ I, s < s0. In addition, f is decreasing
on I≤s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns
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if and only if
f(x) + (n− 1)f(y) ≥ nf(s)

for all x, y ∈ I such that x ≤ s ≤ y and x+ (n− 1)y = ns.

Left Partially Convex Function Theorem (Vasile Cı̂rtoaje, 2012). Let f be a real function
defined on an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s. In addition, f is increasing
on I≥s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f(x) + (n− 1)f(y) ≥ nf(s)

for all x, y ∈ I such that x ≥ s ≥ y and x+ (n− 1)y = ns.

Right Partially Convex Function Theorem for Ordered Variables (Vasile Cı̂rtoaje,
2014). Let f be a real function defined on an interval I and convex on [s, s0], where s, s0 ∈ I,
s < s0. In addition, f is decreasing on I≤s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I such that x ≤ s ≤ y and x+ (n−m)y = (1 + n−m)s.

Left Partially Convex Function Theorem for Ordered Variables (Vasile Cı̂rtoaje, 2014).
Let f be a real function defined on an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s. In
addition, f is increasing on I≥s0 and f(u) ≥ f(s0) for u ∈ I. The inequality

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1, 2, . . . , n− 1},



Glosar 565

if and only if
f(x) + (n−m)f(y) ≥ (1 + n−m)f(s)

for all x, y ∈ I such that x ≥ s ≥ y and x+ (n−m)y = (1 + n−m)s.

Equal Variables Theorem for Nonnegative Variables (Vasile Cı̂rtoaje, 2005). Let x1, x2, . . . , xn
(n ≥ 3) be nonnegative real numbers such that x1 ≤ x2 ≤ · · · ≤ xn, and let f be a real-valued
function, continuous on [0,∞) and differentiable on (0,∞), so that the joined function

g(x) = f ′
(
x

1
k−1

)
is strictly convex on (0,∞). For fixed x1 + x2 + · · · + xn and xk1 + xk2 + · · · + xkn, where k 6= 1
(k = 0 means that the product x1x2 · · ·xn is fixed), the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the maximum value only for

x1 = x2 = · · · = xn−1 ≤ xn ,

and the minimum value only for x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Equal Variables Theorem for Real Variables (Vasile Cı̂rtoaje, 2010). Let x1, x2, . . . , xn
(n ≥ 3) be real numbers such that x1 ≤ x2 ≤ · · · ≤ xn, let k be an even positive integer, and let
f be a differentiable function on R so that the joined function g : R→ R defined by

g(x) = f ′
(

k−1
√
x
)

is strictly convex on R. For fixed x1 + x2 + · · ·+ xn and xk1 + xk2 + · · ·+ xkn, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

has the minimum value for x2 = x3 = · · · = xn, and the maximum value for x1 = x2 = · · · = xn−1.

Best Upper Bound of Jensen’s Difference Theorem (Vasile Cı̂rtoaje, 1990). Let p1, p2, . . . , pn
(n ≥ 3) be fixed positive real numbers, and let f be a convex function on I = [a, b]. If a1, a2, . . . , an ∈
I, then Jensen’s difference

p1f(a1) + p2f(a2) + · · ·+ pnf(an)

p1 + p2 + · · ·+ pn
− f

(
p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

)
is maximum when all ai ∈ {a, b}.



566 Vasile Ĉırtoaje
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[1] Andreescu T., Ĉırtoaje V., Dospinescu G., Lascu M., Old and New Inequalities, GIL Publish-
ing House, 2004.

[2] Bin X., Boreico I., Can V.Q.B., Bulj A., Lascu M., Opympiad Inequalities, GIL Publishing
House, 2015.
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Journal, Banach Journal of Mathematical Analysis, Volume 7, Issue 1, 2013.
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