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Chapter 1

Half Convex Function Method

1.1 Theoretical Basis

Let I be a real interval, s an interior point of I and
Ls={uluelu>s}, Ics={ujueclu<s}.

The following statement is known as the Right Half Convex Function Theorem (RHCF-
Theorem).

Right Half Convex Function Theorem (Vasile Cirtoaje, 2004). Let f be a real function
defined on an interval I and convex on Isg, where S € int(l). The inequality

(1)

ap + Qg + -+ ay
n

Flan) + fas) + -+ flan) > nf (

holds for all ay,as,...,a, € 1 satisfying Tt —2 o S if and only if it holds for all

ai, s, ...,a, €1 such that
< ay=az3=---= a,.

Proof. Since the necessity is obvious, we will prove further the sufficiency. Assume that
ap < az < -0 <, ap < ap.

If a; > 9, then the required inequality is just Jensen’s inequality for convex functions. Otherwise,
if a; < S, then there exists
ke{l,2,...,n—1}

so that
ap < Zap < S <ap <-- < ay.

Since f is convex on [>g, we may apply Jensen’s inequality to get

flagr) -+ flan) = (n = k) f(2),

where . L
a/ .« e . a
y = il 0 zel
n—=k

1
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Thus, it suffices to show that

flar) + -+ flar) + (n — k) f(2) = nf(S). (2)
Let by, ..., b, be defined by

We claim that
which involves

Indeed, we have

b1> 'Zblw
bk_S:S—CLk 0’
n—1
and
ZZbl
because
(n—1)by=nS—a; = (ag+ -+ ap) + g1 + - +ay
< (k?—l)S—f—ak+1—|—----|-an
=k-1)S+(n—-k)z<(n—-1)z
Since by,...,bp €1, a;,—b; = n(a,-——lS) < 0fori <k, and (1)is true for ay < as =az=--- = ap,
n_
we have
flar) +(n—1)f(b1) = nf(S),
flag) + (n —1)f(bx) = nf(S),
hence

fla) + -+ flaw) + (n = D[f(br) + - + f(b)] = knf(S),
flaa) + -+ flar) 2 knf(S) = (n = 1)[f(br) +-- -+ f(bi)].
According to this result, the inequality (2) is true if

knf(S) = (n=D)[f(br) + -+ f(bx)] + (n — k) f(2) = nf(S),

which is equivalent to

pf(2) +(k=p)f(S) > f(br) +---+ f(bx), p= <1

For k = 1, this inequality is an equality. For k£ > 1, by Jensen’s inequality, we have

pf(2) + (1 —=p)f(S) > fw), w=pz+(1-p)S.
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Thus, we only need to show that
F(w) + (= 1)F(S) > F(br) + F(bo) + -+ F(by).
From w + (k —1)S = by + by + - - - + by, we obtain
w—>by=0b—=9)+---+ (b —5) > 0.

Since the decreasingly ordered vector Ay = (w, S,...,S) majorizes the decreasingly ordered vec-
tor By = (b1, bs, ..., by), this inequality follows from Karamata’s inequality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem (LHCF-Theorem).

Left Half Convex Function Theorem. Let f be a real function defined on an interval I and
convex on I<g, where S € int(l). The inequality

(3)

f(a1)+f(a2)+...+f(an)an(a1+a2—|—..._|_an)

n

ap+ax+---+a

holds for all ai,as,...,a, € 1 satisfying " =S if and only if it holds for all

ai,as, ...,a, €1 such that
) =0z =+ = Qp_1 < Ay

From the RHCF-Theorem and the LHCF-Theorem, we find the HCF-Theorem (Half Convex
Function Theorem).

Half Convex Function Theorem. Let f be a real function defined on an interval 1T and
convezr on Isg or l<g, where S € int(I). The inequality

n

f<a1)+f(a2)+"'+f(an)an(a1+a2+"'+an>

a1 +ay+-+a, S if and only if it holds for the

holds for all ai,as,...,a, € 1 satisfying

case when n — 1 of the numbers ay,as, ..., a, are equal.

Note 1. When n — 1 of the numbers ay,as,...,a, are equal, the inequality (1) in RHCF-
Theorem and the inequality (3) in LHCF-Theorem can be written as

f(@) +(n=1)f(y) = nf(S5),
where x,y € int(I) such that x 4+ (n — 1)y = nS. Let us denote
_ Jw) - f(s) h(w,y) = 9(x) — g(y)

u—s T —y

In many applications, it is useful to replace the hypothesis

fl@) +(n=1)f(y) = nf(S5)
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by the equivalent condition

hz,y) >0 forall x,y €l sothat v+ (n— 1)y =nS.

This equivalence is true because

Note 2. Assume that f is differentiable on I, and let

1) = 1'ty)

H(z,y) = pr—y

In some applications with HCF-Theorem, it is useful to replace the hypothesis
f@)+ (n=1)f(y) = nf(S)

with the more restrictive condition

H(z,y) >0 forall z,y €l sothat x+ (n—1)y=nS.
To prove this, we will show that the new condition H(z,y) > 0 implies

f(z) +(n=1)f(y) = nf(5)
for all z,y € I'so that x 4+ (n — 1)y = n.S. Write this inequality as

filx) = nf(S),

where

fi(x) = F(2) + (n— Df(y) = F(2) + (n— 1) ("5 - ) |

n—1

From

F@) = P - (”5 - )

n—1
— f(@) = ')
" (x - S)H(x,y),

n—1

it follows that f; is decreasing on I<g and increasing on I g; therefore,

file) = f1(S) = nf(S).

Note 3. From the proof of the RHCF-Theorem, it follows that the RHCF-Theorem, the
LHCF-Theorem and the HCF-Theorem are also valid in the case when f is defined on I\ {ug},
where ug € I, for the RHCF-Theorem, and uy € I., for the LHCF-Theorem.
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Note 4. The inequalities in the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem
become equalities for
a =ag="--+=a, =S.

In addition, if there exist z,y € I so that
e+ (n—Ly=ns, f(@)+@n-1f@)=nfls) =+,
then the equality holds also for
=, AQG=-"=a,=1Y
(or any cyclic permutation). Notice that these equality conditions are equivalent to
r+(n—1)y=ns, h(z,y)=0
(x < y for the RHCF-Theorem, and x > y for the LHCF-Theorem).

Note 5. Similarly, we can extend the weighted Jensen’s inequality to right and left half convex
functions establishing the WRHCF-Theorem, the WLHCF-Theorem and the WHCF-Theorem
(Vasile Cirtoage, 2008).

WHCF-Theorem. Let pi,ps,...,p, be positive real numbers so that
p1+p2++pn:17 p:min{pl7p27"'7pn}7

and let f be a real function defined on an interval I and conver on Is4 or I<g, where s € int(I).
The inequality

pif(ar) +paf(a2) + -+ puflan) > f(prar + pras + - - + pray)

holds for all ai,as,...,a, €1 so that
Di1a1 + p2ag + - -+ + PGy = S,

if and only if
pf(@)+ (1 —p)fly) = f(s)
for all x,y € 1 satisfying
pr+ (1 —ply=s.

Kok ok skskook sk kR sk kR sk skokok sk ok skokoskokoskokok skokokoskoskokoskoskokok

The following LCRCF-Theorem is also useful to prove some symmetric inequalities.

Left Convex-Right Concave Function Theorem (Vasile Cirtoaje, 2004). Let a < ¢ be real
numbers, let f(x) be a continuous function defined on I = [a,c0), strictly convezr for x < ¢ and
strictly concave for x > ¢, and let

E(ai,a,...,a,) = f(ar) + f(a2) + -+ + f(an).
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If ay,as,...,a, €1 so that

a1+ as+---+a, =S = constant,

then
(a) E is minimum for ay = ag = +++ = a1 < ay;
(b) E is mazimum for either a; =aora < ay; < ag ="+ = a,.
Proof. Without loss of generality, assume that a; < as < --- < a,. Since the sum F(ay, as, ..., a,)

is a continuous function on the compact set
A={(a,a9,...,a,): a1 +as+---+a, =219, a,aq,...,a, €1},
FE attains its minimum and maximum.
(a) For the sake of contradiction, suppose that £ is minimum at (by, bs, ..., b,) with
by < by <--- < by, by < bp—1.

For b,_1 < ¢, by Jensen’s inequality for strictly convex functions we have

o)+ Flbnn) > 2f (M),

while for b, 1 > ¢, by Karamata’s inequality for strictly concave functions we have
J(bn-1) + f(bn) > f(c) + f(bp-1 + b —©).
The both results contradict the assumption that E is minimum at (b1, b, ..., b,).
(b) For the sake of contradiction, suppose that E is maximum at (b1, by, ..., b,) with
a<b <by<---<by, by < b,,.
There are three cases to consider.

Case 1: by > c. By Jensen’s inequality for strictly concave functions, we have

o)+ 7ib) <2f (P52,

Case 2: by < c and by + by — a < c¢. By Karamata’s inequality for strictly convex functions, we
have

f(b1) + f(b2) < f(a) + f(b1 + b2 — a).

Case 3: by < c and by + by — ¢ > a. By Karamata’s inequality for strictly convex functions, we
have

f(o1) + f(b2) < f(b1 + b2 —c) + f(o).

Clearly, all these results contradict the assumption that F is maximum at (b1, by, ..., by,).

Note 6. The point (a) of LCRCF-Theorem is also true when I = (a,00) and f(ay) = .

Note 7. If [ = [a,d] and a < ¢ < d, then E is minimum for either a, = d or a1 = ay =
crr = p—q < Qg

Note 8. From the point (b) of LCRCF-Theorem, we can prove (by the induction way) that
F is maximum for
a:alz"':a“jfl Saj Saj‘Fl:.":an,

where j € {1,2,...,n—1}.
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1.2 Applications

1.1. If a, b, ¢ are real numbers so that a + b + ¢ = 3, then

3a* + b+ )+l + P+ +6>6(a®+ b0+ ).

1—-2n
5 so that a; + as + - -+ + a, = n, then

1.2. If a1, a9,...,a, >
n_

a§+a§’+---+ai2n.

—n
1.3. If ay,as,...,a, > 5 so that a; +as + -+ 4+ a, = n, then

n —

ai’+a§+---—|—af’lZa%+a%+---+ai.

1.4. If aq,as,...,a, are real numbers so that a; + as + - - - + a,, = n, then

(n® =3n+3)(al + a3+ +a,—n)>2(n"—n+1)(al + a3+ +a. —n).

1.5. If ay,as, ..., a, are nonnegative real numbers so that a; + as + - - - + a, = n, then

(n*+n+1)(al+ a3+ Fay—n) 2 (n+1)(a)+ay + - +a, —n).

1.6. If a, b, c are real numbers so that a + b + ¢ = 3, then

(a) at+ b+t =3+ 27+ 3V (@ + b3+ 3 - 3) >0
(b) at b+t =3 4207 -3V (@ + 0P+ —3) >0.
1.7. Let ay,as,...,a, be nonnegative real numbers so that a; +as + ---+a, = n. If kis a

positive integer satisfying 3 < k <n + 1, then

ai+a3+---+a2—n n—1

1.8. Let £ > 3 be an integer number. If aq,as,...,a, are nonnegative real numbers so that
ai; + as + -+ a, = n, then

a¥ +ak+---+af —n < nF=t—1

a?+ai+---+a2-n" n-1
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1.9. If ay, as,...,a, are positive real numbers so that a; +as + --- + a, = n, then
2 (1 1 1 2 2 2
nl—+—+--+——-—n)>4n—-1)(a; +a3+---+a; —n).
aq (05} Qp,

1.10. If a1, as, ..., ag are positive real numbers so that a; + as + - -+ + ag = 8, then
1 1 1 5 9 9
_2+_2+"'+_22a1+a2+"'+a/8
. 1

1.11. If a1, as, ..., a, are positive real numbers so that — + — + --- 4+ — = n, then

aq a9 Qp,
vn—1
a§+a§+---+ai—nz2(l+ - )(a1+a2+---+an—n)-

1.12. If a, b, ¢, d, e are positive real numbers so that a? + b* + ¢ + d? + €2 = 5, then

11 1 1 1 41+ 5
—+——|——+——|———5+(—\/_)(a+b—i—c+d+e—5)20.
a b ¢ d e 5)
1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then
1 n 1 n 1 <2 1 N 1 n 1
3a+b+c 3b+c+a 3c+a+b” 5\b+c c+a a+b)’

1.14. If a,b,c,d > 3 — /T so that a + b+ ¢+ d = 4, then
1 N 1 N 1 N 1 >4
24a% 240 2+ 2+4d> T3

1.15. If a1, as, ... ,a, € [—y/n,n — 2| so that a; + ag + - - - + a,, = n, then
1 1 1 n

5+ S 5 < .
n+ai n+a; n+a;  n+1

1.16. If a, b, ¢ are nonnegative real numbers so that a + b+ ¢ = 3, then

3_a+ 3_b+ 3—c >3
9+a2 9402 9+¢2 75
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1.17. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

1 n 1 n 1 >3
l—a+2a?2 1—0+2b2 1—c+2c2 2

1.18. If a, b, ¢ are nonnegative real numbers so that a + b+ ¢ = 3, then

1 n 1 n 1 3
S5+a+a> 5+b+0> S5+4+c+c2 T
1.19. Let ay, as, ..., a, be nonnegative real numbers so that a; + as + -+ + a, = n. If
1
k>1——,
n
then
1 n 1 P 1 SN
1+ka? 1+ ka3 14+ ka2 — 14k
1.20. Let ay,as,...,a, (n > 3) be nonnegative real numbers so that
ay+ag + -+ a, =n.
2
If p> 5 and ¢ = (p+ 1)(p+n), then
n_
n

1

1 1 . - |
a2 +pa,+q ~ 1+p+gq

2 + 2
ay +par+q a3 +paz +q

1.21. Let ay,as, ..., a, be nonnegative real numbers so that a; + as + -+ + a, = n. If

2 _
k>n n—l—l7
- n-1
then
1 . 1 n n 1 < n
a+k a+k az+k~ 1+k

, a, be nonnegative numbers so that a; +as + -+ -+ a, = n. If

1.22. Let ay,ao,...
2

n
k> ———
~4n—-1)
then
aj(a; — 1)  as(ag —1) an(a, — 1) >0
2 2 2 =V
aj +k as +k a? +k
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1.23. If a4, ao, ..., a, are nonnegative real numbers so that a; + as + - -+ + a,, = n, then
a; — 1 Ao — 1 Ay — 1
e ————— > 0.
(n—2a1)?  (n—2ay)? L (n —2a,)? —
1.24. If a1, ao, ..., a, are nonnegative real numbers so that

a1 +as+ -+ a, =n, a1, a9, ...,0, > —k, k>1+

then
a?—1 n ai—1 P a? —1 >0
(a1 + k)2 (ag+ k)2 (a, + k)2 =
1.25. Let ay,as9,...,a, be nonnegative real numbers so that a; +as+---+a, =n. f 0 <k <
2n—1
1+ , then
n—1

a?—1 n ai—1 P az —1 <0
(a1 +k)? (a2 +k) (an +k)* =

1.26. If a1,a9,...,a, >n—1—+n?> —n+1so that ay +as + -+ + a, = n, then

a? —1 N as —1 . a? —1 <0
027 i e S

1.27. Let aq,ao,...,a, be nonnegative real numbers so that a; +as +---+a, = n. If &k >
(n—1)(2n —1)
, then
n2
1 1 1 n

> .
1+ka§+1+ka§+ +1+Img— 1+k

1.28. Let ay,as, ..., a, be nonnegative real numbers so that a; +as+ -+ a, =n. f 0 <k <

n- th
————— then
n2—2n+2’

1 1 1 n

< .
1+ka§+1+lm§+ +1+lm;’; T~ 1+k

n
1.29. Let ay,as, ..., a, be nonnegative real numbers so that a; +as+---+a, =n. If k > T
n

then
aq i a9 4 1 Qp < n
k—ay k— ay k—a, ~ VE—1
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1.30. If aq,as, ..., a, are nonnegative real numbers so that a; + as + - -+ + a,, = n, then

T TR T >

1.31. If a, b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 4, then

(3a* 4+ 1)(3b* + 1)(3¢* + 1)(3d* + 1) < 256.

1.32. If a,b,¢c,d,e > —1 so that a + b+ c+ d + e = 5, then

@+ 1)+ 1)+ 1)(P+1)(e*+1) > (a+1)(b+1)(c+ 1)(d+ 1)(e + 1).

1.33. Let ay,as,...,a, be positive numbers so that a; +as +---+a, =n. If
S2Vn—1+2 2\/71—1’ k<3,
n n
then ] ] ]
(Va1 + v/az + +\/a_)+\/a_1+\/a_2+ + an_( + 1)n.

1.34. If ay, as,...,a, (n > 3) are positive numbers so that a; + as + - -+ + a, = 1, then
1 1 1 1\"
= _ = )
() (G va) () = (Vi 7)

1.35. Let ay,as,...,a, be positive real numbers so that a1 + as + --- + a, = n. If

2
kg(lﬂ_vn—l),
n

1 1 1
(kjal + —) (k;a2 + _) . (k:an + —) > (k+1)"
ay ¢5) Qn,

1.36. If a, b, ¢, d are nonzero real numbers so that

then

-1
a,b,c,d > TR a+b+c+d=4,
then

3 1+1+1+1 +1+1+1+1>16
b2 d? b d—
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1.37. If a1, as, . . . , a, are nonnegative real numbers so that af + a2 + - - + a2 = n, then
al+aj+ - +al—n+ — (a1 +ag+---+a,—n)>0.
1.38. If a, b, ¢, d, e are nonnegative real numbers so that a? + b* + c? + d? + e? = 5, then
1 N 1 n 1 n 1 n 1 <1
7T—2a T7—2b T7T—2¢ T7—2d 7—2
1.39. Let 0 < aq,aq,...,a, < kso that a? + a3+ ---+a =n. If
l<k<1+ :
n—1
then
1 1 P 1 S
k—a k—as k—a, k-1
1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then
48 48b 48
\/1+ ¢ +\/1+—+\/1+ >
b+ c c+a a+b
1.41. If a, b, c are nonnegative real numbers, then
3a? 3b? 3c?
+ + <L
7a?2 +5(b+ ¢)? 2 +5(c+a)? 7c? 4+ 5(a+b)?
1.42. If a, b, c are nonnegative real numbers, then
2 2 2
I S I S
a?+2(b+ c)? b2 4 2(c+ a)? 2+ 2(a+0b)?
1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If
In3
k> koo ko= —2 — 1~ 0.585,
In 2
then
2a \" 20 \" 2¢ \"
+ + > 3.
b+ c c+a a+b
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1.44. If a,b,c € [1,7 + 4/3], then
2a \/ 2h \/ 2
+ + > 3.
b+c c+a a+b

1.45. Let a, b, c be nonnegative real numbers so that a + b+ ¢ = 3. If

In2

O<k<hk, k=135

~ 1.71,
then
a®(b+c) + b (c+a) + cF(a+b) <6.
1.46. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then
b b
Va+Vb++e—-3>13 (\/a; +\/ ;C+\/C;a—3).
1.47. Let a, b, c be nonnegative real numbers so that a + b+ ¢ = 3. If £ > 2, then

b k b k k
ak+bk+ck+322(%) +2( ;C> +2(C;a> .

1.48. If a1, as, ..., a, are nonnegative real numbers so that a; + as + - -+ + a,, = n, then

\/a_1+\/a_2+"'+\/a_n+n(k:—1)§k<\/”_a1+\/”_a2+...+ n—an>’

n—1 n—1 n—1

where

k=(n-1)(/n+vn-1).

1.49. If a, b, c are the lengths of the sides of a triangle so that a + b+ ¢ = 3, then

1 1 1 2 2 2
—- - —324(2+\/§)( + - —3).

at+b—c b+c—a c+a-—0>b a+b b+c c+a

1.50. Let aq,as,...,a; be nonnegative numbers so that a; + as + as + ay + a5 < 5. If
29 + /761
k> ko, k= YL 566,
10
then
1 5

> .
Zka%+a2+a3+a4+a5 “k+4
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1.51. Let aq,as,...,a; be nonnegative numbers so that a; + as + as + as + a5 < 5. If
11 — v/101
0 <k <k, ko = ——— =~ 0.095,
10
then
1 5

> .
Zka%+a2+a3+a4—l—a5 “k+4

1.52. Let ay,as, ..., a, be nonnegative real numbers so that a; +as + -+ a, <n. If
1
0<k<——r
n—+1
then
aq (45} Qp, n

_|_ +...+ > .
ka?+as+ -+ +a, ai+kad+- - +a, artay+---+ka: " k+n-—1

7
1.53. If ay,as,a3,a4,a5 < 5 so that a; + as + az + a4 + a5 = 5, then

a a2 a3 Qy (0333

+ + + + <1.
ai—a;+5 ai—ay+5 ai—a3+5 aj—as+5 ai—az+5 "
1.54. Let ay,as,...,a, be nonnegative real numbers so that a; +as +---+a, > n. If
1
1—i_4(n71)2
then
a? a3 a? n
. + > ot = > :
kai+as+---+a, a+kas+---+a, ap +ag+---+kai — k+n—1
1.55. Let aq,ao,...,a, be nonnegative real numbers so that a; +as+---+a, <n. fk>n—1,
then

2 2 2
aj a; a;, n

< .
ka%—i—ag—k---—i—an+a1+ka%+---+an+ +a1+a2+---+ka%_k+n—1

1
1.56. Let aj,as,...,a, € [0,n] so that a3 +as +---+a, >n. If 0 <k < —, then
n

a; — 1 . as — 1 . n a, — 1 >0
ka? +ay+---+a, a +kai+---+a, artag+ - +ka T
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1.57. If a, b, c are positive real numbers so that abc = 1, then

Va2 —a+14+vV2—b+1+VeE—c+1>a+b+c.

1
1.58. If a,b,c,d > so that abcd = 1, then
146

1 N 1 N 1 N 1 <4
a+2 b+2 c+2 d+2 3

1.59. If a, b, c are positive real numbers so that abc = 1, then

a4+ b+ —3>2(ab+bc+ca—a—b—c).

1.60. If a, b, c are positive real numbers so that abc = 1, then

>+ b+ —3>18(a+b+c—ab—bc— ca).

1.61. If a1, as, ..., a, are positive real numbers so that a,as---a, = 1, then
9 9 9 1 1 1
a1+a2+--~+an—n26\/§ a+ay+--+a,— —— — — e — — .
ai a2 Qn
1.62. If ay,as,...,a, (n > 4) are positive real numbers so that ajas - --a, = 1, then

(n—1)(@%+a§+---+ai)+n(n+3)2(2n+2)(a1+a2+---—|—an).

1.63. Let aq,as,...,a, (n > 3) be positive real numbers so that ajas---a, = 1. If p and ¢ are
nonnegative real numbers so that p + ¢ > n — 1, then

1 1 1 n
1 +pay +qa? 1+ pay + qa2 1+ pa, +qa2 ~ 1+p+gq

1.64. Let a,b,c,d be positive real numbers so that abed = 1. If p and ¢ are nonnegative real
numbers so that p + ¢ = 3, then

1 1 1 1
>1
1+pa+qa3+ 1+pb+qb3+1+pc+qc3+1+pd+qd3 -
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1.65. If a1, as, ..., a, are positive real numbers so that a,as---a, = 1, then
1 1 1
—+ bt >
1+a;+---+aj 1+as+---+aj I+an+---+ay
1.66. Let aq,ao,...,a, be positive real numbers so that ajas---a, = 1. If
k>n?—1,
then
1 N 1 - 1 SN
VI+ka  1+kas VI+ka,  V1+k
1.67. Let aq,as,...,a, be positive real numbers so that ajas---a, = 1. If p,¢g > 0 so that

0<p+qg< ——, then
n—1

1 1 1 n
+ 4ot < .
1+ pa; +qa? 1+ pas + qa3 1+ pa, +qa2 ~— 1+p+gq

1.68. Let ay,as,...,a, (n > 3) be positive real numbers so that ajas---a, = 1. If
2n — 1
0<k<—
— (n - 1)27
then

1 1 1 n
+ +- 4 < :
V1+kay 1+ kas V1+ka, ~ V1+Ek

1.69. If a1, ao,...,a, are positive real numbers so that a,as---a, = 1, then

alll+£_|_ (l%-f—M-F"'-l- at + 2n—1 > 1 (a1+a2+...+an)2'
(n—1)2 (n—1)2 " n=12 " n-1

1.70. If a1, as, ..., a, are positive real numbers so that a,as - --a, = 1, then

1 1 1
At ay o+ ad  n(n—2) > (n—1) (—+—+---+—>.
aq a9 Qp

1.71. Let aq,ao,...,a, be positive real numbers so that a;as---a, = 1. If £ > n, then

11 1
af +as+--+al+kn>(k+1) (—+—+---+—).
aq a9 Ay,
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1.72. If a1, as, ..., a, are positive real numbers so that a,as---a, = 1, then
1\ 1\ 1\“"
1——) +(1-=) + - +(1-=) <n-1
n n n

1.73. If a, b, c are positive real numbers so that abc = 1, then

1 1 1
+ + <1
1+vV1+3a 1++vV1+3b 1414 3¢

1.74. 1f a4, as, ..., a, are positive real numbers so that ajas---a, = 1, then

1 1 1
+ + -+
14+ /1+4n(n—1)a; 14 +/1+4n(n—1)as 14+ /1+4n(n—1)a,

1.75. If a, b, c are positive real numbers so that abc = 1, then

a® o b

>1
1+2a5+1—|—2b5+1+205_

1.76. If a, b, c are positive real numbers so that abc = 1, then

V2502 + 144 4+ V250% + 144 + V/25¢2 + 144 < 5(a + b+ ¢) + 24.

1.77. If a,b, c are positive real numbers so that abc = 1, then

V16a2 + 9 + V1602 + 9+ V16c2 +9 > 4(a + b+ ¢) + 3.

1.78. If ABC is a triangle, then

A B
sin A (2sin§ — 1) +sin B (28in§ — 1) +sinC (ZSing — 1) > 0.

1.79. If ABC is an acute or right triangle, then

A B
sin 2A (1 —2sin§) + sin 2B (1 —251n5> + sin 2C (1 —QSing) > 0.

V2
M'I —
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1.80. If a, b, c,d are real numbers so that a + b+ ¢+ d = 4, then
a L+ b N c . d <1
a?—a+4 B2—-b+4 E—c+4 d—-d+4
1.81. Let a, b, c be nonnegative real numbers so that a + b+ ¢ = 2. If
In 2

ko <k<3, k=—"7--—~171

0="=" " In3—In2 ’
then

a"(b+c) + b (c+a)+ Fla+b) <2.
1.82. If a4, ao, ..., a, are positive real numbers so that a; + as + - - - + a,, = n, then

2 1 1 1 2, 2 2 2
(n+1) a—+a—+--~+a— >4(n+2)(ai + a5+ -+ a;) +n(n® —3n —6).
1 2 n
1.83. If a,b, ¢, d, e are positive real numbers such that a + b+ c+ d+ e = 5, then
1 1 1 1 1
21—+ -+ =+ -+ -) >4+ + I’ + &® +€*) + 115.
a b ¢ d e

1.84. If a, b, c are nonnegative real numbers so that a + b+ ¢ = 12, then

(a® 4+ 10)(b* + 10)(c* + 10) > 13310.
1.85. If a4, ao, ..., a, are nonnegative real numbers so that a; + as + - -+ + a,, = n, then

2 n
5 5 5 (n® —2n+2)
(a1 +D(ag +1)---(a, +1) > (n—1)2n—2
1.86. If a, b, c are nonnegative real numbers so that a + b+ ¢ = 3, then
(a® +2)(b* +2)(c* +2) < 44.

1.87. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

(@®+ 1D+ 1D +1) <

169
< —.
16
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1.88. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

121

(2a® +1)(20* +1)(2¢* +1) < -

1.89. If a, b, c are nonnegative real numbers so that a + b+ ¢ > kg, where

3/
ko = 3 66 + 10V 105 ~ 4.867,

Y@ DF D@+ 1) < (%“0)2“

then

1.90. If a, b, ¢, d are nonnegative real numbers so that a + b + ¢ + d = 4, then

(a® + 3)(b* + 3)(c® + 3)(d* + 3) < 513.

1.91. If a, b, ¢, d are nonnegative real numbers so that a + b+ ¢ + d = 4, then

(a® 4+ 2)(b* 4+ 2)(c* + 2)(d* +2) < 144.

1.92. If a, b, ¢, d are nonnegative real numbers such that
a+b+c+d=4,
then

a n b N c n d
3a3+2 30 4+2 3c3+2  3d3+2

4
< -.
-5

1.93. If a,b,c,d are positive real numbers such that

1 N 1 N 1 N 1 4
9a+2 9+2 9c+2 9d+2 11’

then

1 1 1 1
Bla+b+c+d)+20>8( =+ +-+=).
a b ¢ d

1.94. If a4, as, ..., a, are nonnegative real numbers such that a; + as +--- 4+ a, = 1, then

+al +ay+ - +ap.
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1.95. If ay,as,...,a, (n > 4) are nonnegative real numbers such that
ay +az +---+a, =n,
then
- 1 2 2 2 2
n(n—l)(Zn—l);m >a?+a5+ -+ a+n*(2n —3).
1.96. If a1, a9, ..., a, are nonnegative real numbers such that
ay +az + -+ ap =M,
then
. 1
1.97. If ay, as,...,a, (n>4) are nonnegative real numbers such that
1 1 1
+ +oot—2>1,
ai+n—1 ay+n—1 a, +n—1
then

n:—n-—1

2 2 2
a+ai+---+ad-n>—-—"—
1 2 n = n—2

(CL1+CL2+"'+CLn—Tl).
1.98. Let a, b, c be nonnegative real numbers, no two of which are zero, and
2a 2b 2c

x:b—i—c’ y:c+a7 Z:a—f—b'

Prove that
1 1 1

+ + > 1.
Vhir+4  Vhy+4  Bz+4

1.99. If a, b, ¢, d are positive real numbers such that abed = 1, then

A+ 0+ dP 4> 200+ 0+ dP).
1.100. If a,b,¢,d € [—1,1] such that a + b+ ¢+ d = 1, then

-1 7
?§a3+b3+03+d3§1.

19
1.101. Prove that 7 is the minimum positive value of the constant £ such that

<,/ b+c "‘i/ c+a +3/ a+b 233/ 2
ka-+b+c kb+c+a kc+a-+b k+2

holds for any nonnegative real numbers a, b, ¢ with a + b+ ¢ > 0.
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1.3 Solutions

P 1.1. If a,b,c are real numbers so that a + b+ c = 3, then
3(a* + v+ )+ a b+ P+ 6> 6(a® + b7+ D).

Solution. Write the inequality as

f@)+F0)+ 10 2 3f(s), 5=
where
f(w) =3u* —6u® +u?, ueR.
From

f"(u) = 2(18u* — 18u + 1),

it follows that f”(u) > 0 for u >
suffices to show that

E= f(z)+2f(y) —3f(1).
We have

E=[f(z)— f)]+2[f(y) — f(1)]
= (32" — 62° + 2% +2) +2(3y* — 6y + 1> +2)

r—1)[(32° — 32% — 22 — 2) — (3y® — 3y* — 2y — 2)]
B(z® — y*) = 3(2? — y?) — 2(x — )]
(z —y)[Ba®+ay+y°) = 3(z +y) — 2]

(Vasile C., 2006)

1, hence f is convex on [s,00). By the RHCF-Theorem, it
f(z)+2f(y) > 3f(1) for all real x,y so that x 4+ 2y = 3. Let

(32° = 32% — 22 — 2) + 2(y — 1)(3y° — 3y* — 2y — 2)

[27(2? + 2y + y?) — 9z + y)(z + 2y) — 2(z + 2y)?]

6

1
The equality holds for @ = b = ¢ = 1, and also for a = 3 and b = ¢ =

permutation).

Remark. In the same manner, we can prove the following generalization:

e Ifay,as,...,a, are real numbers so that a1 + as + - -+ + a,, = n, then

n—1
(@ = @)+ (@ — @) o+ (0] =0 2 o

with equality for ay = ay = --- =a, =1, and also for

1 n—2

a4 = ——"— g =a3=-+=ay, =1+

n2—3n+3’ n?—3n+3

or any cyclic permutation).
Yy cy p

(a7 + a5+

4 :
3 (or any cyclic
+ CLZ - n)7
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1-2
P 1.2. Ifay,as,...,a, > ;130 that a1 + as + - - - + a, = n, then

n —

al+aj+--+al>n.

(Vasile C., 2000)

Solution. Write the inequality as

flar) + flag) + -+ flan) > nf(s), s= =1,

where L9
3 —2n
flu) =, uz——

From f"(u) = 6u, it follows that f is convex on [s,00). By the RHCF-Theorem and Note 1, it

suffices to show that h(z,y) > 0 for all z,y > — 2n so that x + (n — 1)y = n. We have

— f(1
u—1
— —2 2n — 1
h@wy:“@ g@):x+y+1:(n Jet2n—1_,
x—y n—1
From z + (n — 1)y = n and h(z,y) = 0, we get
1—-2n n+1
xr = = )
n—2 YT
Therefore, according to Note 4, the equality holds for a; = as =--- =a, = 1, and also for
1—2n n+1
= = Q :---:&n:
ai n—9' as 3 n—2

(or any cyclic permutation).

P 1.3. Ifay,as,...,a, >

n
5 so that a1 + as + - - - + a,, = n, then
n_

al+ay+--+al >ai+ta3+-+an.

Solution. Write the inequality as

flan) + flaz) + -+ flan) Z nf(s), 5= =1,

where
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From f”(u) = 6u — 2, it follows that f is convex on [s,00). According to the RHCF-Theorem

and Note 1, it suffices to show that h(z,y) > 0 for z,y > n2 so that z + (n — 1)y = n. We
n —

e ) — 1(1)
_Jw = _ .2
g(U) - U — 1 u-,
- —2
hz,y) = gl —9ly) _ Tty = -2z +n > 0.
T—y n—1
From z 4+ (n — 1)y = n and h(z,y) = 0, we get
-n n
r = =
n—2 Y72
Therefore, in accordance with Note 4, the equality holds for a; = ay, = --- = a,, = 1, and also for
-n n
&1—n_2, Qg = ag = - :a":n—Q
(or any cyclic permutation).
O
P 1.4. Ifaq,as,...,a, are real numbers so that a; +as + - -+ + a, = n, then

(n* =3n+3)(af +ay+---+at —n)>2n*—n+1)(al + a5+ - +a> —n).
(Vasile C., 2009)

Solution. Write the inequality as

flar) + flaz) + -+ flan) 2 nf(s), s= =1,
where
fw)=m?=3n+3ut =2 —n+1u?, uecl=R
For u > s = 1, we have

L) =32 = 3n 4+ 302 — (2 —n+ 1)

4
>3(n*—3n+3)—(n*—n+1)=2n-2)*>0;

therefore, f is convex on I-,. By the RHCF-Theorem and Note 1, it suffices to show that
h(xz,y) > 0 for x,y € R so that x + (n — 1)y = n, where

_9(x) —9(y) _ flw) = F(1)
hx,y) = Ta—y glu) == —1—
We have
gu) = (n*=3n+3)(W® +v*+u+1)—2(n* —n+1)(u+1)



24 Vasile Cirtoaje

and
h(z,y)=@n*=3n+3)(2® +ay+y* +o+y+1)—2(n°*—n+1)
=[(n*—3n+3)y—n*+n+17>>0.
The equality holds for ay = ay =--- =a, = 1, and also for
1+ 2 42—t
a] = — —_— Ao = Qq = +++ = an = _—
! n? —3n+3’ 2 3 n2—3n+3
(or any cyclic permutation).
O
P 1.5. Ifay,as,...,a, are nonnegative real numbers so that a; + as + - - - + a, = n, then

(n*+n+1)(al+ay+-Fay—n) 2 (n+1)(a+ay+ - +a, —n).
(Vasile C., 2009)

Solution. Write the inequality as

flar) + flaz) + -+ flan) Z nf(s), s= =1,

where
flu)=n*+n+1Du*—(n+Dut, vwel=][0,n].

The function f is convex on I<4 because
f(u) =6un®+n+1-2n+1)u] > 6uln*+n+1—2(n+1)]
=6(n*—n—1)u > 0.

By the LHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0 for x,y > 0 so that
x + (n— 1)y = n, where

Mgy~ LB Z0W) ) = F(),

r—Yy u—1
We have
gw)=@E*+n+ D +u+1)—(n+1)(®+u* +u+1)
=—(n+Du*+n*(u*+u+1)
and

h(z,y) = —(n+ 1) (2* + 2y +y*) +n(z +y+ 1)
= —(n+1)(@* +ay +y*) +n(z +y)lz + (n = Dyl + [z + (n — 1y
= (n* +n—3)ay +2n(n —2)y*> > 0.

The equality holds for a1 = ay = --- =a, = 1, and also for
a; =n, ay=a3=---=a, =20

(or any cyclic permutation).
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P 1.6. Let a,b,c be real numbers so that a +b+ c = 3. If
14— 67T <k < —14 +6V7,

then
ad bt —-3> k(a® +0° + ¢ —3).
(Vasile C., 2009)

Solution. Write the desired inequalities as

a+b+c
S=—— =

fla) + ) + 1) = 31(5), ;

L,

where

From

" (u) = 6u(2u?® — k),

it follows that f”(u) > 0 for uw > 1, hence f is convex on [s,00). By the RHCF-Theorem, it
suffices to show that f(x)+ 2f(y) > 3f(1) for all real =,y so that  + 2y = 3. Using Note 1, we
only need to show that h(z,y) > 0, where

_glx) —g(y) _
We have

gu) =P+ +ut+1 -k +u+1) +u+l=u>+ 1 -k)(uw?+u+1),

ha,y) =2 +ay+y°+ (1 —k)(z+y+1)=3y*>— (10 — k)y + 13 — 4k

10— k\>  (6V7+ 14+ k) (677 — 14 — k)
:3(y_T> * 12

> 0.

The equality holds for a =b=c¢ = 1. If k = —14 — 6+/7, then the equality holds also for
a=-5-2V7, b=c=4+VT

(or any cyclic permutation). If k = —14 + 61/7, then the equality holds also for
a=-5+2V7, b=c=4-V7

(or any cyclic permutation).
Remark. Similarly, we can prove the following generalization:

e Letay,as,...,a, be real numbers so that a; + as + -+ a, =n. If ky < k < ko, where

by — —2(n2_n+1)—2\/3(n2—n+1)<n2_3n+3)
1 (n—2)2 ;
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—2(n?> —n+1)+2y/3(n%—n+1)(n2 — 3n+3)

ko =
then
al +ay+---+al —n>k(a}+a3+-+a —n).
The equality holds for a; = as = -+~ =a, = 1. If k € {ky, ko}, then the equality holds also for
—2(n*—=3n+1)+ (n—1)(n—2)k
a1 =
! 2(n? — 3n + 3) ’
2(n®> —n—1)— (n—2)k
2(n? —3n+ 3)
(or any cyclic permutation).
m
P 1.7. Let ay,as,...,a, be nonnegative real numbers so that ay +as + ---+a, =n. Ifk is a

positive integer satisfying 3 < k <n+1, then

k—1

ai+a3+---+a2—n n—1

(Vasile C., 2012)

Solution. Denote

S R R e

and write the inequality as

flar) + flaz) + -+ flan) > nf(s), s= =1,

where
f(u) =u* —mu®, uel0,n).

We will show that f is convex on [1,n]. Since

F'(u) = k(k — Dub% = 2m > k(k — 1) — 2m,

k(k —1) N n k—2+ n k—3+ .
2 —\n-—1 n—1 '

Since n > k — 1, this inequality is true if

k(k—=1) k—1k”+ k—1k*+ O
2 T \k-2 k—2 '

we need to show that
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By Bernoulli’s inequality, we have

E—1\’ 1 1 E—1
(k 2) - RYE oo 0Lk
“2) ) - ki

Therefore, it suffices to show that

This is true if

R S
2= 72 k-1

which can be easily proved by induction. According to the RHCF-Theorem and Note 1, we only
need to show that h(z,y) > 0 for z,y > 0 so that z 4+ (n — 1)y = n, where

ox) o) S =S

h A
(2,9) g p—
We have i )
—1)— ~1
g(u) = (u ) T'i(u ) = (Wt dF ) = m(u 1),
u_
k-1 _ k-1 k-2 k-1
rT—y rT—y

It suffices to show that f;(y) > 0 for y € [0, LJ and j =1,2,...,k — 2, where
n —

J
ﬁ@%=ﬂ+xJ@+~~+$w1+w”—(n_1), r=n—(n-1)y.
For j =1, we have
n (n—2)x
= — = > 0.
hly)=z+y D1 -1 =
For j > 2, from2'=—(n—1)andn—1>k —2 > j, we get

fily) == =D’ + (= D2/ Py + -y 2T 207 Py gy
< —jl T+ G- D Py 4y T T 20Ty gy
A A el R U VR e AR VAR A B VTN

As a consequence, f; is decreasing, hence it is minimum for y = 7 (when z = 0):
n

fj(y)ij< . >=0-

n—1
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From z 4+ (n — 1)y = n and h(z,y) = 0, we get

Therefore, the equality holds for

a[lzo7 a2:a3:---:an:

(or any cyclic permutation).
Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

o Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then

(n—1)(ai+a3+ - +a) —n) > (2n—1)(a; + a3+ +a, —n),

with equality for ay = ay = -+ =a, =1, and also for
n
a; =0, g =a3 ="+ =ap, =
n—1
(or any cyclic permutation).
e Ifay,ag,...,a, (n>3) are nonnegative real numbers so that

ap +az + -+ ap =n,

then
(n—1%*af +a3+---+a* —n)>Bn®>—=3n+1)(a?+a3+---+a —n),
with equality for ay = ay =--- =a, =1, and also for
a; =0, Qg = az =+ = 0p = -
n—1

(or any cyclic permutation).

m
P 1.8. Let k > 3 be an integer number. If ai,as,...,a, are nonnegative real numbers so that

ay +as+---+a, =n, then

af +as+---+at—n nFl-1

ad+ai+---+a2-n" n-1
(Vasile C., 2012)
Solution. Denote
ntt—1 k=2 | k-3
m = =n""4+n""4+---+1,
n—1

and write the inequality as

f(a1)+f(a2)++f(an)2nf(8), S:a1+a2+-..+an:1,
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where

f"(u) =2m — k(k — Duf2 > 2m — k(k — 1),

we need to show that

—1
ez M
This is true if ek — 1
2k—2+2k—3+ +1Z (2_ )7
which is equivalent to
2k71 -1 2 k(k_ 1)’
2
2k > k2 — k42
Since
k k k
= (14+1)F>1
arnrz e 1)+ (5)+ (5)
—1 —1 -2
g HED KOG

it suffices to show that

k(k—1)  k(k—1)(k—2)
> 6

1+k+ >k —k+2,

which reduces to
(k—1)(k—2)(k—3)>0.

According to the LHCF-Theorem and Note 1, we only need to show that h(z,y) > 0 for z,y > 0
so that 4+ (n — 1)y = n, where

— — f(1
h(z,y) = —g@z — z(y)7 g(u) = %
We have ) k
g(u) = i _i)—_l(u D _ m(u+1) — W +u" 7+ 4 1)
and k-1, k=1 k-2 k=1
) =m = T
T —y r—y
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We will show that
. . it yj+1
W (rtyy >
xr =Y

The left inequality is true since

n—(+y)=z+n-1y—(z+y)=(n-2)y=>0.

The right inequality is also true since

(x+y)]=m3+(j)xj_ly++( J )l‘yj_l—l—yj

1 j—1
and
P ittt ‘ ‘
=+ Y+ ay T+
r—y
The equality holds for a; =n and as = a3 =--- = a, = 0 (or any cyclic permutation).

Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

e [fay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then
al+aj+-+al—n<(n+1)(a]+a3+--+a, —n),
with equality for a1 = ay = --- =a, = 1, and also for
a, =n, a=a3=---=a, =0
(or any cyclic permutation).
o Ifay, as,...,a, are nonnegative real numbers so that ay + as + - - - + a, = n, then
ay +ay+ - +a, —n < (' +n+1)(a] +a;+ - +ap —n),
with equality for ay = ay =--- =a, =1, and also for
a; =n, o =a3=---=a, =20

(or any cyclic permutation).

P 1.9. Ifay,as,...,a, are positive real numbers so that a; + as + - - - + a, = n, then

1 1 1
n’ <—+——i—~~+——n) >4(n—1)(a® +a3+---+a —n).
aq a9 (07%

(Vasile C., 2004)
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Solution. Write the inequality as

flar) + flag) + -+ flan) =2 nf(s), s= =1,

where
2

fu)=" —4(n—1u?, wel=(0,n).

u

For u € (0, 1], we have
f'(u) = =5 =8(n—1) > 2n* =8(n — 1) = 2(n — 2)* > 0.

Thus, f is convex on I<,;. By the LHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0
for x,y > 0 so that 4+ (n — 1)y = n, where

Moy~ LB =0 S = (),

r—Yy u—1

We have
—n?
g(u) = o 4(n—1)(u+1)
and
§ —1 2 — -1 2
Yy Ty Ty
In accordance with Note 4, the equality holds for a; = ay = -+ = a,, = 1, and also for
n
a1:§’ QQ:agz...:an:m

(or any cyclic permutation).

Remark. The inequality is equivalent to

1 1 1 1
n(—+—+'--+—>+8(1——) Z a;a; > 5n* — 8n + 4.
ap Gz anp n

1<i<j<n

P 1.10. If ay,as,...,as are positive real numbers so that ay + as + -+ - 4+ ag = 8, then

1 1 1 2 2 2
—2+—2+"'+—220/1+a2+"'+a8'
ay a3 ag

(Vasile C., 2007)
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Solution. Write the inequality as

flar) + flag) + -+ f(ag) > 8f(s), :al-i-agj;-- + ag
where
1 2
f(u):@—u, u € (0,8)

For u € (0, 1], we have
6
f//(U):@—226—2>0

Thus, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(z,y) > 0

for z,y > 0 so that x + 7y = 8, where

Mg~ ) o) f) = f()

=y u—1
We have
() ] 1 1
u) = —u — S
g u u?
and ) N
rT+y
h =14+ — )
(2, y) T e

From 8 =z + Ty > 24/Tzxy, we get xy < 16/7. Therefore,

T(x+y)  112y% — 170y + 72

1
h(z,y) > -1+ —+

xy 162y 16y
112y% — 176y + 72 B 14y? — 22y + 9 -
162y N 2xy
The equality holds for a1 = ay =--- =ag = 1.

0.

Remark. In the same manner, we can prove the following generalization:

e Ifay,as,...,a, (n>4) are positive real numbers so that ay + as + - - - + a, = n, then

1 1

P 1.11. ]fal,aQ, ..

a%+a§+'--+ai—n22(l+

1 8
S +5+ - +5+8-—n>—(af+aj+---+al).
ai a5 az n

. 1
., a, are positive real numbers so that — + — + ---+ — =n, then
aq (05} Qp,

Vn—1

n

)(a1+a2+-~+an—n).

(Vasile C., 2006)
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Solution. Replacing each a; by 1/a;, we need to prove that
ar+as+---+an

flar) + flaz) + -+ flan) =2 nf(s), s= - =1,
where
f(u):%—%, k=1+ nn—17 u € (0,n).

For u € (0, 1], we have

_ _ —  1\2
_G—dku_ 64k _2Vn—1-1?
ud ut nu? -

/" (u)

Thus, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0
for z,y > 0 so that = + (n — 1)y = n, where

oy — SO =0W) )= 1)

Tr—y u—1
We have
() -1 2k-1
u) = —
g u? U
and L1
h(z,y) = — <—+—+1—2k>.
Ty \* Y
We only need to show that
1 1
—+-2>2k—-1.
r oy

Indeed, using the Cauchy-Schwarz inequality, we get
1

_+1> I+vn—17% (1+Vn-1)

r y_ x+(n—1y

=2k —1,

with equality for z = v/n — ly. From z + (n — 1)y = n and h(z,y) = 0, we get

n n
r=——— = .
l+vn-1 YT n-1+vno1
In accordance with Note 4, the original equality holds for a; = a; = --- = a,, = 1, and also for
14++v/n—1 n—1++vn—1
0,1:—7 a2:a3:“':a/n:
n n

(or any cyclic permutation).

P 1.12. Ifa,b,c,d, e are positive real numbers so that a®> + b> + ¢ + d? + e = 5, then

1 1 1 1 1 41+ V5
—+——|——+—+——5+(—\/_>(a+b—|—c—|—d+e—5)20.
a b ¢ d e 5

(Vasile C., 2006)
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Solution. Replacing a,b, c,d, e by v/a, Vb, \/c,Vd, \/e, respectively, we need to prove that
a+b+c+d+e

fla) + f(b) + fle) + f(d) + fle) = 5f(s), s= - =1,
where
flu) = % +kvu, k= 4(12\/5) ~ 259,  wu€(0,5).
For u € (0, 1], we have
33— ku

1
— 2" S0
i) =7 N
therefore, f is convex on (0,s]. By the LHCF-Theorem and Note 1, it suffices to show that
h(z,y) > 0 for z,y > 0 so that x 4+ 4y = 5. We have

fw) = f(1) _ kVu—1

and
B, y) = 2 =9W) VI+ T+ 1—kyTY
VT ey T mNE HVE R DD

Thus, we only need to show that

VI +y+1—kyxy >0,

which is true if

2¥xy+1—ky/xy > 0.

Let

t = Yxy.
From

5=+ 4y > 4/zy = 417,

we get

1< Y5

- 2

Thus,

29wy +1 —ky/zy =2t + 1 — kt?

(&) el )0

The equality holds fora =b=c=d=e=1.

P 1.13. If a,b, c are nonnegative real numbers, no two of which are zero, then

1 n 1 4 1 2 1 n 1 n 1
3a+b+c 3b+c+a 3c+a+b 5\b+c cH+a a+bd)’

(Vasile C., 2006)
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Solution. Due to homogeneity, we may assume that a + b+ ¢ = 3. So, we need to show that

fla) + F0) + £ 2 3(s), s ==,
where 5 .
flu)=g3—~ 53 Y€ [0,3).
For u € [1,3), we have
po 4 40 36[2u® + 3w+ 9(u—1)(3—w)] _
JHw) = (3—u)?  (2u+3)3 (3 —u)3(2u + 3)3 >0

therefore, f is convex on [s,3). By the RHCF-Theorem and Note 1, it suffices to show that
h(z,y) > 0 for z,y > 0 so that x 4+ 2y = 3, where

ox) o) ) S = S0)

M y) == — u—1
We have 1 2
g(u) = 3—u+2u+3
and
1 4
hz,y) = B-2)3—y) (24 3)(2y+3)
- 9(2z + 2y — 3)
(3—2)(3—y)(2z + 3)(2y + 3)
9z

T BBy Dy 3 =

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic permutation).

]

P 1.14. Ifa,b,c,d >3 — /7 so that a+ b+ c+ d = 4, then

1 N 1 N 1 N 1 >4
24a? 2402 242 24d2 T 3

(Vasile C., 2008)
Solution. Write the inequality as

a+b+c—|—d_

fla)+ f(0) + f(e) + f(d) = 4f(s),  s= 1,

where
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For u > s =1, f(u) is convex because

3(3u? — 2)
"(u) = —5——5 > 0.
f (U) (2 + U2)3
By the RHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0 for x,y > 3 — /7 so that
x4 3y = 4. We have

S - fH) _ —l-w

T A PR
e () — g()
g(z) — gy zy+r+y—2
h pr— pr—
) = Ty TR et )
where
2
— ) — —
oyt by—2— :E—l—36:£ _(B+VT 33)3(:16 3+7)
_ VT3 =3+VT)

3

In accordance with Note 4, the equality holds for a = b= ¢ = d = 1, and also for

C1+VT
3

a=3-—T1, b=c=d

(or any cyclic permutation).
Remark. Similarly, we can prove the following generalization:

e Ifaj,as,...,a, >n—1—+/n?—3n+3 so that a; +as + ---+ a, = n, then

1 n 1 + + 1 S n
2+a?  2+d3 2+a2 — 3
with equality for ay = ay = --- =a, =1, and also for

14++vn?—-3n+3
ap=n—1—+vn?—-3n+3, g = a3 =+ =0p = v nr

n—1

(or any cyclic permutation).

P 1.15. If ay,aq,...,a, € [—/n,n — 2] so that a; + as + - -- + a, = n, then

1 1 1 n
< )
n+a?  n+ad: n+a2 " n+1

(Vasile C., 2008)
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Solution. Write the inequality as

fla) + fa2) + -+ + flan) 2 nf(s),  s= - =1,
where .
f(u)—n+u2, n>3, u€[—vnn-—2|
For u € [—+/n, 1], we have
" _ 2<n_u2)
S (u) = P >0,

hence f is convex on [—y/n,s]. By the LHCF-Theorem and Note 1, it suffices to show that
h(z,y) > 0 for x,y € [—y/n,n — 2] so that  + (n — 1)y = n. We have

_fw) = fQQ) u+1
9(w) = u—1  (n+1)(n+u?
and
9(x) — g(y) n—x—y-—ay
h(xz,y) = =
) = Ty T D )+
_ (n—x)(n—2-—1) >0
n?2 =1 (n+2?)(n+y?) —
The equality holds for ay = ay = --- =a, = 1, and also for
2
ap=n—2, Ay =QA3 = -+ = Ay =
n—1

(or any cyclic permutation).

P 1.16. If a,b,c are nonnegative real numbers so that a + b+ c =3, then

3—a N 3—b+ 3—c >3
9+a? 9402 9425

(Vasile C., 2013)

Solution. Write the inequality as

fla)+ £0)+ (0) 2 37(s), s="T2 0=,
where 3_ o
f(u):m7 u6[073]

For u € [1, 3], we have
1 " w9 —u) +27(u—1)

0.
(9 +u?)3 ~
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Thus, f is convex on [s, 3]. By the RHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0
for x,y > 0 so that x + 2y = 3, where

M) = SDZ90, gy _ S =1
We have 6+
g(u) = 5(9—+u2)
and
h(x7y>:q:y—|—6x—|—6y—9: (9 — x) 0.

594 22)(9+y?) 109+ 22)(9+y2) —

The equality holds for a = b = ¢ = 1, and also for a = 0 and b = ¢ =

N W

(or any cyclic

permutation).
Remark. In the same manner, we can prove the following generalization:

e Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then

n—a N n— ap . n—ap . _n
n?+ (n?—3n+1)a? n?2+ (n?—3n+1)d’ n?+(n?—-3n+1)a2 = 2n—1

with equality for ay = ay =--- =a, =1, and also for

&1:(), a2:a3:-:an:

(or any cyclic permutation).

P 1.17. If a,b, c are nonnegative real numbers so that a + b+ ¢ = 3, then

1 1 1
1—a+2a2+1—b+2b2+1—c+202

3
> —.
-2

(Vasile C., 2012)

Solution. Write the inequality as

fla) + F0)+ Q) 2 3(), s =0,
where )
flu) = T—uiom “€ [0,3].
For u € [1, 3], we have s e
%f”(u) - (1121i u+ 2u?)3 > 0.
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Thus, f is convex on [s, 3]. By the RHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0

for x,y > 0 so that x + 2y = 3, where

Mg — S0 o) f) = f)

=y u—1
We have ( 2u)
—(1 4 2u
9 = S0 T 2
and
dry +2x +2y — 3 (1 +4y)

h(x,y) = =

0
20—z +222)(1—y+2y?) 2(1—z+22%)(1 —y+2y2%) —

3
The equality holds for a« = b = ¢ = 1, and also for a = 0 and b = ¢ = 3 (or any cyclic
permutation).
Remark. In the same manner, we can prove the following generalization:
o Letay,as,...,a, be nonnegative real numbers so that ay + as + -+ -+ a, = n. If
3n—2++m>—8n+4
k>, by — n + Von n+ ’
2n
then
1 n 1 P 1 SN
1—a;+ka? 1—ay+ kd’ 1—a, +ka2 =k’
with equality for ay = ay =+ =a, = 1. If k = kq, then the equality holds also for
a; =0, Qg = Aag = -+ = ap = -
n—1

(or any cyclic permutation).

P 1.18. If a,b,c are nonnegative real numbers so that a + b+ c =3, then

1 N 1 N 1 >3
54a+4+a? 5+b+b> S+c+c2 T

Solution. Write the inequality as

fa)+ f(b)+ flc) > 3f(s), s=——

where

(Vasile C., 2008)
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For v > 1, from

() = 2(3u? + 3u — 4)
(5 +u+u?)?

it follows that f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices to show that

h(z,y) > 0 for z,y > 0 so that = + 2y = 3. We have

> 0,

S -1 2-w
9(w) = u—1 754 u+u?)
and
_g@)—gly)  wy+2(@+y) -3
ey = e T B e DBty )
z(b—x)

>0
Ub+z+22)5+y+y?) —

3
According to Note 4, the equality holds for a = b= c¢ =1, and also fora =0 and b = ¢ = 5

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Letay,as,...,a, be nonnegative real numbers so that ay +as + -+ a, =n. If
2(2n — 1
0<k< kl; ki = La
n—1
then
1 N 1 P 1 S
k+a+a?  k+ay+ a k+a,+a2 = k+2
with equality for ay = ag =--- =a, = 1. If k = ki, then the equality holds also for
a1 =0, ay—az=--=a,=—
n—1
(or any cyclic permutation).
O
P 1.19. Let ay,aq, ..., a, be nonnegative real numbers so that ay + as + -+ 4+ a, =n. If
1
k>1——,
n
then
1 1 1 n

> )
1+ka§+1+kza§+ +1+k:a%_1+k
(Vasile C., 2005)
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Solution. Write the inequality as

fla) + flaz) + -+ flan) Znf(s),  s= - =1,
where .
flu) = To e U [0, n].
For u € [1,n], we have
2
() = 2k (3ku® — 1) S 2k(3k — 1) -0

(1+ku?)? = (14 ku?)?

Thus, f is convex on [s,n|. By the RHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0

for z,y > 0 so that 2 + (n — 1)y = n. We have

o) = fw)—f1) _ —k(u+1)
u—1 (14 k)(1 + ku?)
and
9@ —gly) Kty tzy) -k
Mey) == —, T L+ R) (L + ka?)(1+ ky?)

We need to show that
k(x +y+ay)—12>0.

Indeed, we have

1 r(2n -2 —=x
k(r+y+axy)—12> (1—5) (x4+y+ay) —1= % > 0.
. 1 :
The equality holds for a; =as =---=a, = 1. If k =1 — —, then the equality holds also for
n
a; =0, Qg = Aag = -+ = ap = n
n—1
(or any cyclic permutation).
O

P 1.20. Let ay,aq,...,a, (n > 3) be nonnegative real numbers so that

a,+ag+---+a, =n.

If p> and q>qo= (p+1)(p+n), then

n— 2

1 1 1 n
<

5 + — et <
aj +pay +q  a; +pas +q a; +pa,+q ~ 1+p+gq

(Vasile C., 2023)
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Solution. Write the inequality as

a1+a2+---—|—an

flar) + flaz) + -+ + f(an) 2 nf(s),  s= - =1,
where |
f(u):u2+u+2n—|—2’ u € [0, n].
We have 2A(w)
" o Uu
f (u) - (u2+pu—}-q)3’
where

A(u) = ¢ — p* — 3pu — 3u?.

For u € [0, 1], we have
Alu)=q—p* —3pu—3u> > A1) =q—p*-3p—-3>q—-p*—3p—-3=(n—-2)p+n—3>0.

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show that h(z,y) > 0
forx > 1>y > 0so that  + (n — 1)y = n. We have

(u)_f(U)—f(l)_ u+1+p

g =1 C (I+p+q)(w+pu+tgq)
_g(r) —gly) B(z,y)

he,y) = z—y  (I+p+aq)@®+pr+q W’ +py+q)

where
B(x,y)=q—plp+1) = (p+1)(z+y) — 2y
For z + (n — 1)y = n, we get

B>q—p*=3p—3=n—-1)y"+[(n—2)p—2y >0,

hence h(z,y) > 0. The equality occurs for a; = as = --- = a, = 1. If ¢ = qp, then the equality
also occurs for a; =n and ay = a3 =--- = a, = 0 (or any cyclic permutation).

m
P 1.21. Let ay,ao, ..., a, be nonnegative real numbers so that ay + as + -+ 4+ a, =n. If

2 _
[ A el
n—1
then
1 1 1 n

< _
Py T g Ty Sy
(Vasile C., 2005)
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Solution. Write this inequality as

flar) + flag) + -+ flan) 2 nf(s), s= " =1,
where 1
flw) = e we o)
For u € [0, 1], we have
2(k — 3u?)
1! :—>O
) = 2 =0
since ) | 02
k_3u22k0_3:i_3zuz()‘
n—1 n—1

Thus, f is convex on [0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(z,y) > 0

for x,y > 0 so that x + (n — 1)y = n. We have

_fw)—f1) _ u+l
glu) = ———1 T (L+k)(+k)
and
9@ —gly) _ k—r—y-—ay
he,y) == —/ T+ k)(@2 k)2 +k)

It suffices to show that
k—z—y—xy>0.

Indeed, we have

— 1)y —1]?
k—x—y—:pkao—x—y—xy:[(n Jy 1] > 0.
n—1
The equality holds for ay = as =--- =a, = 1. If kK = kg, then the equality holds also for
1
a; =n-—1, Qg =03 =+ = Uy =
n—1
(or any cyclic permutation).
Remark. Similarly, we can prove the following generalization:
o Letay,as,...,a, (n>3) be nonnegative real numbers so that
ap+ag+---+a, =n.
n’p? +4(n* —n+1 1
If -1<p< and q > qo = p_ 4 +)@+),m%
n—2 4(n—1)
1 1 1 n
. + = +o < :
ai +pa; +q a3+ pas+q a; +pan+q ~ 14+p+gq
with equality for a; = ay = --- = a, = 1. In addition, if ¢ = qo, the equality also occurs for
-2 2—(n—2
a;=n—1+ Q and ay = as = --- = a,, = % (or any cyclic permutation).
n E—
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The proof is similar to the one of the preceding P 1.20. So, it suffices to show that A(u) >0
for u € [0,1], and B(z,y) > 0 for x > 1 > y > 0 such that x 4+ (n — 1)y = n, where

A(u) = q — p* = 3pu — 3u?,

B(z,y) =q—plp+1) = (p+1)(z+y) —zy.
Since A(u) is concave, we have A(u) > 0 for u € [0,1] if A(0) > 0 and A(1) > 0. Indeed,
(n—2°p* +4(n* —n+1)(p+1)

A0)=q—p*>qo—p° = 0
0)=q¢—p" Zq—p D) >0,

(n—2)%*(p+2)*

A =q—p*—3p—3>q—p>—3p—3 =
)=g-p*"=3p-3>q—-p"—3p-3 1)

> 0.

Also, we have
B=n-1)y*+[(n—2)p—2y+q—(p+1)(p+n) > (n—1)y*+[(n—2)p—2Jy+q— (p+1)(p+n)

[(n=2p—2 Rn-Dy+@m-2p-2"_

=(n—1)y" +[(n—2)p—2y+ pEE D >

2

P 1.22. Let a;, aq, ..., a, be nonnegative numbers so that ay +as+---+a, =n. If k > in—1) ! 1)’
n —

then ( D ( D ( D
ay(a; — as(ag — an(a, —
+ .4 —— 2 >(.
at +k ai+k az +k

(Vasile C., 2012)

Solution. Write the inequality as

Fla) + flas) + -+ fan) > nf(s), s= - .
where
f(u)zug—;;), u € [0,n].
From ) 2 3
R e R

it follows that f is convex on [0, 1]. By the LHCF-Theorem and Note 1, it suffices to show that
h(z,y) > 0 for z,y > 0 so that = + (n — 1)y = n, where

_g(x) —g(y) _ flu) = f(1)
h(z,y) = E— glu) == —1—
We have u
g(u) =
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and
_ 2 _ _
Wz, y) = k —zy > n® —4(n — 1)zy
(2 4+k)(y?+ k) — 4n—1)(22+ k) (y®2 + k)
-y 4Dy fe—(n-y
dln — 1)(z2 + k) (y®2 + k) dn— 1) (a2 +k)(y2+ k) —
The equality holds for a; = as =--- =a, = 1, and also for
a; =n/2, ag =az=---=a, =n/(2n —2)
(or any cyclic permutation).
O
P 1.23. Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a,, = n, then
a; — 1 a9 — 1 Ay — 1
e —2 = >0,
(n—2a1)?  (n—2ay)? L (n —2a,)? —

(Vasile C., 2012)

Solution. For n = 2, the inequality is an identity. Consider further n > 3 and write the
inequality as

ay +ao + -+ a,

fla) + fla2) + o fla) Znf(s), 5= DRIy
where w1
flu) = CECHA I=[0,n]\ {n/2}.
From

oy 2utn—4 "ol :8(u+n—3)
f<u>_ (n_2u>37 f() (n_zu)4 )

it follows that f is convex on I<;. By the LHCF-Theorem, Note 1 and Note 3, it suffices to show
that h(x,y) > 0 for z,y € I so that x + (n — 1)y = n. We have

IO IO N

9(u) = u—1  (n—2u)?
and A A 5
W) = glx)—gly)  4n—z-y) (n=2y .,
T —y (n—2z)%*(n—2y)*> (n—2z)*(n—2y)?
In accordance with Note 4, the equality holds for a; = ay = --- = a,, = 1, and also for
a; =n, ap=a3=---=a, =0

(or any cyclic permutation).
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P 1.24. ]f ay,as, . .

., an are nonnegative real numbers so that

n
a +a _|_..._|_an:n7 a,a,...,an>—/€, k21+ )
12 1o vn—1
then
a?—l a%—l ai—l
2+ 2+_|_ 2_0,
(a1 + k)2 " (ap+Fk) (an + k)

Solution. Write the inequality as

flan) + flaz) + -+ flan) = nf(s), = - =1,
where
0 — u? —1 0 —k
Jlw) = (u+ k)2’ =R
For u € (—k, 1], we have
o 20k —3—2ku) _ 20k —2k—3) 20k +1)(k—3)
PO=""000t 2 @kt~ wrkr 20

Thus, f is convex on (—k,s]. By the LHCF-Theorem and Note 1, it suffices to show that
h(xz,y) > 0 for x,y > —k so that x + (n — 1)y = n. We have

u+1

BCEE

_ (k=1 —(+2)(1+y)

 flw) = f(1)
glu) = = —7
nd (%) — g(y)
~g(@) —gly
Since

(k-1 >

we need to show that

n—1

(x 4+ k)% (y + k)?

Y

n*>(n—1)(1+2)(1+y).

Indeed,
n—nm-1)1+2)1+y)=n’-1+2)2n—-1—-2)=(z—n+1)>>0.

n
Th lity holds fi =ay=--=a,=1 If k =1+ ———, then th lity hold
e equality holds for a; = a a i1 en the equality holds

also for )

alzn—l, a2:a3: ~:an:
n—1

(or any cyclic permutation).
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P 1.25. Let ay,as,...,a, be nonnegative real numbers so that a; + as + --- + a, = n. If
2n — 1
O0<k<1+ n , then
n—1
a?—1 a3 —1 a? —1

T |}
@1 Tk T @ re =

(Vasile C., 2008)

Solution. Write the inequality as

fla)+ fla) + o o) 2 nf(s), 5= TGy
where

u) = L u € [0,n]

f) = e welon

For u > 1, we have

(2ku — k* + 3)
(u+ k)t

22k —k*+3)  2(1+k)3—k)
STk ik

F() =

Thus, f is convex on [s,n|. By the RHCF-Theorem and Note 1, it suffices to show that h(z,y) > 0
for ,y > 0 so that x + (n — 1)y = n. We have

flw) = (1) _ —u—-1

S =TT T Ry
and
h(x )_g(ﬁ)_g(y)_2k—k2+x+y+xy>2k—k2+x+y
Since
x+y2$+(n—1)y: n ’
n—1 n—1
we get
2n —1
%k — kP taty> 2%k kP = (k- 1)+ >0,
n—1 n—1
hence h(z,y) > 0.
2n — 1
The equality holds for ay = ay = -+ = a, = 1 Ik =14/ — then the equality holds
n_
also for
n
a; =0, gy =a3 =+ +=aqa, =
n—1

(or any cyclic permutation).
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P 1.26. Ifay,a0,...,a, >n—1—+v/n?>—n-+1 so that ay + as + - - - + a, = n, then

2 2 2
e Mt T e S

(Vasile C., 2008)

Solution. Write the inequality as

Flar) + flas) + -+ + flan) > nf(s), s= SEREEEET

where )

1—
flu) = “ , u>n—1—vn?2—n+1.

(u+2)2

For u > 1, we have

2(4u — 1)
" o

Jou) = (u+2)*

Thus, f(u) is convex for u > s. By the RHCF-Theorem and Note 1, it suffices to show that
h(xz,y) > 0 for

> 0.

n—1-VrP-ntl<z<1<y a+(@n-1ly=n

Since
S —f1)  —u—1
g(u) = u—1 _(u+2)27
h(z ):g(x)—g(y): rtytry 2?4+ 2(n — 1z +n
Y r—y (gj—|—2)2(y+2)2 (n—l)(:v+2)2(y-|—2)2’

we need to show that
n—1—-vn2—n+1<z<n—-14+vn2-—-—n-+1.
This is true because

n—1—-vn2—-n+l1<z<l<n—-14+vn2—-—n+1.

The equality holds for a; = as =--- =a, = 1, and also for

1+vn2—n+1
alzn—l—\/m, Qg = a3 ="+ =0ap =

n—1
(or any cyclic permutation).
O
P 1.27. Let ay,as,...,a, be nonnegative real numbers so that a; + as + --- + a, = n. If
—1)(2n—1
ps (oD

n

1 n 1 T 1 S _n
14 ka3 1+ kal 14+ ka2 =~ 1+k

(Vasile C., 2008)
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Solution. Write the inequality as

flar) + flag) + -+ flan) Z nf(s), s= - =1,
where .

For u € [1,n], we have

g 6ku(2ku® —1) _ 6ku(2k —1)
P = =05y 2 [ k)

Thus, fis convex on [s,n|. By the RHCF-Theorem and Note 1, it suffices to show that h(z,y) > 0
for x,y > 0 so that = + (n — 1)y = n, where

9(x) —9(y) g(u) = flw) - F(1)

h AV AV,
(z,y) g o
We have
(1) = —k(u?*+u+1)
T = W+ k)1 + kud)
and
Ma,y) 2?9 rayle+y-—D+(@+y)° — (e +y+1)/k
k2 (1+ k) (1 + kz®)(1 + ky3) ‘
Since
—1
$+y2x+(n )y: n > 1,
n—1 n—1
it suffices to show that .

n
From z +y > ——, we get
n—1

2n —1
k(z +y) = ,
n
hence
n 2n—1
ke +y)? —z—y=(r+ylk(z+y) —1] > ( —1)=1-
n—1 n
—1)(2n—1
The equality holds for ay = as =---=a, =1. If k = (n )(2n ), then the equality holds
n
also for
n
a; =0, Qg = a3z =+ = 0p =
n—1

(or any cyclic permutation).
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P 1.28. Let ay,as,...,a, be nonnegative real numbers so that a; + as + --- + a, = n. If

n—1
O<ck<_"—20 4y
=2 _opgo N

1 N 1 P 1L _ .
1+ ka3 1+ ka3 1+ka3 — 1+k

(Vasile C., 2008)

Solution. Write the inequality as

flar) + flag) + -+ f(an) > nf(s), s= - =1,
where .
f(u)=m> u € [0,n].

For u € [0, 1], we have

v Gku(l —2ku®) _ 6ku(l — 2k)
[ (u) = (0 1 hu)? > 0+ ko)

Thus, f is convex on [0, s]. By the LHCF-Theorem and Note 1, it suffices to show that h(z,y) > 0
for x,y > 0 so that = + (n — 1)y = n, where
g(z) —g(y fu) — f(1
@ =9) - L0 = F1)

h — 2\Y) I\
(z,9) g "

We have
k(u? +u+ 1)
(1 4+ k)(1 + ku?)

g(u) =

and
hMa,y) (c4+y+1)/k—a®y’ —ayle+y—1)— (x+y)?

k2 (T+k)(1+ kx?)(1 + ky?)
It suffices to show that

(n? =2n+2)(x+y+1)
n—1

— 2’y —zylzr+y—1)— (x+y)*> >0,

which is equivalent to
2+ny—(n =Dyl - (n - 1)y]* > 0.

This is true because

24+ny—(n—1)y*=2+yln—(n—1)y] =2+zy > 0.

—1
The equality holds for a; = ay =---=a, =1. If k = n—’ then the equality holds
n? —2n+2
also for .
a,lzn—17 a2:a3:...:a/n:
n—1

(or any cyclic permutation).
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n2

P 1.29. Let ay,as, ..., a, be nonnegative real numbers so that a1+as+---+a, =n. Ifk > T
then

an, n

S P <
k—a k—as k—a, ~ VE—1

(Vasile C., 2008)

Solution. Write the inequality as

flar) + flag) + -+ flan) > nf(s), s= =1,

where

flu) =— u € [0,n].

For u € [0, 1], we have

gy k(k—4u) k(k —4)
50 = Ty (e 2

Thus, f is convex on [0, s]. By the LHCF-Theorem, it suffices to prove that
f@)+(n=1)f(y) = nf(1)

forx > 1>y > 0so that x + (n — 1)y = n. We write the inequality as

(k—1)x
k—x

+(n—-1)

n—1y+k—n k—uy
Let
L (kr—l)y7 L<1
k—y
which yields
B k22
(R
(k—1)(1 — 2% (k—1)(nz®>+k—n)
1—y= 1 —n= .
Y=gy o o lydken k-1
Since
k(1 —1y) k(=22 1— 22
n—1y+k-—n k-—n(l—-22 1-n(l-22/k
1— 22 on(l—2%)

ST m-U/n n-D2+1
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it suffices to show that

n(n —1)(1 — 2?)
\/1+ DL Site-Di-2).

By squaring, we get the obvious inequality

(z—1)%[(n—1)z— 1> >0.

2

The equality holds for a1 =ay=---=a, =1. lf k= " T then the equality holds also for
/rL —
n(n — 1) n
TR on 42 2o (n—1)(n? —2n+2)

(or any cyclic permutation).

P 1.30. Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then
n_ai _f_n_a’% _|_ e _|_n_azL Z 1
(Vasile C., 2006)

Solution. Let k = Inn. Write the inequality as

flar) + flag) + -+ f(an) > nf(s), 5 = =1,

where

For u > 1, we have
F(u) = 2kn~" (2ku® — 1) > 2kn~"" (2k — 1) > 2kn~* (2In2 — 1) > 0;
therefore, f is convex on [s,n]. By the RHCF-Theorem, it suffices to show that
fl@)+(n=1)f(y) =2 nf(1)
for 0 <z <1<yandx+ (n—1)y =n. The desired inequality is equivalent to g(x) > 0, where

g@) =n" 4 (n—1m* -1, y=_—2

0<z<1.

Y

n—1

Since y' = —1/(n — 1), we get

2

g (x) = —22kn™" — 2(n — Dkyy'n™" = 2k(yn™?" — an="").

The derivative ¢'(x) has the same sign as ¢;(z), where

g1(z) =In(yn™?") —In(zn*") = Iny — Inz + k(z> — 4*),
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/
, y 1 , —1 2k(1 4 nx — 2x)
== — — 4 2k(zx — =
gl(x) y T + (3: yy) n SL’(TL . LU) + (n - 1)2
For 0 < z <1, g|(z) has the same sign as
—(n—1)?

h(z) = —r +z(n —x)(1 4+ nx — 2z).

Since

R'(z) =n+2(n*—2n— 1)z — 3(n — 2)2°
>nr+2(n®—2n—1a —3(n—2)x
=2(n—1)(n—2)x >0,

h is strictly increasing on [0, 1]. From

h(O):#d), h(1) = (n — 1) (1—%) >0,

it follows that there is x; € (0,1) so that h(z;) = 0, h(z) < 0 for x € [0,21) and h(xz) > 0 for
x € (21,1]. Therefore, g; is strictly decreasing on (0, z1] and strictly increasing on [z, 1]. Since
91(04) = oo and g;(1) = 0, there is x5 € (0,21) so that gi(x2) = 0, g1(z) > 0 for z € (0,25) and
g1(z) < 0 for z € (x9,1). Consequently, g is strictly increasing on [0, x2] and strictly decreasing
on [zg,1]. Because g(0) > 0 and ¢g(1) = 0, it follows that g(z) > 0 for € [0,1]. The proof is
completed.

The equality holds for a; = as =---=a, = 1.

P 1.31. Ifa,b,c,d are nonnegative real numbers so that a + b+ c+d =4, then
(3a* +1)(30* + 1)(3c* + 1)(3d* + 1) < 256.

(Vasile C., 2006)
Solution. Write the inequality as

a+b+c+d
S=——— =

fla) + f(0) + f(e) + f(d) = 4f(s), 1

1,
where
f(u)=—In(Bu*+1), wuelo,4].

For u € [1,4], we have
6(3u* —1
(3u? +1)2

Therefore, f is convex on [s,4]. By the RHCF-Theorem, we only need to show that

f@)+3f(y) = 4f(1)

f"(u) =
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Vasile Cirtoaje

for 0 <z <1<y so that x + 3y = 4; that is, to show that g(z) > 0 for x € [0, 1], where

4 —x

g(x) = f(2) +3f(y) —4f (1), y=—

Since y/(xz) = —1/3, we have

—6x 6y
/ — ! 3 ! gl —

6z —y)Bxy—1) 8(1—=x)(a* -4z +1)

(3x24+1)(3y2 + 1) (322 4+ 1)(3y2 + 1)

Since g is increasing on [0,2 — /3] and decreasing on [2 —+/3, 1], it suffices to show that g(0) > 0
and g(1) > 0. The inequality ¢g(0) > 0 is true if the original inequality holds for a = 0 and
b= c=d=4/3. This reduces to 193 < 27 - 256, which is true because 27 - 256 — 19> = 53 > 0.

The inequality g(1) > 0 is also true because g(1) = 0.
The equality holds for a =b=c=d = 1.

P 1.32. Ifa,b,c,d,e > —1 so thata+b+c+d+e =05, then

(@®+ 1)+ 1)( + 1)(*+ 1)(e*+1) > (a+ 1)(b+ 1) (c+ 1)(d+ 1)(e + 1).

(Vasile C., 2007)

Solution. Consider the nontrivial case a,b,c,d,e > —1, and write the inequality as

at+b+c+d+e

fla) + f0) + f(e) + f(d) + fle) Znf(s), s=

=1

5

where
fw)=In(w*+1) —In(u+1), u>-1
For u € (—1, 1], we have
2(1 — u? 1
U=u) > 0.
(w?+ 1) (ut1)?

f"(u) =

Y

Therefore, f is convex on (—1,s|. By the LHCF-Theorem and Note 2, it suffices to show that

H(z,y) >0 for x,y > —1 so that = + 4y = 5, where
f'(@) = ['(y) 2(1 — zy) 1

H(z,y) = =

T —y P+ )+ @ty

thus, we need to show that

Since
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it suffices to prove that

@+Dl+D)

2(1 —
(1 —zy) + 1 =0,

which is equivalent to
r+y+9—"Try >0,

2822 — 38z + 14 > 0,
(287 — 19)* + 31 > 0.
The equality holds fora =b=c=d=e=1.

P 1.33. Let ay,as, ..., a, be positive numbers so that a; +as +---+ a, =n. If

k§2\/n—1+2 2v/n —1
n

n

; k<3,

then

> (k+1)n.

k(Var ++vaz + -+ Vap) + —=+—=+-+
(Vasile C., 2006)

Solution. Write the inequality as

flar) + flaz) + -+ flan) Z nf(s), s= " =1,
where .
flu) = NG +Vu, u€(0,n).
From
P

it follows that f is convex on (0, 1]. Thus, according to the LHCF-Theorem and Note 1, it suffices
to show that h(z,y) > 0 for z > 1 >y > 0 such that x + (n — 1)y = n, where

Mgy~ S8 Z0W) ) = F(),

T —y u—1
We have
k1
g(u)_ﬂ+1 u+u
and
(VE+ VIVE + (G + Dhle.g) = =k + LD

So, we need to show that
Va4 /y+1 .

NG
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Since
VI Y > 2Ty,
it suffices to show that 5 .
4
VL S
VY
which is equivalent to
1 2
—+ >k
\/TY YV xy
From
n=xz+(n—1)y>2y(n—1)zy,
we get
1 < 2v/n —1
JTYy n
hence
1 n 2 > 2\/n—1+2 2v/n —1 >k
/XY Yy n n
The proof is completed. The equality holds for a; = ay =--- =a, = 1.

Remark. Since

1<2\/n—1+2 2vn —1

n n

for n < 134, the following inequality holds for aq, as,...,a;34 > 0 such that a; +as+-- -+ a4 =
134:

1 1
— =+t

! > 268.
\/a_1 \/CL_2 134

Vai +/as + -+ \Jaza +

Since

2v/n — 1 2v/n — 1
P AL VY ek AL

n n

for n < 12, the following inequality holds for ay, as,...,a;2 > 0 such that a; +as+---+a;x = 12:

1 1 1
2./ / e / JE— R ... > 36.
( aq + as + + Cllg) + _al + —Clz + + _a12 =

P 1.34. If ay,aq,...,a, (n > 3) are positive numbers so that a; + as + -+ + a, =1, then

() () ()= ()

(Vasile C., 2006)
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Solution. Write the inequality as

Flar) + fla) + 4 fla) 2 nf(s), 5= DRI
where
f(u) = In (% _ \/a) —(l—u) - ~lnu,  ue(0,1).
From
Pl = e ) = g

it follows that f”(u) > 0 for u € (0, V2 — 1]. Since

1 1
< Z
n-_ 3

<V2-1,

S =

f is convex on (0, s]. Thus, we can apply the LHCF-Theorem.
First Solution. By the LHCF-Theorem, it suffices to show that

@)+ = 070) 27 ()

for all ,y > 0 so that x + (n — 1)y = 1; that is, to show that

1 1 o 1\"
() (5-v) =(v-7)
Write this inequality as
A1 — )" > (n — 1)Ly )2,
By squaring, this inequality becomes as follows:
R e

2n—2
(2 o 2y)2n—2 Z (277, B 2) ‘ryn—:ﬁ’
nn
1 2n—2 1
n-ﬁ+x+(n—3)y > [n+1+ (n—3)"HH0n=3. ﬁ-x-y”_?’.
The last inequality follows from the AM-GM inequality. The proof is completed. The equality
holds for a; = ay =--- =a, = 1/n.

Second Solution. By the LHCF-Theorem and Note 2, it suffices to prove that H(z,y) > 0 for
x,y > 0 so that = + (n — 1)y = 1, where

/') = 1'y)

H(z,y) = pr—
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We have

_ l-r—y—ay :n(y+1)—y—3
20y(1—2)(1 —y)  22(l —2)(1—-y)
3yt —y—-3 _ y

T 2e(l-2)(1—y)  x(l-2)(1-y)

Remark 1. We may write the inequality in P 1.34 in the form

(1) Mo+ vao = (vi- =)

i=1 i=1

H(z,y)

> 0.

On the other hand, by the AM-GM inequality and the Cauchy-Schwarz inequality, we have

n

H(1+@)s<1+%i¢a—i) <

=1

Thus, the following statement follows:

o I[fay,as,...,a, (n>3) are positive real numbers so that ay + as + -+ + a, = 1, then
1 1 1
— 1) —=-1])--- —1)>((H/n-1)",
(=)&) ()2 vy
with equality for a; = ay = -+ =a, = 1/n.

Remark 2. By squaring, the inequality in P 1.34 becomes

n 42 _ 1)\2n
H (1—a;) > (n—1) '
-1 W nt

1
On the other hand, since the function f(z) = In ] Rk

is convex on (0, 1), by Jensen’s inequality

we have
ayt+ag+ -+ ap\ "

ﬁ L+ap\ 1+ - _(n+1\"
HI\1-¢,) = || atat +a 1)

1

n

Multiplying these inequalities yields the following result (Kee-Wai Lau, 2000):

e Ifay,as,...,a, (n>3) are positive real numbers so that ay + as + -+ -+ a, = 1, then
o) o) ()2 (-3)
——a || ——a) | ——a|=2|n——],
ai ¢5) Qnp, n
with equality for a; = ay =---=a, =1/n.
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P 1.35. Let ay,as, ..., a, be positive real numbers so that a; +as + -+ + a, =n. If

2T

n

1 1 1
(k‘al + —) (kag + —) e (kan + —) > (E+1)".
aq (05} Qp

Solution. Write the inequality as

O<k§(1+

then

fla) + flaz) -+ flan) 2 nf(s), 5= - =1,
where
f(u) =In <ku + 5) . ue(0,n).
We have
0= iy 0 S

For u € (0, 1], we get f”(u) > 0 since
1+ 4ku® — K*u* > ku*(4 — ku®) > ku®(4 — k) > 0.

Therefore, f is convex on (0,s]. By the LHCF-Theorem and Note 2, it suffices to prove that
H(z,y) > 0 for z,y > 0 so that = + (n — 1)y = n, where

H(r.y) = =W (2:5@)'
Since
1+ k(x+y)? — k22%y?  kl(z +y)? — ka®y?]

H pr—
(z,y) b+ Dk 1) zylha? + Dk + 1)

it suffices to show that
T4y > VEk xy.

Indeed, by the Cauchy-Schwarz inequality, we have

(@+y)ln—1Dy+a2] > (Vn—1+ 1)y,

hence

Ty > \/Exy.

1 2/n—1
vy = —(Vi— 1+ Dy = (HHT)

The equality holds for a1 = ay =---=a, = 1.
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P 1.36. Ifa,b,c,d are nonzero real numbers so that
-1
a,b,c,d > TR a+b+c+d=4,

then

3 1+1+1+1 P S
b2 d? a c ’

Solution. Write the inequality as

a+b+c+d

fla) + fO) + f(e) + f(d) 2 4f(s),  s=—Fp—— =1

where

f =24 wer= |33 v

u?

is convex on Is, (because 3/u? and 1/u are convex). By the RHCF-Theorem, Note 1 and Note
3, it suffices to prove that h(z,y) > 0 for z,y € I so that

x4+ 3y =4,
where
g9(r) — g(y) fu) = f(1)
h —
(aj? y) T — y Y (u) U — 1
Indeed, we have
W=
g u) = U u27
4 2(14+2 —
W y) = vy +3r+3y 21+ x)(6 x>20.

x2y2 o 3x2y2
In accordance with Note 4, the equality holds for a = b =c¢=d =1, and also for

(or any cyclic permutation).

P 1.37. If ay,as, ..., a, are nonnegative real numbers so that a2 + a3 + -+ + a? = n, then

al+ay+-+ad—n+

n—1 (a1+a2+---+an—n)20.

(Vasile C., 2007)
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Solution. Replacing each a; by /a;, we have to prove that

flar) + flag) + -+ flan) > nf(s),

where
ap +as+ -+ ay
s = =1
n
and
flu) = uvu+kvu, k= nl, u € [0,n]
n_
For u > 1, we have
3u—k _ 3—k
"
= > .
J ) 4u\/ﬂ_4u\/ﬂ>0

Therefore, f is convex on [s,n]. According to the RHCF-Theorem and Note 1, it suffices to show
that h(z,y) > 0 for z,y > 0 so that z + (n — 1)y = n. Since

_f - f) L utk
o= T

and

" y):g(x)—g(y) _ VErh Ty -k
’ T~y Vo +vu) (Ve + D(yy+1)

we need to show that

VI + Y+ /Yy > k.
Since
Vet VI 2 Vet = Ve ty,
it suffices to show that
T4y >k

Indeed, we have

x n
py >y = =
n—1 n—1
In accordance with Note 4, the equality holds for a1 = ay = --- = a, = 1, and also for
ar=0, a=---=a,= a
n—1

(or any cyclic permutation).

P 1.38. Ifa,b,c,d, e are nonnegative real numbers so that a®> + b* + c2 + d*> + €? = 5, then

1 N 1 n 1 N 1 N 1
7—2a 7—-2b 7—2¢c 7—-2d 7—2e—

(Vasile C., 2010)
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Solution. Replacing a,b,c,d, e by v/a, Vb, \/c,Vd, \/e, we have to prove that
fla) + f(b) + f(c) + f(d) + f(e) = 5f(s),

where
a+b+c+d+e
s = =1
5

and 1

f<u>:m7 u € [075]
For u € [0, 1], we have

7—6
1" (u) Vi ;> 0.

- 2ur/u(7 — 24/u)
Therefore, f is convex on [0, s]. According to the LHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for z,y > 0 so that z + 4y = 5. Since

) = F) 2
g u—1 5(7 — 2/a)(1 + )

and

ha.y) = &) —90) 2(5 - 2V - 2\/y)

r—y (Ve )+ Vo)1 + )T = 2y2) (7T - 2/y)]
we need to show that

5
\/5+\/§§§.

Indeed, by the Cauchy-Schwarz inequality, we have

(Vz 4+ y)* < (1+—> (I+4y):%.

—
=
@
T
=
]
o
=
=
(@]
]
=
=
@]
&
@
e
=
=
@
@
ie]
o
=
=
<
=
=5
o
n
S
=
IS
I
=y
I
o
I

= e =1, and also for

(or any cyclic permutation).

Remark In the same manner, we can prove the following generalization:

n
o Letay,ay,...,a, be nonnegative real numbers so that a3+a3+---+a2 = n. Ifk > 1+ ——,
1, 42 g 1 2 f fatl \/m
then
1 n 1 P 1 LN
k—a k—as k—a, k-1
n
with equality for a1 = as =---=a, = 1. If k =14+ ———, then the equality holds also for
1
0,1: n—17 CI’ZI"':an:
n—1

(or any cyclic permutation).
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P 1.39. Let 0 < ay,as,...,a, <k so that a® + a3+ ---+a2 =n. If

1<k<1+

n—1

then
1 . 1 n n 1 S n
k—a k—as k—a, k-1

(Vasile C., 2010)

Solution. Replacing ay,as, ..., a, by \/ai,\/as,...,/a,, we have to prove that

fla) + flag) + -+ flan) = nf(s),

where
a1+a2+-~-+an
S = e 1
n
and )
flu) = = € [0,k?).

From

f”(U) . 3\/__k

- duu(k — )3’
it follows that f is convex on [s, k?). According to the RHCF-Theorem and Note 1, it suffices to
show that h(z,y) > 0 for all x,y € [0, %?) so that z + (n — 1)y = n. Since

= L@ =10) 1
g u—1 (k= D)k —va) (I + va)

and

W, y) = 2 =9W) Vit i+l —k
) T—y (k—l)(\/f‘i‘\/@)(l—k\/f)(l_i_ﬁ)(k_ﬁ)(k_\/g),

we need to show that

Vr+y>k—1.
Indeed,
x n
\/E—F\/@Z\/x—l—yz\/m—l—y:\/n_l Zk’—l
The proof is completed. The equality holds for a; = ay = -+ = a,, = 1, and also for
n
@ =0, a=-=ay=[——

(or any cyclic permutation).
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P 1.40. If a,b, c are nonnegative real numbers, no two of which are zero, then

48 48b 48
\/1+ a+\/1+ +\/1+ € > 15,
b+c c+a a+b

(Vasile C., 2005)

Solution. Due to homogeneity, we may assume that a + b+ ¢ = 1. Thus, we need to show that

fla)+ f(b) + fe) = 3f(s),
where
_a+ b+c B 1
T3 T3
and
flu) =4/ 11+_4Zu, u e 0,1).
From
() = 48(47u — 11)

VA —w)P(1+ 47u)?
it follows that f is convex on [s,1). By the RHCF-Theorem, it suffices to show that

)+ 260 2 3f (3)

for x,y > 0 so that z + 2y = 1; that is,
[1+4 149 — 4
+ 7x+2 9 71’215.
1—2z 1+
49 — 47
p= 22 i<
14+

1175 — 23¢2
t2—1

Setting

the inequality turns into
> 15— 2t.
By squaring, this inequality becomes
350 — 15t — 61¢* + 15¢> — t* > 0,

(5-1)*2+t)(7T—1t)>0.

The original inequality is an equality for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

[]
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P 1.41. If a,b, c are nonnegative real numbers, then

3a? n 3b2 n 3c? <1
7a? + 5(b+ ¢)? 702 + 5(c + a)? 72 +5(a+0b)2 T

(Vasile C., 2008)

Solution. Due to homogeneity, we may assume that a + b+ ¢ = 3. Thus, we need to show that

fla)+ f(b) + fe) = 3f(s),

where
a+b+c
s=——=1
3

and

3u? —u

flu) = _\/W TEB-u? Vi@ -_Tut 1 0.3

From

5(—8u? + 41u — 30) _ 5(—8u® +38u —30) _ 10(u — 1)(15 — 4u)

1
— > =
) (4u? — 10w+ 15)52 = (4u? — 10u + 15)%/2  (4u? — 10u + 15)5/2’

it follows that f is convex on [s,3]. By the RHCF-Theorem, it suffices to prove the original
homogeneous inequality for b = ¢ =0 and b = ¢ = 1. For the nontrivial case b = ¢ = 1, we need

to show that
[ 3a? 3
-+ 2 <1
Ta? 4 20 + \/5a2 + 10a + 12 —

By squaring two times, the inequality becomes

a(5a® + 10a* + 16a + 50) > 3a/(7a2 + 20)(5a2 + 10a + 12),

a?(5a® + 20a° — 11a* + 38a® — 80a* — 40a + 68) > 0,
a*(a — 1)*(5a* + 30a® + 44a® + 96a + 68) > 0.

The last inequality is clearly true.
The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic permutation).
O

P 1.42. If a, b, c are nonnegative real numbers, then

a? b2 c?
> 1.
a2+2(b+c)2Jr b2+2(c+a)2Jr ?+2(a+b)?2 —

(Vasile C., 2008)
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Solution. Due to homogeneity, we may assume that a + b+ ¢ = 3. Thus, we need to show that

fla)+ f(b) + fe) = 3f(s),
where
_at+bt+c ]
s = —5 =
and
3u? U
f<“>:\/uz+z<3_u>2 ~Ve—nge “cl0d
From

2(2u* — 1lu+12)  2(-1lu+12)

" .
) = (u? —4du+6)°2 — (u? — 4u+ 6)5/2’

it follows that f is convex on [0,s]. By the LHCF-Theorem, it suffices to prove the original
homogeneous inequality for b = ¢ = 0 and b = ¢ = 1. For the nontrivial case b = ¢ = 1, the

inequality has the form
a 2

+ >1
Vaz+8 24?2+ 4a+ 3

By squaring, the inequality becomes

av/ (a2 + 8)(2a2 + 4a + 3) > 3a* + 8a — 2.
For the nontrivial case 3a* 4+ 8a — 2 > 0, by squaring both sides we get
a® + 2a® 4+ 5a* — 8a® — 14a® + 16a — 2 > 0,

(a — 1)?[a* + 4a® + 9a* + 4a + (3a® + 8a — 2)] > 0.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).

P 1.43. Let a,b, c be nonnegative real numbers, no two of which are zero. If

In3
k> ko, k0:£—2—1z0.585,

2a \"* 26 \* 2¢ \*
+ + >3
b+c c+a a+b

Solution. For k = 1, the inequality is just the well known Nesbitt’s inequality

then

(Vasile C., 2005)

2a 2b 2¢
+ + >
b+c¢c c+a a-+b

3.
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For k£ > 1, the inequality follows from Nesbitt’s inequality and Jensens’s inequality applied to

the convex function f(u) = u*:

k k k 2a 2 2 \ ¥
2a N 2b n 2¢ >3 e T ora T avs >3
b+c c+a at+b/) — 3 -

Counsider now that

k‘oék’<1.

Due to homogeneity, we may assume that a + b+ ¢ = 1. Thus, we need to show that

fla)+ f(b) + fe) = 3f(s),
where
_a+b+c_l
T3 T3
and
B 2u \" 0.1
s =(25) . web
From

F(u) = i ikuyl ( 2u )M (2u+k — 1),

1—u

it follows that f is convex on [s,1) (because u > s = 1/3 involves 2u +k —1>2/3+k—1 =
k —1/3 > 0). By the RHCF-Theorem, it suffices to prove the original homogeneous inequality
for b=c =1 and a € [0, 1]; that is, to show that h(a) > 3, where

h(a):ak—i—Q(ail)k, a€0,1].

k+1
W (a) = ka* ' — k ( 2 )

a+1

For a € (0, 1], the derivative

has the same sign as

g(a):(k—l)lna—(k—i—l)lnail.

From
B 2ka+k —1

/
gla) = ala+1)
it follows that ¢'(ag) = 0 for ag = (1 — k)/(2k) < 1, ¢’(a) < 0 for a € (0,a0) and ¢'(a) > 0
for a € (ao, 1]. Consequently, g is strictly decreasing on (0, ag] and strictly increasing on (aq, 1].
Since ¢(04) = oo and ¢(1) = 0, there exists a; € (0, ap) so that g(a;) =0, g(a) > 0 for a € (0,a,)
and g(a) < 0 for a € (ay, 1); therefore, h(a) is strictly increasing on [0, a;] and strictly decreasing
on [a1, 1]. As a result,

Y

h(a) > min{h(0),h(1)}.

Since h(0) = 21 > 3 and h(1) = 3, we get h(a) > 3. The proof is completed. The equality
holds for a = b = ¢. If k = ko, then the equality holds also for a = 0 and b = ¢ (or any cyclic
permutation).
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Remark. For k = 2/3, we can give the following solution (based on the AM-GM inequality):

2 (%>2/3 B> f’/2a-(b—ﬁi) 1o

ZZ2a+(b+c)+(b+c)

P 1.44. Ifa,b,c € [1,7+ 4/3], then

2a 2c
>3
V' b c+a a+b

(Vasile C., 2007)

Solution. Denoting
a+b+c

5=, 1<s<T7+4V3,
we need to show that
fla) + f(b) + f(e) = 3f(s),
where
2u
pr— 1< .
f(u) Cy— <u<3s
For u > s, we have
38 —u 3/2 4y — 3s
" =35 —— — > 0.
Jw) S( 2u ) (3s —u)?

Therefore, f(u) is convex for u > s. By the RHCF-Theorem, it suffices to prove the original

inequality for b = ¢; that is,
a 2b
T+ — 2
b a+

b
Putting ¢ = \/j, the condition a,b € [1,7 + 4v/3] involves
a

2-V3<t<24V3.

We need to show that

2t2 > 3 1
241 t

2 2
(5 1)
241~ t
which is equivalent to the obvious inequality
(t—1>%t—2+V3)t—2-V3)<0.

The equality holds for @ = b = ¢, and also for a = 1, and b = ¢ = 7 + 4/3 (or any cyclic
permutation).

This is true if

O
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P 1.45. Let a,b, c be nonnegative real numbers so that a +b+ c = 3. If

In2

O<k<kn ko=paT5

~ 1.71,

then
a®(b+c) +b*(c+a) + Fla+b) <6.

Solution. For 0 < k < 1, the inequality follows from Jensens’s inequality applied to the convex

function f(u) = —u*:

(b+c)a" + (c+a)b" + (a +b)" < 2(a+b+c) {(b‘i‘c)a—i-(c—l-a)b—l—(a—l—b)c}

2(a+b+c)
_gfabtbetea F oy a+b+ec 2’“:6.
3 3
Consider now that
1 <k <k,
and write the inequality as
fla) + f(b) + fe) > 3f(s),
where
. a+b+c _q

=5 =

and

flu) =u*(u—3), uelo,3]

For u > 1, we have
" (u) = kuF2[(k + Du — 3k + 3] > kv ?[(k + 1) — 3k 4 3] = 2k(2 — k)u*~2 > 0;

therefore, f is convex on [1, s]. By the RHCF-Theorem, it suffices to consider the case a < b = c.
So, we only need to prove the homogeneous inequality

a+b+c k+1
3

a"(b+c) + b (c+a) + F(a+b) §6(

for b=c=1and a € [0, 1]; that is, to show that g(a) > 0 for a > 0, where

9\ k1
g(oz):3(a+ ) —aF—a—1.

3
We have

k k—1
N a+2\" o L, _k+1l/fa+2 k-1
Jw =0+ (2) —ri 1 e =S (4

Since ¢” is strictly increasing, ¢”(04) = —oo and ¢”(1) = 2k(2—k)/3 > 0, there exists a; € (0, 1)
so that ¢”(a;) = 0, ¢"(a) < 0 for a € (0,a;), ¢"(a) > 0 for a € (a1, 1]. Therefore, ¢’ is strictly
decreasing on [0, a;] and strictly increasing on [aq, 1]. Since

_k+1 k—1

l=——>0,

g(0) = (k+1)2/3)" =1 > (k+ D(2/3)" — 1= — 2
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g'(1) =0,
there exists ay € (0,a1) so that ¢'(az) = 0, ¢’'(a) > 0 for a € [0,a2), ¢'(a) < 0 for a € (az, 1].
Thus, g is strictly increasing on [0, as] and strictly decreasing on [ag, 1]; consequently,

g(a) = min{g(0), g(1)}.
From
g(0) =3(2/3)"*t —=1>3(2/3)"*" —1=1-1=0, ¢(1)=0,

we get g(a) > 0. This completes the proof. The equality holds for a = b =c¢ = 1. If k = ko, then
the equality holds also for a = 0 and b = ¢ = 3/2 (or any cyclic permutation).

Remark 1. Using the Cauchy-Schwarz inequality and the inequality in P 1.45, we get

Z a (a+b+c)? 9 23
bedck = Sabh+ k) Y ab(b+c) T2

Thus, the following statement holds.

e Let a,b,c be nonnegative real numbers so that a +b+ c= 3. If

In2

0<k<k ko= —~1.71
<= fo, O In3—1In2 ’
then
a . b L c S 3
b +ck  ck+ak  ak+0F T 2

with equality for a =b=c=1. If k = kg, then the equality holds also fora =0 and b= c=3/2
(or any cyclic permutation).

Remark 2. Also, the following statement holds:

e Let a,b,c be nonnegative real numbers so that a +b+c= 3. If

In9—1n8

B2k, b=155

~ 0.2905,

then
a® bk ck

b+c+c+a+a+b

>

)

DN W

with equality fora =b=c=1. If k = ky, then the equality holds also fora =0 and b=c=3/2
(or any cyclic permutation).

For k; < k < 2, the inequality can be proved using the Cauchy-Schwarz inequality and the
inequality in P 1.45, as follows:

Z a® - (a+b+c)? 9 .3
b+c ™ Y a2k b+ec) Y azFb+e) T 2
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For k > 2, the inequality can be deduced from the Cauchy-Schwarz inequality and Bernoulli’s

inequality, as follows:
S ) (S
b+c =™ >(b+c) 6

ZWBZ[H a—l} 3.

P 1.46. If a,b,c are nonnegative real numbers so that a + b+ c =3, then

\/5+\/5+ﬁ—3213(\/a;rb+\/bgc+\/cga—3).

(Vasile C., 2008)

Solution. Write the inequality as

fla) + F0)+ Q) 2 3(s), s =01,
where
f)=va-13° 2" weln

For u € [1,3), we have

13 /3 —u\ %? 13
4// :_73/2 > 1 )
() = —u +—4< 5 ) > -1+ >0

Therefore, f is convex on [s,3]. By the RHCF-Theorem, it suffices to consider only the case
a < b= c. Write the original inequality in the homogeneous form

b b b b
ﬁwmﬁ_g‘/%leg(\/a; *V ;cﬂ/c;a_g %)

Due to homogeneity, we may assume that b = ¢ = 1. Moreover, it is convenient to use the
notation y/a = x. Thus, we need to show that g(z) > 0 for € [0, 1], where

242 *+1
g()—x—11—|—36\/x+ 26 “T+
() =1+ 1224/ 13x 2
g = x?+ 2 x4+ 1
3/2

13 241 3/2
1
— . _1
g'() 2 ( <m x2 42 ’

We have

w

241
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where ,
V 52
m = 6v5 ~ 1.72.
13
Clearly, ¢”(x) has the same sign as h(z), where
2+ 1
h(z) = —
(z) P
Since h is strictly increasing,
2
h(O):%—1<O, h(l)z?m—1>07

there is x; € (0,1) so that h(zy) = 0, h(x) < 0 for z € [0,21) and h(x) > 0 for z € (x4, 1].
Therefore, ¢’ is strictly decreasing on [0, 4] and strictly increasing on [xq,1]. Since ¢'(0) = 1
and ¢'(1) = 0, there is zo € (0,21) so that ¢'(z2) =0, ¢'(x) > 0 for z € (0,29) and ¢'(z) < 0 for
x € (x9,1). Thus, g(x) is strictly increasing on [0, 23] and strictly decreasing on [zo, 1]. From

g(0) = =11+ 12v/6 — 13v/2 > 0

and g(1) = 0, it follows that g(x) > 0 for € [0,1]. This completes the proof. The equality
holds fora=b=c=1.
Remark. Similarly, we can prove the following generalizations:

e Let a,b,c be nonnegative real numbers so that a + b+ c = 3. If k > ko, where

V6 —2
V6 —v2 -1

\/5+x/5+ﬁ—32k<\/a;b+\/b;CJr\/C;a—i%),

with equality fora =b=c=1. If k = kg, then the equality holds also fora =0 and b=c=3/2
(or any cyclic permutation).

ko = = (24+V2)2+V3) =~ 12.74,

then

e Letay,as,...,a, be nonnegative real numbers so that a1 + as + ---+a, = n. If k > ko,

where
k Vn—vn=l
NN R

then
—a n—a n— ay
Va +as+ -+ a, —n>k 1—|— 2—|—--~—|— —-n|,
n—1 n—1 n—1
with equality for ay = as = -+ =a, = 1. If k = ko, then the equality holds also for a; = 0 and
Ay =0Q3 =+ = QAp = Ll (or any cyclic permutation).
n_

]
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P 1.47. Let a,b, c be nonnegative real numbers so that a +b+ c=3. If k > 2, then
D\ F b k k
ak+bk+ck+322(%) +2( ;C> +2(C;a> .

Solution. Write the inequality as

fla) + f(b) + f(c) =2 3f(s), s

where

For u > 1, we have

) e 13\
p— _— > ]_ - .
k-1 2\ 2 =1=5>0

Therefore, f is convex on [s,3]. By the RHCF-Theorem, it suffices to consider only the case
a < b= c. Write the original inequality in the homogeneous form

b k b k b k k
ak+b’“+c’“+3<%) 22<a; > +2( -;;) +2<C§a) .

Due to homogeneity, we may assume that b = ¢ = 1. Thus, we need to prove that

k k
k a—+ 2 a-+1
3 >4

for a € [0, 1]. Substituting

we need to show that g(t) > 0, where

1k Lo\ " 1\ "
g(t):t+3( 3* > —4( 2* ) .

We have . -
1/k - 1/k -
g/(t) =14+ $1/k=1 t/—+2 — opl/k-1 t/—+1 7
3 2
2-1/k 1/k k=2 1/k k=2
kt /g,,(t): ttk 41 2 (42 |
k—1 2 3 3
Setting

2\ &2
m:(—) , O<m<1,

we see that ¢”(t) has the same sign as h(t), where

tl/k 1 tl/k 2
h(t)_6< LS e

5 3 ):(3—2m)t1/k+3—4m
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is strictly increasing. There are two cases to consider: 0 < m < 3/4 and 3/4 < m < 1.
Case 1: 0 < m < 3/4. Since h(0) = 3 —4m > 0, we have h(t) > 0 for ¢t € (0, 1], hence ¢ is
strictly increasing on (0,1]. From ¢'(1) = 0, it follows that ¢'(t) < 0 for ¢ € (0,1), hence g is
strictly decreasing on [0, 1]. Since g(1) = 0, we get g(t) > 0 for ¢t € [0,1).
Case 2: 3/4 <m < 1. From m > 3/4, we get

22k—3 > 3]&‘—1‘

Since h(0) =3 —4m < 0 and A(1) = 3(1 —m) > 0, there is t; € (0,1) so that h(t;) =0, h(t) <0
for t € [0,%1) and h(t) > 0 for t € (t1,1]. Thus, ¢'(¢) is strictly decreasing on (0,¢1] and strictly
increasing on [¢1, 1]. Since ¢'(04) = +o0 and ¢'(1) = 0, there exists to € (0,1;) so that ¢'(t3) = 0,
g'(t) > 0 for t € (0,t2) and ¢'(t) < 0 for t € (t2,1). Therefore, g(t) is strictly increasing on [0, to]
and strictly decreasing on [ta, 1]. Since

22k—2 _ 3k—1
9(0) = R

and g(1) = 0, we have g(t) > 0 for t € [0, 1].
The equality holds for a =b=c=1.

>0

Remark 1. The inequality in P 1.47 is Popoviciu’s inequality

Fla)+ FO) + () + 3 <+Tb+> 5 of (a;b) +2f<b—5c) +2f(c;a)

applied to the convex function f(z) = z* defined on [0, cc).

Remark 2. In the same manner, we can prove the following refinements ( Vasile C., 2008):
e Let a,b,c be nonnegative real numbers so that a +b+c=3. If k > 2 and m < myg, where
2]4:(3]971 _ 2k71)

Mo = T g1 g2kt 2,

(50) (5 () -]

with equality fora =b=c = 1. If m = my, then the equality holds also fora =0 andb=c=3/2
(or any cyclic permutation).

then

" +F+F—3>m

e Letay,as,...,a, be nonnegative real numbers so that ay +as + -+ +a, =n. If k > 2 and
m < my, where
11
my = (n—DF knk ! >n — 1,
1 + (n—2) 1
(n—1)F (n—1)2F—1 nE—1
then
n—a\" n—a\" n—a,\"
ab+ai+-+d—n>m L)+ 2) +-+ n) _pl,
n—1 n—1 n—1
with equality for ay = ay = --- = a, = 1. If m = myq, then the equality holds also for a; = 0 and
n
ag =a3 ="+ =a, = (or any cyclic permutation).

n—1
O



Half Convex Function Method 75

P 1.48. Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then

\/a_1+\/a_2+---+\/a_n+n(k—1)§k<\/”_“1+\/”—“2+._,+ n—an>’

n—1 n—1 n—1

where

k= (V- (v + V=),
(Vasile C., 2008)

Solution. For n = 2, the inequality is an identity. Consider further that n > 3. We will show
first that
n—1<k<2n-1).

The left inequality reduces to
(Vn—1)(n—-1-1) >0,
while the right inequality is equivalent to

(Vn=1D(/n-vn-1+2)>

Write the inequality as

fla) + faz) + ot flan) 2 nf(s), 5= —=1
where
fu) = —ﬁw\/ﬁ, u e [0,n).
For u < 1, we have
4f"(u) = w3/ — \/%(n —u)?>1— - 1(n —1)73/2
S 2 g >0

Therefore, f is convex on [0, s|. By the LHCF-Theorem, it suffices to consider the case
a; 2> Ay = -+ = Qp.

Write the original inequality in the homogeneous form

Z\/a—l+n(k—1)\/‘“”2+ R gy fet

n—1

Do to homogeneity, we need to prove this inequality for ay = --- = @, = 1 and /a; =z > 1;
that is, to show that g(x) < 0 for z > 1, where

gxy=az+n—1—k+(k-1Dyn@2+n—-1)—ky/(n—1)(22+n—2).

2 (n—1)z2
(@) =1+ (k- 1)) e — kg
g(x) + ) 24+n—1 x24n—2’

We have
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) = k(n —2)yv/n—1 [(m x2+n—2>3/2_1] |

(22 +n — 2)3/2 2+n—1

_ i/(k; —1)2n(n — 1)
K2(n—2)2

Clearly, ¢”(x) has the same sign as h(z), where

where

m(z? +n — 2) 1
= —1= l—-——) -1
hz) 2 +n—1 m( x2+n—1)
We have ( D
m(n — .
h(1) = — 1, Ih_{gloh(x) =m— L

We will show that h(1) < 0 and lim,_, h(x) > 0; that is, to show that

l<m< .
" n—1

The inequality m > 1 is equivalent to

1 -2

olyon-2

k n(n—1)
which is true since

1 n—2 n—2

1
l—=>1- =

> .
k n—=1 n-1"/n(n-1)

n . .
1 is equivalent to

The inequality m <

n —
- 1 _ n(n — 2)7
ko (n—1)2
which is also true because
1 1 2n—3 _ n(n—2)
l——<1- = < :
k 2(n—1) 2(n—1) = (n—1)2

Since h is strictly increasing on [1,00), A(1) < 0 and lim,_,o h(x) > 0, there is x; € (1,00) so
that h(zy) = 0, h(z) < 0 for z € [1,2;) and h(z) > 0 for x € (x1,00). Therefore, ¢’ is strictly
decreasing on [1, ] and strictly increasing on [z1,00). Since ¢’(1) = 0 and lim, . ¢'(z) = 0,
it follows that ¢'(z) < 0 for z € (1,00). Thus, g(z) is strictly decreasing on [1,00), hence

g(z) <g(1) =0.
The equality holds for a; = as =--- = a, = 1, and also for

a; =n, ay=a3=---=a, =20
(or any cyclic permutation).

Remark. Since £k > n — 1 for n > 3, the inequality in P 1.48 is sharper than Popoviciu’s
inequality applied to the convex function f(x) = —v/z, x> 0:

Vi + /@y + - fag - n(n —2) < (n - 1) (\/2‘_6‘11+\/2__?+---+m).

O
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P 1.49. If a,b,c are the lengths of the sides of a triangle so that a + b+ c =3, then

1 1 1 2 2 2
+ —324(2+\/§)( + + —3).

a+b—c+b+c—a c+a—2> a+b b+c c+a

(Vasile C., 2008)

Solution. Write the inequality as

Fl@)+ 50 + £ 2 3(s), s =TT =1,
where ) n
flw) = g5 = 5 k=2(2+V3) ~ 7.464, ue0,3/2).

For u > 1, we have

Since
1 2
> Y
3—2u " 3—u
it follows that f is convex on [8,3/2). By the RHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for z,y € [0,3/2) so that x + 2y = 3. We have

flu) = (1) 2 2k

u € [1,3/2),

g(u) = u—1  3—-2u 3—u
and
_9(@) —gly) _ 2 . i
) = T T BB B-2(-y
2 k

2y—2)z  2y(z+y)
 ka? —2(k — 2)zy + 4y?
- 2ay(z+y)(2y — )
(V3 + 1)x — 2y)?

Tyt )y —a) ~

According to Note 4, the equality holds for a = b = ¢ = 1, and also for

3(V3-1)

a=302-V3), b=c= 5

(or anu cyclic permutation).



78 Vasile Cirtoaje

P 1.50. Let aq,asq,...,a; be nonnegative numbers so that ay + as + as + ag + a5 < 5. If

29+ /761
N 10

k > k’o, ]{30 ~ 566,

then

1 5
> .
E:hﬁ+ay+%%ﬂu+a5_k+4
(Vasile C., 2006)

Solution. Since each term of the left hand side of the inequality decreases by increasing any
number a;, it suffices to consider the case

a1+a2+a3+a4+a5:5,
when the desired inequality can be written as

flar) + flaz) + f(az) + f(as) + flas) > 5f(s),

where
8_a1+a2+a3+a4+a5 _1
= 5 =

and
1

flu) = e —uts V€ [0,5].

For u > 1, we have

wo  2[3ku(ku —1) — 5k + 1]
F) = = —u v oy
203k(k — 1) — 5k + 1]
>
- (ku?—u+5)?
2(k(3k — 8) + 1]

- (ku? —u+5)3 >0,

therefore, f is convex on [s,5]. By the RHCF-Theorem, it suffices to show that

1 n 4 S D
kx? —x+4+5 ky —y+5 " k+4

for

Write this inequality as follows:

1 1 1 1
— +4 — >0,
kx?—x+5 k+4 ky? —y+5 k+4

(x—l)(l—k—k:x)+4(y—1)(1—k—ky)

> 0.
kx? —x+5 ky? —y+5 -

Since
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the inequality is equivalent to

1—k—kx 1—k—ky
1 - >
(v )(ka—x—l—E) ky2—y+5)_o’

5(3j — 1)2g($a Y, k)
4(kx? —x +5)(ky?> —y + 5)

207

where
g(z,y, k) = Kxy + k(k — 1)(z +y) — 6k + 1.

For fixed z and y, let h(k) = g(x,y, k). Since

h'(k) =2kay + 2k — 1)(x +y) —6 > 2k —1)(z +y) — 6
Y 10k — 29

> (2k=1) (2 +4) —6 = ——— >0,

it suffices to show that g(z,y, ko) > 0. We have

9(w,y, ko) = kgay + ko(ko — 1)(z +y) — 6k + 1
= —4k2y® + ko(2ko + 3)y + Bk2 — 11ko + 1.

Since
5ka — 29k +4 =0,

we get

11k — 1 11k — 1
g(x,y,ko)=(5—4y)(k§y+k§—oT>:x(k3y+k§_ 05 )

It suffices to show that 11k .
R )
0 5 =
Indeed,
11ko—1 ko(bko — 11) + 1
5 5

The equality holds for a1 = ay = a3 = a4 = a5 = 1. If k = kg, then the equality holds also for

ko > 0.

)
CL1:0, Ao = A3 =— Q4 =— A5 = —

4
(or any cyclic permutation).
Remark. In the same manner, we can prove the following statement:

e Letay,as,...,a, be nonnegative real numbers so that a1 +as + -+ a, < n. If

P4 n—14+vnt+2n3 —5n?+2n+1

k 2 kO; kO m )

then
n

1
Zka2+a +---+a Zk:Jrn—l’
1 2 n
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with equality for ay = ay = --- =a, = 1. If k = kg, then the equality holds also for

n

a; =0, g =+ =ln =~

(or any cyclic permutation).

P 1.51. Let ay,as,...,a5 be nonnegative numbers so that a; + as + az + ag + a5 < 5. If
11 — v/101
0 <k <k, kg = ———— ~ 0.095,
10
then

1 5
> .
Zka%+a2+a3+a4+a5 ~k+4

(Vasile C., 2006)

Solution. As shown at the preceding P 1.50, it suffices to consider the case
a1+a2+a3+a4+a5:5,
when the desired inequality can be written as

flar) + flaz) + flas) + fas) + fas) = 5f(s),

where
_a1+a2+a3+a4+a5_1
— - =1,
and ]
= € 10,5
f) = pe—ugs velodl

For u € [0, 1], we have

hence

wo  2[3ku(ku —1) — 5k + 1]
F) = == —u v oy
203k(k — 1) — 5k + 1]
>
- (ku®—u+5)3
~2[(1 — 8k) + 3k7)
 (ku2 —u +5)3

> (;

therefore, f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that

1 n 4 S 5)
kx?2—x+5 ky!—y+5" k+4
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for

Write this inequality as follows:

1 1
= +4 L Llsy
kx? —x+5 k+4 ky? —y+5 k+4

(x—l)(l—k—kx)+4(y—1)(1—k:—ky) -
kx?—x+5 ky? —y+5 -

Since
dy—1)=1—u,

the inequality is equivalent to

1—k—kx 1—k—ky
—1 - >
(v )(kx2—x—|—5 kyz—y+5)_o’

5(3j — 1)2g($a Y, k)
4(kx? —x +5)(ky?> —y + 5)

Z 07
where
g(x,y, k) = k*ry — k(1 — k)(x +y) — 6k + 1.
For fixed z and y, let h(k) = g(z,y, k). Since
h' (k) = 2kay — (1 — 2k)(z 4+ y) — 6 < 2kay — 6

4y)? 2
SRSV S

it suffices to show that g(z,y, ko) > 0. We have

9(x,y, ko) = kizy + ko(ko — 1)(z +y) — 6k + 1
= —4kgy® + ko(2ko + 3)y + 5kg — 11ko + 1.

Since
5ki — 11ko +1 =0,

we get
9(x,y, ko) = koy(—=4koy + 2ko + 3) > koy(—4ko + 2ko + 3) = ko(3 — 2ko)y > 0.
The equality holds for a; = as = a3 = agy = a5 = 1. If k = kg, then the equality holds also for
a, =9, ay=a3=a4=as =10

(or any cyclic permutation).
Remark. Similarly, we can prove the following statement:

e Letay,as,...,a, be nonnegative real numbers so that ay +as +---+a, < n. If

C2n+1- dn? +1

0 <k <k, ko 5 5
n
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then
1 n
> > »
ka®+as+---+a,  k+n—1
with equality for ay = ay = --- =a, = 1. If k = kg, then the equality holds also for
a, =n, as=---=a, =0
(or any cyclic permutation).
O
P 1.52. Let ay,as, ..., a, be nonnegative real numbers so that ay + as + -+ 4+ a, < n. If
1
0<k< )
n—+1

then
aq + Q9 + i Qp, S n
ka? +as+---+a, ay+kas+---+a, ai+ag+---+ka2 " k+n-—1

(Vasile C., 2006)

Solution. Using the notation

] a2 ap
Ty = —5 T2 = —, y Iy = —,
S S
where Yt .
al a2 ) an
s = <1,
n

we need to show that xy + z9 + - - - + x,, = n involves

T n n T > n
ksx? +xg+ -+ 4y, T+ a9+ -+ ksz2 T k+n-—1

Since s < 1, it suffices to prove the inequality for s = 1; that is, to show that

aq i Q9 i i Ay, > n
ka? —a;+n = kai—as+n ka2 —a,+n ~ k+n—1

for
ap+ag+---+a, =n.

Write the desired inequality as

flar) + flaz) + -+ flan) = nf(s),

where
ay +as+ - +ay

and
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We have g2 )
, B n — ku 9 B 1(u
() = Fw) =

where
fi(u) = k*u® — 3knu + n.

For u € [0, 1], we have

fi(u) > =3knu+n > —3kn+n

3n n(n —2)
> — +n=———">=2>0.
n+1 n+1

Since f”(u) > 0, it follows that f is convex on [0, s]. By the LHCF-Theorem, we only need to
show that
x (n—1)y S n
kx? —xz+n  kyY —y+4+n k+n-—1

for all nonnegative z,y which satisfy = + (n — 1)y = n. Write this inequality as follows:

v L i L 159
— n_ —
k2 —z+n k+n-—1 ky2—y+n k+n-—1] 7

n—kx n — ky
—1 — >0
(@ )(kx2—x—|—n kyQ—y—irn)_ ’

(z — 1)*h(z,y)
(kx? — x4+ n)(ky? —y +n) 20,

where
h(z,y) = kK*xy — kn(z +y) +n — nk.

We need to show that h(z,y) > 0. Indeed,

h(z,y) = kyn(k+n—2) —k(n— 1)yl +n[l — k(n+1)]
= kyln(n —2) + kz] +n[l — k(n+1)] > 0.

The equality holds for a1 =as =---=a, =1. lf k= , then the equality holds also for

n—+1

a; =n, ay=a3=---=a, =20

(or any cyclic permutation).

7
P 1.53. If ai,a9,as3,a4,a5 < 5 so that a1 + as + ag + a4 + a5 = 5, then

aq n a9 i as i ay i as <1
a%—a1—|—5 a%—a2—|—5 CL%—CL3+5 CLZ—CL4—|—5 CL%—CL5—|—5_ '

(Vasile C., 2006)



84 Vasile Cirtoaje

Solution. Write the desired inequality as

flar) + flaz) + f(as) + f(aa) + f(as) = 5f(s),

where

¢ — a1+ az +az+ ag + as 1

= - =
and .
—u
J(w) W —u+ts T2
7

For u € 1,5 , we have

—u? +15u —5

F) = vy
(2u+9)(u— 1)(7 — 2u) + 43 — Tu
- 4(w? —u 1 5) > 0.

7
Thus, f is convex on [s, 5} . By the RHCF-Theorem, it suffices to show that

x 4y
+ <1
?—x+5 yr—-y+5

7
for all nonnegative z,y < 5 which satisfy x + 4y = 5. Write this inequality as follows:
1 1
S WY AR A
??—x+5 5 yv>—y+5 b

dD— 55—y

—1 — <0
(x )(xQ—erS y2—y+5)_ ’
(v = 1)*[5(z +y) — wyl
(2 —x+5)(y>* —y+5)
(@ — D[z +dy) (@ +y) —ay]
(2 —2+5)(y*—y+5) —

1P+

(2 —2+5)(y*—y+5) —

The equality holds for a; = ay = a3 = a4 = a5 = 1, and also for

5
CL1:—5, a2:a3:a4:a5:§

> 0,

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:
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o Letay, as,...,a, < V3 so that ay + as + - - + a, < n. If
. n*+2n—2—2y/(n—1)(2n2 — 1)
= p ,
then
ap i as L Anp, < n
ka?—a; +n ka3 —ay+n ka2 —a,+n ~ k—1+n’
with equality for ay = ay =--- =a, =1, and also for
n(k—n+2) n(k+n—2)
gy = ——>> g = =a,= — 72
! 2%k 2 2k(n — 1)
(or any cyclic permutation).
m

as + - +a, >n. If

n

P 1.54. Let ay,as, ..., a, be nonnegative real numbers so that a, +
1
0<k < 1
4(n—1)2
then
aj a3 a,
5 + 5 + e+
kai +as+---+a, a+kas+---+a, ap + az + -

Solution. Using the substitution

o Q2 __Qn
Tl = — T2= —5 ooy, Tpn = —),
S S S

where Yt .
6 — aq (05} Qp, Z 1’
n

we need to show that z; + o + -+ + x,, = n involves

l T

> .
4 ka2 T kE+n—1

(Vasile C., 2006)

n

4+ 4 > .
kax? + (xg+ -+ +x,)/s (r1+ 4 xp1)/s+ka2 " k+n—1

Since s > 1, it suffices to prove the inequality for s = 1; that is, to show that

2

a? a3 a?

n

...+
ka? —a;+n  kai—as+n ka? — a, +n

for
ap +ag + -+ a, =n.

Write the desired inequality as

flar) + flaz) + -+ flan) = nf(s),

>
“k+n-—-1
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where
a1+a2+-~-+an_1
n
and )
U
f(u):zﬂ—u—l—n’ u € [0,n]

We have 2 ) 21, ()

, u(2n —u ” 1(u

f(u)—(ku2—u+n)2’ f<u)—(u2—u+n)3’
where

For u € [0, 1] and n > 3, we have
fi(u) > =3knu® +n? > —3kn +n* > —3n +n? > 0.
Also, for u € [0,1] and n = 2, we have
4
fi(u) =4 — ku*(6 —u) >4 — gu2(6 —u)

41 —u)(5 —u) > 0.

4
24—gu(6—u):

Since f”(u) > 0 for u € [0, 1], it follows that f is convex on [0, s]. By the LHCF-Theorem, we

need to show that
x? (n —1)y? n

ka—x+n+ ky>? —y+n ~ k+n-—1
for all nonnegative x,y which satisfy z + (n — 1)y = n. Write this inequality as follows:

x? 1 y? 1
- 1 - >0
kx? —x+n k+n—1+(n ){kyQ—y—irn k—l—n—l}_ ’

(@-Dnz—z+n) Ay—Dlny—y+n)
kx? —x+5 ky? —y+5

(x—1) na:—x—irn_ny—y—l—n >0,
kx?—x+n ky —y+n

(‘I — 1>2h($7y)
(kx? — x4+ n)(ky? —y +n) 20,

> (),

where
h(z,y) =n* — kn(z +y) — k(n — 1)zy.
Since
0 <k <k, ko = ;1,
1+ In-1)2
we have

h(z,y) > n* — kon(z + y) — ko(n — 1)zy
= (n — 1)%koy® — nkoy + n*(1 — ko)
2

= ko (n—l)y—m > 0.
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The equality holds for a1 = ay =--- =a, = 1. If kK = kg, then the equality holds also for
n(2n — 3) n
YT on—1) P 2(n — 1)

(or any cyclic permutation).

P 1.55. Let ay,as, ..., a, be nonnegative real numbers so that a1 +as+---+a, < n. Ifk >n—1,
then

2 2 2
aj a; a;, n

+ + -+ < :
ka?+as+ -+ +a, ai+kad+---+a, ar+ay+---+ka: " k+n-—1

(Vasile C., 2006)

Solution. Using the notation

a1 a2 ap
Ty =—5 2= —, y Ip = —,
S S
where . n
ai as . e a
S = o S ]-)
n

we need to show that z; + z9 + - -+ + x,, = n involves

2 2
x] x; n

< .
k:x%+(:v2+-~-—|—xn)/s+ +(x1—|—---+xn_1)/s+kx% “k+n-—1

Since s < 1, it suffices to prove the inequality for s = 1; that is, to show that

2 2 2
a a Q n

...+
ka? —a;+n  kai—as+n ka2 —a,+n ~ k+n—1

for
ap+ag+---+a, =n.

Write the desired inequality as

flar) + flag) + -+ + f(an) > nf(s), s= " =1,
where
—u?
We have ( on) 2, (1)
o u(u—2n P 1(u
f(u)_(ku2—u+n)2’ f<u)_(u2—u+n)3’
where

fi(w) = —ku® + 3knu® — n?.
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For u € [1,n], we have

fi(w) > —knu® + 3knu® — n® = 2knu® — n?
22kn—n222(n—1)n—n2:n(n—2) > 0.

Since f”(u) > 0 for u € [1,n], it follows that f is convex on [s,n|. By the RHCF-Theorem, it

suffices to show that

x? (n —1)y? - n

_|_
kx? —x+4+n ky —y+n " k+n-—1

for all nonnegative x,y which satisfy z + (n — 1)y = n. As shown in the proof of the preceding
P 1.54, we only need to show that h(z,y) > 0, where

h(z,y) = kn(z +y) + k(n — D)ay — n®.
Since k > n — 1, we have

h(z,y) = n(n = 1)(x +y) + (n = 1)’zy —n
=—(n—-1>%"+n(n—1)y+n*n-2)
=[n— (n—1Dylln(n —2) + (n — 1)
=zn(n —2) + (n—1)%y] > 0.

The equality holds for a; =as =---=a, = 1. If Kk =n — 1, then the equality holds also for

n

a; =0, Gy =03 =:""=0p= "7

(or any cyclic permutation).

1
P 1.56. Let ay,az,...,a, €[0,n] so that a; +as+---+a, >n. If 0 <k < —, then
n

CL1—1 (12—1 an—l
5 + : +ot ;>0
kai+as+---+a, a1 +kay+---+a, a;+ag+---+ ka;y,

(Vasile C., 2006)

Solution. Let

a a e Qy,
§ = 1ot + , s> 1.
n

Case 1: s > 1 Without loss of generality, assume that
ar>--->a; >1>ajq > ay, je{1,2,...,n}.
Clearly, there are by, bo, ..., b, so that by +by+---+ b, =n and

alzblzl, ceey aijjZI, bj+1:aj+1, ey bn:an.
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Write the desired inequality as

flax) + flag) + -+ + f(an) =0,

where .
u_
- - - 0
J(w) ku? — u +ns’ u € [0n),
fi(u)

(ku? —u + ns)?’

f'(u) fi(u) = k(—u? +2u) +ns — 1.

For u € [1,n), we have

filu) > k(—nu+2u)+ns—1=—k(n—2)u+ns—1

>
>—k(n—2)n+ns—1>—-(n—-2)4+ns—1=n(s—1)+1>0.
Consequently, f is strictly increasing on [1,n] and

f(bl) < f(al)v ceey f(b]) < f(aj)7 f(bj-i-l) = f(aj-i-l)v ) f(bn) = f(an)
Since
f01) + f(b2) + -+ f(bn) < flar) + flag) + -+ + f(an),

it suffices to show that f(by) + f(ba) + - -+ f(bn) > 0 for by + by + - - - + b, = n. This inequality
is proved at Case 2.

Case 2: s = 1. Write the inequality as

flar) + flaz) + -+ flan) 2 nf(s), s= - =1,
where u 1
flu) = W —atn UE [0, n],
f(u) = (ku22—g<51— e g(u) = K*u® — 3k*u* — 3k(n — Du+kn+n — 1.

We will show that f”(u) > 0 for u € [0, 1]. From
J (u) = 3k%u(u — 2) — 3k(n — 1),
it follows that ¢'(u) < 0, g is decreasing, hence

g(u) > g(1) = —2k* = (2n -3k +n—1

-2 2n-3
> — - +n—1
n? n
—1p -1
Gl 0.
n

Thus, f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that

e B VR VI
kx? —x+n ky? —y+n —
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for all nonnegative real x,y so that 4+ (n — 1)y = n. Since (n — 1)(y — 1) = 1 — z, we have

v —1 +(71_1)(;/—1):(33_1)( 1 1 )

kx? —x+n ky?—y+mn ka2 —z4+n kyP—y+n
_ (-1 -y~ kz— ky)
(ka? —x 4+ n)(ky> —y+n)
n(z —1)%(1 — kx — ky)
(n—1)(k2?2 —z+n)(ky?> —y+n)
L (-1 =y
~ (n—1)(kx? —x+n)(ky> —y +n)
(n—2)y(z —1)*

1
The proof is completed. The equality holds for a; = a, = --- = a, = 1. If K = —, then the
n

equality holds also for
a, =n, ay=az="---=a, =0.

P 1.57. If a,b, c are positive real numbers so that abc = 1, then

Va2 —a+14+vV2—b+1+VeE—c+1>a+b+c.

Solution. Using the substitution

we need to show that

where
fluy=ver —er4+1—¢" uel=R.

We claim that f is convex on I-,. Since

4e3* — 6e?* + 9e* — 2

—u pl — _1
W= ey b

we need to show that 422 — 622 + 92 — 2 > 0 and
(42° — 62% + 9z — 2)* > 16(2* — x + 1)°,
where x = e" > 1. Indeed,

4a® — 622 +9r —2 =x(x —3)* + (32° = 2) > 0
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and
(42 — 622 + 91 — 2)? —16(2® —x + 1)* = 122°(x — 1) + 92° + 12(x — 1) > 0.

By the RHCF-Theorem, it suffices to prove the original inequality for

b=c:=t, a=1/t* t>0,

that is,
Vit —t2 41 1
t—2++2\/t2—t—|—12t—2+2t,
t?—1 N 2(1—1) -0
th—2+1+1 2—t+1+t
Since
t2—1 2 —1

> ,
th—2 41 t?+1
it suffices to show that

t?2—1 2(1 —1t)
T+ > 0,
2+l V-t 1+t

which is equivalent to

t+1 2
t—1 - >0,
=0 |- ) 2
(t—1)[(t+1)\/t2—t+1—t2+t—2}20,
(t —1)%(3t* — 2t + 3) >0
t+D)VE—t+1+12—t+2

The equality holds for a =b=c=1.

1
1+

P 1.58. Ifa,b,c,d > so that abed = 1, then

S

1+1+1+1
a+2 b+2 c+2 d+2

4
< -.
-3

(Vasile C., 2005)

Solution. Using the notation

we need to show that

f@) + fy) + f(2) + f(w) = 4f(s),

where

= I=R.
f(u) g UE€
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For u < 0, we have

" eu(2 B eu)
[ (u) (e + 2)8 ;
hence f is convex on 4. By the LHCF-Theorem, it suffices to prove the original inequality for

b=c=d:=t, a=1/t3 t>

146

that is,
t3 3 4
+ < -,
234+1  t+2 — 3

which is equivalent to the obvious inequality

(t—1)2(5t* +2t — 1) > 0.
According to Note 4, the equality holds for a = b= c¢=d =1, and also for

1

a=194+9V6, b=c=d=
1+

S

(or any cyclic permutation).

P 1.59. If a, b, c are positive real numbers so that abc = 1, then

a®+b*+c—3>2(ab+bct+ca—a—b—c).

Solution. Using the substitution

we need to show that

f@)+ fly) + f(z) 2 3f(s),
where
flu) =e* —1+4+2(e*—e™), ucR=R.

For u > 0, we have
f(u) = 4e* +2(e"* — e ™) > 0,

hence f is convex on [>,. By the RHCF-Theorem, it suffices to prove the original inequality for
b=c:=tand a = 1/t* where t > 0; that is, to show that

445 — 3t — 43 4262 +1 >0,

which is equivalent to
(t—1)%(4t* + 58> + 2t + 1) > 0.

The equality holds for a =b=c = 1.
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P 1.60. If a,b,c are positive real numbers so that abc = 1, then

>+ b +c*—3>18(a+b+c—ab—bc— ca).

Solution. Using the substitution

we need to show that

f@)+fy)+ f(z) 23f(s), s=—7——=0,
where
flu)=e*—1-18(e" —e™), u€eR.

For u < 0, we have
f(u) = 4e* +18(e — e*) > 0,

hence f is convex on I<,. By the LHCF-Theorem, it suffices to prove the original inequality for
b=c:=tand a = 1/t* where t > 0. Since

(2 —1)2(2t2 + 1)
t4

1
ﬁ+hﬁﬂf—3:ﬁ+aﬂ—3:

and . 5 ;
—(t* — 2t 2t — 1 —(t—1)°(t+1
a+b+c—ab—bc—ca= ( t2+ ): ( t)2(+ >7

we get

(t—1)2(2t — 1)*(t +1)(5t + 1)
t4

> +b0*+c*—3—18(a+b+c—ab—bc— ca) = > 0.
The equality holds for a = b = ¢ = 1, and also for a = 4 and b = ¢ = 1/2 (or any cyclic
permutation).

O

P 1.61. Ifay,as,...,a, are positive real numbers so that ayas - --a, =1, then
5 9 9 1 1 1
a1+a2+---+&n—n26\/§ a +ay+---+a, — — — — — e —— .
aq (05} Qp,
Solution. Using the notation a; = e® for : = 1,2, ..., n, we need to show that

S_.Z'1+.I'2+"'+£Il'n
n

flan) + fl2) + -+ flan) Z nf(s), =0,

where

flu)=e*—1-6V3(e*—e™), uel=R.
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For u < 0, we have

£ (u) = 4e® +6V3(e™ — ") > 0,

hence f is convex on I<4. By the LHCF-Theorem and Note 2, it suffices to show that H(z,y) > 0
for z,y € R so that z + (n — 1)y = 0, where

Hy - L@ =0
T —y
From
f'(u) = 2e*" — 6v/3 (" +e™),
we get

2(e® — e
H(xz,y) = A=) (ex+ey—3\/§+3\/§ e’z’y>.
r—y

Since (e* —e¥)/(x —y) > 0, we need to prove that
e® 4 e+ 3V3 e FY > 3v/3.

Indeed, by the AM-GM inequality, we have

" +e¥ +3V3 e Y > 3</EI cev-3vV3 ety = 33,

The proof is completed. The equality holds for a; =as =---=a, = 1.

P 1.62. Ifay,aq,...,a, (n > 4) are positive real numbers so that ajay - --a, = 1, then

(n—1)(a%+a§+-~+ai)+n(n+3)2(2n+2)(a1+a2+-~+an).

Solution. Using the substitutions a; = e* for i = 1,2,...,n, we need to show that

S_.CE1+Z’2+"'+.TTL
n

flxe) + f(xa) + -+ f(xn) 2 nf(s), =0,

where
fu)=(n—1)e*" - (2n+2)e", uel=R,
For u > 0, we have
f"(u) = 4(n — 1)e* — (2n + 2)e"

= 2¢e"[2(n — 1)e* —n —1]

>2e"2(n—1) —n—1] =2(n—3)e" > 0.
Therefore, f is convex on I-,. By the RHCF-Theorem and Note 2, it suffices to show that
H(z,y) >0 for z,y € R so that z + (n — 1)y = 0, where
f'(@) = /')

H(z,y) = pr—
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From
f'(u) = 2(n —1)e* — (2n + 2)e",
we get
H@wy:%%fflun—n@%+&y4n+ny

Since (e —e¥)/(x —y) > 0, we need to prove that (n — 1)(e®” +¢€¥) > n+ 1. Using the AM-GM
inequality, we have

(m—1)(e"+e')=(n—1)e"+e’+e’+ -+ e
>n/(n—1)e*-ev-ev---ev

= nd(n — 1)ex+(r=Dy = nYn — 1.

Thus, it suffices to show that

nvn—1>n+1,
1 n

n—12> (1—1——) .
n

1 n
n—123>(1+—) .
n

The proof is completed. The equality holds for a; =as =---=a, = 1.

which is equivalent to

This is true for n > 4, since

Remark. From the proof above, the following sharper inequality follows (Gabriel Dospinescu
and Calin Popa):

o Ifay, as,...,a, are positive real numbers so that aias - --a, =1, then

2nvn —1

2 2 2
al+a3+---+al-—n>
1 2 n — n_]_

(a1 +as+---+ap, —n).

P 1.63. Let ay,aq,...,a, (n > 3) be positive real numbers so that ajas---a, = 1. If p,q >0 so
that p+q >n—1, then

1 1 1 n
+ 44 > .
14 pay +qa? 1+ pay + qa3 1+pa,+qa2 — 14+p+gq

(Vasile C., 2007)

Solution. Using the substitutions a; = e® for 1 = 1,2,...,n, we need to show that

S_$1+ZE2+“'—|-ZBn
- n

flxy) + fw2) + -+ flan) = nf(s),

— 07
where
1

= . uel=R.
1 + pe* + ge?v "

f(u)
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For v > 0, we have

) = & [4g%€™ + 3pge™ + (p* — 4g)e” — p
(1 + pe* + qe?v)3
- e?[4q* + 3pq + (p* — 4q) — p)
- (1 + pe + ge?+)3
e®(p+29)(p+q—2) +2¢* + p|
a (1 + pe* 4 ge?+)3

> 0,

therefore f is convex on I[-4. By the RHCF-Theorem, it suffices to prove the original inequality
for

ay=1/t""1', ay=---=a, =t t>0.
Write this inequality as

t2n—2 n—1 n

+ > .
=2 ptnl g 1+pt+qt> ~ 1+p+gq
Applying the Cauchy-Schwarz inequality, it suffices to prove that

(t" 1 +n—1)> S n
(224 ptr-l 4 q)+ (n—1)(1+pt+qt2) ~ 1+p+gq

which is equivalent to
pB +qC > A,

where

A=m-1DE"1—-1)>>0,

A
B=("" =1 +nE=-———+nB E=t""4+n-2-(n-1),
n_

C=@""=17+nF=

A
[k, F=2""1 "4+n-3—(n— 1.
n_

By the AM-GM inequality applied to n — 1 positive numbers, we have £ > 0 and F > 0 for
n > 3. Since A > 0and p+ ¢ > n — 1, we have

A
pB+qC—AZpB+qC—(pn%qi

=n(pE +qF) > 0.
The equality holds for ay =as =---=a, = 1.

Remark 1. For p = 2k and ¢ = k%, we get the following result:

o Letay,as,...,a, (n>3) be positive real numbers so that ayas---a, = 1. If k > /n —1,
then
1 n 1 n n 1 S n
(1+ka1)?  (1+ kay)? (1+kay)? = (1+ k)%’

with equality for ay = ay =---=a, = 1.



Half Convex Function Method 97

In addition, for n = 4 and k = 1, we get the known inequality ( Vasile C., 1999):

1 1 1 1
> 1
(+a? (402 " 0xe2 (a2~ "

where a, b, c,d > 0 so that abed = 1.

Remark 2. For p+g=n—1 (n > 3), we get the beautiful inequality

1 1 1
+ _|_...+—
1 +pay +qa? 1+ pay + qa2 1+ pa, +qa?2 —

which is a generalization of the following inequalities:

l+(n—1a; 1+ (n—1as 1+ (n—1a, —
1 + 1 R 1 > 1
1+ (v/n—=1Da]* 1+ (n-1Da? 1+ (/n—Da]* =
1 1 1 1
D@+ d) 2rm-Dwmrd) 2Dt @) 2

P 1.64. Let a,b,c,d be positive real numbers so that abed = 1. If p and q are nonnegative real
numbers so that p+ q = 3, then
1 n 1 N 1 N 1 S 1
14+pa+qga® 14+pb+qgb®> 1+pc+qc® 1+ pd+ qd® —

(Vasile C., 2007)

Solution. Using the notation

we need to show that
f(@) + f(y) + F(2) + f(w) = 4] (s),

where
1

We will show that f”(u) > 0 for u > 0, hence f is convex on Is,. Since

uwel=R.

th(t)

I = T+ o

where
h(t) = 9¢*° + 2pqt® — 9qt* + p*t —p,  t=e",
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we need to show that h(t) > 0 for t > 1. Indeed, we have
h(t) > 9¢°t® + 2pqt® — Iqt* + p*t — pt = tg(t),
where

g9(t) = (9¢° + 2pq)t* — gt + p* — p
> (9¢° + 2pq) (2t — 1) — 9gt + p* — p
= q(18¢ +4p — 9)t —9¢° — 2pg + p* — p
> q(18¢ +4p —9) —9¢° = 2pg + p* — p
=P’ +2pq+9¢* —p — 9q

+99)(p +
:p2+2pq+9q2_(p q;(p q)

N2 2
2(p q)3+16q >

0.

By the RHCF-Theorem, it suffices to prove the original inequality for
b=c=d=t, a=1/* t>0;
that is,
t? 3
+ >
t+pto4+q 1+pt+qt3 —
3 - pt® + ¢
L4+pt+qt3 = 9+ ptS + ¢’
(3 —pg)t® — p*t" + 2pt° — ¢*t* — pgt + 2 > 0,

Y

[(p+q)* = 3pqlt® — 3p*t" + 2p(p + q)t° — 3¢*t* — 3pqt + 2q(p + q) > 0,
Ap* + Bg* > Cpq,

where
A=t —3t"+2t° =15t - 1)*(t +2) > 0,

B=1"—-3+2= (- 1)>2t*+2) >0,
C=t"—2t5+3t—2.

Since A > 0 and B > 0, it suffices to consider the case C' > 0. Since
Ap* + Bq* > 2V'ABpq,
we only need to show that 4AB > C?. From
3 —3t+2=(t—1)>t+2)>0,
we get 3t — 2 < 3. Therefore

C<t?—215 83 =343 — 1)%,
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hence

4AB — C? > 4AB — t%(+* — 1)*
=0t -1 -1’4t +2)F +2) — P+t +1)7
=t%(t — 1)*(#* — 1)?(3t* + 6t> — 3t* + 6t + 15) > 0.

The proof is completed. The inequality holds fora =b=c=d = 1.

Remark 1. For p =1 and p = 2, we get the following nice inequalities:

1 1 1
> 1
1—|—a—|—2a3+1+b+2b3+1—|—c—|—203+1+d—|—2d3 -
1 1 1
1.

>
1+2a—|—a3+1+2b—|—b3+1+20+03+1+2d+d3 -

Remark 2. Similarly, we can prove the following generalizations:

e Let a,b,c,d be positive real numbers so that abed = 1. If p and q are nonnegative real
numbers so that p+ q > 3, then

1 1 1 1 4
3+ 3+ 3+ 3Z :
14 pa+ qa 1+ pb+qb 14 pc+ qc 1+ pd+ qd I1+p+gq

o Letay,ag,...,a, (n>4) be positive real numbers so that ayag---a, = 1. If p,q,r >0 so
that p+q+nr >n—1, then

n

1 n
E 5 3 = :
1+ pa; +qa; +ra; — 1+p+qg+r

=1

For n =4 and p+ ¢+ r = 3, we get the beautiful inequality

4

1
> o R
— 1+ pa; + qa; + ra;

Since .
a; + a;

2

the best inequality with respect to ¢ if for ¢ = 0:

4

1
SR E— =3
;1+pai~l—m§_ pEr

P 1.65. If ay,as,...,a, are positive real numbers so that ayas - --a, =1, then

1 1 1
+ ot > 1.
l+ay+-+a™ T4ay+---+ay? l+a,+---4art ™~

(Vasile C., 2007)
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Solution. Using the substitution a; = e* for ¢+ = 1,2,...,n, and denoting

1
1ttt ey’

u € R,

f(u)

we need to show that

flan) + fl2) + -+ flan) Z nf(s),

where s = 2t ke e s 0. In addition, by RHCF-Theorem, if f is convex for u > s = 0,

n
then we only need to show that

fl@)+n-1)f(y) =1
for all z,y € R so that <0 <y and x4 (n — 1)y = 0. Denoting k =n — 1 and t = e¥ (hence
t > 1), the inequality becomes

£ k
> 1. *
T T R S )

First, we will show by induction that f(u) is convex for u > 0. Setting ¢t = e, the necessary and
sufficient condition f”(u) > 0 for u > 0 (hence t > 1) is equivalent to

242 > B(1+ 0),
where
A=t4+2+- -+ (n-Dt""', B=t+4*+ -+ (n—-0D4"", C=t+t>+ - - +t" "

For n = 2, the inequality reduces to ¢(t — 1) > 0, which is true. Assuming that the inequality is
true for n (where n > 2), we will show that it is true for n + 1. Using the induction hypothesis,
we need to show that 24% > B(1 + C) involves

20A+nt")? > (B+n’t")(1+C +t"),

which is equivalent to
2A% - B(1+ C) + t"n*(t" — 1) + D] > 0,

where
n—1

D:4nA—B—nQC:Zbiti, bi = 3n* — (2n — )%
i=1
Since 2A4? — B(1 + C) > 0, it suffices to show that D > 0. Since
by <by<---<b,q, t<t2<...<"h
we may apply Chebyshev’s inequality to get
1
D> E(b1+bg+---+bn_1)(t+t?+---+1t”‘1).

Thus, it suffices to show that by + by + - - - + b,_1 > 0. Indeed,

n—1

bitbyt b= [Bn°— (20 —i)f] ="

=1

(n—1)(4n+1)

> 0.
6
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To finish the proof, we need to prove (*). For the nontrivial case ¢t > 1, the inequality can be
written as follows:

k A s k(t—1)>tk2—1 th—1 kt<k’+1>k—1>tk2—1
L+t+-4th = 14th ot 7 bt -1 = b — 1 gDk — 77 thtl—1 = t—1"
th—1 t* -1
(1 4 ot g2kt oLy p(B=DRH1)] > .
[T+ + +ot | > AT

k [1.1+t.tk_|_..._|_tk*1 .t(kfl)k] > (1+t+...+tk*1) [1+tk+...+t(k*1)k} _
Since 1 <t <---<thFtand1<thF<... <t~k the last inequality follows from Chebyshev’s
inequality.
The proof is completed. The equality occurs for a; =ay =--- =a, = 1.

Remark. Actually, the following generalization holds:

e Letay,aq,...,a, be positive numbers so that ayas---a, = 1, and let ki, ko,... .k, > 0 so
that ky + ko + -+ kp,>n—1. If m <n—1, then

n

1 n
> .
Z,le—i-kmi—i-kga?—}-...—f—kma;”_ Ttk +hyto+ky

In addition, since
(m—k)a; + (k — 1)al
m—1

at < . k=23,....m—-1
(by the AM-GM inequality applied to m — 1 positive numbers), the best inequality with respect
to ko, ..., ky_qis for ko =0,...,k,_1 = 0; that is,

n

3 1 > i b4k >n—1, 1<m<n-—1
1+ ko + k@ T 14y A+ ko b hm = o= '

If k1 + k,, =n — 1, then

n

1
>1 1< <n-—1
gl—i—klai—kkma?‘_ ’ =m=nTa
therefore
u 1
>1, ki+kp1=n-—1.
; L+ kya; + ky_gaf '~ e

For ky =1 and k1 = n — 2, we get the following strong inequalities:

n

1
g — = 1
14+ a;+ (n—2)a’

=1

n

1
>
1+(n—2)ai+a?

i=1
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P 1.66. Let ay,as, ..., a, be positive real numbers so that aias---a, = 1. If
k>n?—1,

then
1 1

1 n
- ot > .
\/1—|—ka1 \/1—i—ka2 \/1+kan_\/1+k

Solution. Using the substitutions a; = e* for i = 1,2,... n, we need to show that
+rot+ -1y,
Fa) & F@) 4ot ) 2 nfls), 5= DFRTE I
where |
U) = —F/—, u e I=R.
J(w) V1+ kev
For u > 0, we have
() = ke* (ke ) < ke (k — 2) ..

CA(L+ kew)3/2 T 4(1 + kev)5/2

Therefore, f is convex on I-s. By the RHCF-Theorem, it suffices to prove the original inequality
for
ay = 1/t"7 1 ag =+ =a, =t, t>1.

Write this inequality as h(t) > 0, where

h(t) gn—1 N n—1 . n
SVl k V1Rt Vi+k
The derivative 32
— Dkt(n~ — Dk
) (1)

2tn=1 4 k)32 2kt + 1)%/2

has the same sign as
ho(t) = "3 Nkt + 1) — "1 — k.

Denoting m =n/3 (m > 2/3), we see that
hi(t) = kt™ 4t — 3 = Rt — 1) — TP — 1) = (™ — 1)ha(2),

where
ho(t) =k — ™t — 21,

For t > 1, we have

Ry(t) =t"2[—m+1— 2m — Dt"] < t" 2 [—m +1 — (2m — 1)]
=—(Bm-2)t"?<0,

hence hy(t) is strictly decreasing for t > 1. Since

hg(l) =k—-2> 0, thrn hg(t) = —00,
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there exists t; > 1 so that ha(t;) = 0, ho(t) > 0 for t € [1,1), ho(t) < 0 for ¢t € (t1,00). Since
ho(t), hi(t) and R/(t) has the same sign for t > 1, h(t) is strictly increasing for ¢ € [1,¢;] and
strictly decreasing for t € [t1, 00); this yields

h(t) > min{h(1), h(co)}.

n
From h(1) =0 and h(oco) =1 — > 0, it follows that A(t) > 0 for all ¢t > 1. The proof is
0 (o) =1- L > O > 1. The p
completed. The equality holds for a1 = ay =--- =a, = 1.
Remark. The following generalization holds (Vasile C., 2005):
e Letay,asg,...,a, be positive real numbers so that ayas ---a, = 1. If k and m are positive
numbers so that
m<n-—1, k>nb/m™—1,
then
1 n 1 P 1 S n
(1+kay)™ (1 + kag)™ (1+ ka,)™ — (1+ k)™’
with equality for ay =as =+ =a, = 1.

For 0 <m <n—1and k=n"" — 1, we get the beautiful inequality

1 1
R
At ka)  Oxka) ~ T T xkaym =t

O

P 1.67. Let ay,as,...,a, be positive real numbers so that ayas---a, = 1. If p,qg > 0 so that
O0<p+q< L, then
n—1
1 1 1 n
1+pa1+qa%+1+pa2+qa§+”'+1+pan+qa% = 1+p+q
(Vasile C., 2007)

Solution. Using the notation a; = e® for ¢ = 1,2, ..., n, we need to show that
5 — T +2Tog+ -+,

Flan) + Flea) + o+ Flaw) 2 0 (s), e
where .
flu) = 1T pev + g2’ uel=R.
For u < 0, we have
() = e'[—4q’e™ — 3pge® + (4g — p*)e” + )

(1 + pe + ge?+)3
e [—4q*e®™ — 3pge + (4q — p*) + pe™"]
(1 + pe* + qe?v)3

e [—4¢* — 3pq + (4qg — p*) + p)

(1 + pe* + ge?v)3
_e®[(p+49)(1 —p—q) +2pq]
(1 + pe* + qe?+)3

>0,
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therefore f is convex on [<,. By the LHCF-Theorem, it suffices to prove the original inequality
for
ay = 1/t" 1, s = -+ =a, =t, t>0.

Write this inequality as

t2n—2 n—1 n

+ < ;
224 pinl4q 1+4+pt+qt2? ~ 1+p+gq

p?A+ ¢*B+ pgC < pD + qE,

where
A=t""1t"—nt+n—-1), B=t"—nt>+n-1,

C=t""14¢" —pt" " (n—1)t" " —nt+n—1,
D=t"Hn-Dt"+1-nt"", E=n-0t"+1—-nt*2

Applying the AM-GM inequality to n positive numbers yields D > 0 and £ > 0. Since (n —
1)(p+¢q) < 1involves pD + qE > (n — 1)(p + q)(pD + qF), it suffices to show that

p’A+¢*B+pgC < (n—1)(p+q)(pD + ¢E).

Write this inequality as
PP A1+ ¢* By + pgCi > 0,

where

Ai=n—1)D—-A=nt"[(n—2)t""1+1—(n—1)t"?,
By =(n—1)E—B=nt*[(n -2t +1— (n—1)t*1,
Ci=n—-1)(D+E)—C=nt[(n—2)"" +t"2) = 2(n — )t*" 3 + " +1].

Applying the AM-GM inequality to n — 1 nonnegative numbers yields A; > 0 and B; > 0. So,
it suffices to show that C'; > 0. Indeed, we have

(n—2)#* 4+ 2772) —2(n — D" 3 4" + 1 = Ay + By + Co,
where
Ay =(n—-2)t""" 1+t —(n— 1" >0,
By=(n—2t"" 241" — (n - 1)t*"3 >0,
Co=t"—t"'—t+1=>t-1)t""'~1)>0.

The inequalities A; > 0 and By > 0 follow by applying the AM-GM inequality to n — 1 nonneg-
ative numbers.
The equality holds for a; = as =---=a, = 1.

1
Remark 1. For p+¢g = 1 we get the inequality
n JR—

1 1 1
S+ st ————=<n-—1,
14+ pas +qa;y 14 pas + qas; 1+ pa,, + qaz
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which is a generalization of the following inequalities:

1 1 1
- o ———— <1,
n—14+a; n—1+a n—1+a,
1 n 1 R 1 <1
2n—2+a;+a2  2n—2+ay+ a 2n—2+a,+a2 ~ 2
Remark 2. For
B dn — 3 B 1
P=om—nen—1 ‘T 2m-DEn-1)
we get the inequality
1 1 1

<
@t2n—2mton—1 Tt —2)antom—1) dn—2

which is equivalent to

1 1 1 1 1
al—i—2n—2jL +an+2n—2_4n—2+a1+2n—1+ +an+2n—1

Remark 3. For p = 2k and ¢ = k%, we get the following statement:

e Letay,as,...,a, be positive real numbers so that ajas---a, = 1. If
0<k< no 1,
n—1
then
1 n 1 N n 1 < n
(1+ka1)? (1 + kay)? (1+kay)? — (1+ k)%
with equality for ay = ay =---=a, = 1.
O
P 1.68. Let ay,aq,...,a, (n > 3) be positive real numbers so that ajas---a, = 1. If
2n—1
0<bk<-——
— (n . 1)27
then
1 1 1 n
<

+ TR .
V1+ka 1+ kay V1+ka, ~ V1+k
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Solution. Using the substitutions a; = e for i = 1,2,...,n, we need to show that
+ o+t
f(@1) + f(w2) + -+ f(2n) 2 nf(s), 5= x2n - =0
where .
J(w) V1+ ket
For u < 0, we have
() = ke*(2 — ke*) - ke*(2 — k) >0

4(1 + kew)>/2 = 4(1 + kew)>/2
Therefore, f is convex on I<,. By the LHCF-Theorem, it suffices to prove the original inequality

for
a=1/t"" ay=---=a,=t. 0<t<Il

Write this inequality as h(t) < 0, where

h(t) = tn—1 n n-1  n ‘
ko VI+kt V1i+k
The derivative
(1) = (n — 1)kt(n=3)/2 _ (n-Dk

2(tn=1 + k)3/2 2(kt + 1)3/2
has the same sign as
hy(t) = t"3 (kt + 1) — "' — k.

Denoting m = n/3, m > 1, we see that
hi(t) = kt™ + " — 27 = k(1 — ™) "1 — 7)) = (1 — ™) hy(2),

where
ho(t) = t" 1 2" — k

is strictly increasing for ¢ € [0, 1]. There are two possible cases: h2(0) > 0 and hy(0) < 0.

Case 1: hy(0) > 0. This case is possible only for m = 1 and k£ < 1, when hy(t) =t+1—Fk > 0 for
t € (0,1]. Also, we have hy(t) > 0 and h'(t) > 0 for t € (0,1). Therefore, h is strictly increasing
on [0,1], hence h(t) < h(1) =0.

Case 2: hy(0) < 0. This case is possible for either m = 1 (n = 3) and 1 < k < 5/4, or
m > 1 (n >4). Since hy(1) =2 — k > 0, there exists t; € (0, 1) so that ho(t1) = 0, ha(t) < 0 for
t € (0,t1), and ha(t) > 0 for t € (t1,1). Since b’ has the same sign as hy on (0, 1), it follows that h
is strictly decreasing on [0, t1] and strictly increasing on [¢, 1]. Therefore, h(t) < max{h(0),h(1)}.
Since h(0) =n—1— < 0 and h(1) =0, we have h(t) <0 for all t € (0, 1].

vV1+k
The equality holds for a; = as =--- =a, = 1.

Remark. The following generalization holds (Vasile C., 2005):

o Letay,as,...,a, (n>3) be positive real numbers so that ayas---a, = 1. If k and m are
positive numbers so that




Half Convex Function Method 107

then
1 n 1 n n 1 < n
(14 kay)™ (1 + kag)™ (14 ka,)™ = (1+ k)™’
with equality for ay = ay =---=a, = 1.

1/m
Forn >3, m > and k = ( n ) — 1, we get the beautiful inequality

n— n—1
LRI <n-1
PR —_— n —_ .
(14 kap)™ (1 + kag)™ (14 ka,)™ —
O
P 1.69. If ai,as,...,a, are positive real numbers so that ayas - --a, =1, then

a%+£+ a421+£_|_...+ at + 2n—1 > 1 (a1+a2+...+an)2'
(n—1)2 (n—1)2 " n=12 " n-1

(Vasile C., 2006)

Solution. According to the preceding P 1.68, the following inequality holds

1
Z 2n—1 4§n—1.

L+ G5

On the other hand, by the Cauchy-Schwarz inequality

2 (Zal _1;@1‘4) > (Ya)

L+ 5= 1)2a1

From these inequalities, we get

(n—1) <Za%\/1+%al4> > <Za1>2’

which is the desired inequality.
The equality holds for a; = as =--- =a, = 1.

P 1.70. If ay,as,...,a, are positive real numbers so that ayas - --a, =1, then

1 1 1
e e (- 2) > (- 1) (—+—+"'+—>~
ar G Qn
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Solution. Using the notation a; = e* for ¢+ = 1,2,...,n, we need to show that
ry+re+---+x
)+ fla) + oo+ flaa) 2 nf(s), 5= —"=0,

where

For u > 0, we have
f(u) = (n—1)2D" — (n—1e™ = (n—1e ¥[(n—1)e™ — 1] > 0;

therefore, f is convex on I-;. By the RHCF-Theorem and Note 2, it suffices to show that
H(z,y) >0 for 2,y € R so that z + (n — 1)y = 0, where

H(z,y) = f/(ZL‘I) : ?J;/(y)

From
f'w) = (n = )[4 e,

we get

Hiz.y) = (n—1)(e” —eY)

622 4 e(r=aty |y oo =3y | (=2)y _ o]

r—y
_ (n — 1)(6“/’ — ey) |:€(n72)x + e(n73)z+y R em+(n73)y>] )
r—y
Since (e* — e¥)/(x —y) > 0, we have H(x,y) > 0.
The equality holds for ay =ay =---=a, = 1.
O
P 1.71. Let ay,ao, ..., a, be positive real numbers so that ayas---a, = 1. If k > n, then
af a4 k> (k) (= — ).
aq (05} Qp
(Vasile C., 2006)
Solution. Using the notations a; = e* for ¢+ = 1,2,...,n, we need to show that
1+ Lo+ +x,
) + flw) + o4 flan) 2 nf(s), s == =0,
where

flu)=e" —(k+1)e™ ucl=R.

For u > 0, we have

() = ke — (k+ e =e " [kPe®D — k —1] > e™(k* — k — 1) > 0;
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therefore, f is convex on I>4. By the RHCF-Theorem, it suffices to to prove the original inequality

for a; <1< as =---=a,; that is, to show that
k+1 kE+1)(n—1
a4+ (n — 1)b* — 1 (kD )+kn20
a b

for

ab" =1, 0<a<1<hb.
By the weighted AM-GM inequality, we have

k(n—1)

"+ (kn—k—1) > [1+ (kn — k — 1)]a™ 0+ = :

Thus, we still have to show that

(n—1) (bk—%)—(kﬂ)(%—l) >0,

which is equivalent to h(b) > 0 for b > 1, where
h(b) = (n — 1)(0** — 1) — (K + 1)(b" — b).

Since

' (b) K -1 1

= — — g > _ no__ n

) (n—=1b"—nb"""+1>(n—-1)"—nb""" +1
=nb" '(b—1)— (" - 1)

= (b [ () e (0 1)) 2 0,

h is increasing on [1, 00), hence h(b) > h(1) = 0. The proof is completed. The equality holds for
a1 =ag =+ =a, = 1.

]

P 1.72. If ay,as,...,a, are positive real numbers so that ajas---a, = 1, then

1\ 1\ 1\
1—=) +(1-=] 4+ (1-=) <n-1
n n n

(Vasile C., 2006)

Solution. Let

k= k>1
n — 17 7
and
m=1Ink, 0<m<In2<l.
Using the substitutions a; = e for 1 = 1,2, ..., n, we need to show that

S_$1+$2+“'+In
N n

f(x) + fza) + -+ fzn) = nf(s), =0,
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where

fluy=—k¢, uecl=R.

From

" (u) = me k™" (1 — me®),

it follows that f”(u) > 0 for u < 0, since
1—-me“*>1-m>1—-—1n2>0.

Therefore, f is convex on I<,. By the LHCF-Theorem, it suffices to prove the original inequality
for

o=+ =aq, :=t, a; =t 0<t<1.

Write this inequality as

where

M) =k +(n—1Dk™", te(0,1].
We have
)= mn—Dmt k™" hy(t),  hi(t)=1—t"k""",
Pot) =k (), ha(t) = m(n — 1+ ") — nt™ L.

Since

Ry(t) = nt" 2(mt —n+1) <nt" 2(m—n+1) <nt" *(m—1) <0,

hy is strictly decreasing on [0, 1]. From
ho(0) = (n—1)m >0, hy(l)=n(m—1) <0,

it follows that there is ¢; € (0,1) so that he(t1) = 0, ha(t) > 0 for ¢t € [0,¢;) and hy(t) < O for
t € (t1,1]. Therefore, hy is strictly increasing on (0,¢;] and strictly decreasing on [ty,1]. Since
hi1(04) = —oo and hy(1) = 0, there is ty € (0,%1) so that hy(t2) = 0, hi(t) < 0 for ¢t € (0,t),
hy(t) > 0 for t € (ta,1). Thus, h is strictly decreasing on (0, t5] and strictly increasing on [to, 1].
Since h(0;) =n—1 and h(1) =n —1, we have h(t) <n —1 for all ¢ € (0, 1]. This completes the
proof. The equality holds for a; = ay =---=a, = 1.

[

P 1.73. If a,b, c are positive real numbers so that abc = 1, then

1 1 1
+ + <1
1+v1+3a 14++vV1+3b 1++143c

(Vasile C., 2008)
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Solution. Write the inequality as

\/1+3a—1+\/1—I—3b—1+\/1+3c—1
3a 3b

<1

1 1 1 1 3
-+-+-4+32> -+t -+ —+ + —+—
a b ¢ a a

Replacing a,b,c by 1/a,1/b,1/c, respectively, we need to prove that abc = 1 involves

a+b+c+3>Va2+3a+Vbh2+3b+ V2 + 3c. (*)

Using the notation

we need to show that

f@)+ fy) + f(z) 2 3f(s), s= Lg” —0,
where
f(u)=e"— Ve +3ev, uel=R.
We have
42 + 18t + 9
fu) =t |1- oo . t=e"> 1.

A(t + 3)\/t(t + 3)

For v > 0, which involves t > 1, from
16t(t + 3)% — (4% + 18t +9)* = 9(4¢* + 12t — 9) > 0,

it follows that f” > 0, hence f is convex on I-4. By the RHCF-Theorem, it suffices to prove the
inequality (*) for b = ¢. Thus, we need to show that

—Va*?+3a+200—Vb2+3b)+3>0
for ab®> = 1. Write this inequality as

20% + 302 + 1 > V302 + 1 + 26°V/b2 + 3b.

Squaring and dividing by b2, the inequality becomes

9% 4 4b 4 3 > 44/ (b2 + 3b)(3b2 + 1).

Since

24/ (b2 +3b) (302 + 1) < (b? +3b) + (30> + 1) = 4b* + 3b + 1,

it suffices to show that
90 + 4b + 3 > 2(4b* + 3b + 1),

which is equivalent to (b — 1)? > 0. The equality holds for a = b= c = 1.

Remark. In the same manner, we can prove the following generalization:
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e Letay,as,...,a, be positive real numbers so that ajas---a, = 1. If

4n

B —0
R

then
1 1 1 n

+ ot < .
1+v1+ka1 1+\/1—|—]€CL2 1+\/1+kan_1+\/1 k’

P 1.74. If ay,as,...,a, are positive real numbers so that ayas - --a, =1, then

1 1 1
+ +ot
1++y/14+4n(n—1a; 14 +/1+4n(n—1)a, 1++/1+4n(n — 1)a,

>

| —

(Vasile C., 2008)

Solution. Denote
k=4n(n—1), k> 8,

and write the inequality as follows:

Vitka —1 14+ kay—1 V1+ka, —1 1
+ fop ">
kay kas ka,, 2
1 k 1 k 1 k 1 1 1 k
St =ty sttty 5> — o — .
ai  ai as Qs ai  a ai Qo a, 2
Replacing ay, as, .. .,a, by 1/a1,1/as,...,1/a,, we need to prove that ajas - --a, = 1 implies
2 2 2 k *
ai + kay + /a5 + kas + -+ - + an—l—kan2a1+a2—|—~--—|—an+§. (*)
Using the substitutions a; = e for 1 = 1,2, ..., n, we need to show that
T+ T+ -+ Ty
fla) + (@) + -+ floa) 2 nf(s),  s=—=—— =0,

n

where

flu) =vVe* + ket —e*, uel=R
We will show that f”(u) > 0 for v < 0. Indeed, denoting t = e*, t € (0, 1], we have
4% + 6kt + k*

]Ml(u):tAx(H/lc)t(t+l~c)__1 >0

because

(4% + 6kt + k*)? — 16t(t + k) = k*(k* — 4kt — 4t%) > E*(k* — 4k — 4) > 0.
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Thus, f is convex on I<;. By the LHCF-Theorem, it suffices to prove the inequality (*) for
as = az = - -+ = ay; that is, to show that

va?+ka—a+(n—1) (\/b2—|—kb—b> 2n< 1+k—1),
for all positive a, b satisfying ab"~! = 1. Write this inequality as
VEVL + 1+ (n — D)VER—1 + 20 > (n — 1)b" + 2n(n — 1)b" ' + 1.

By Minkowski’s inequality, we have

VEb L + 14 (n — 1)VEb =1 4 b0 >

> R (0= D22 4 (1 (- Db
Thus, it suffices to show that
k0" M1 4 (n— D022 4 14 (n— D" > [(n — 1)b" + 2n(n — 1)b" 1 +1)%,

which is equivalent to

3n—2

dn(n — 1277 [2+ (n—2)b? —nb"z | > 0.

This inequality follows immediately by the AM-GM inequality applied to n positive numbers.
The equality holds for a1 = ay =--- =a, = 1.
O

P 1.75. If a,b, c are positive real numbers so that abc = 1, then

a® o b
> 1
1+2a5+1—|—2b5+1+205 -

(Vasile C., 2008)

Solution. Using the substitution

we need to show that

f(@) + f(y) + f(2) = 3f(s), s =0
where o
e

For w < 0, which involves w = e* € (0, 1], we have

_ 2w5(2 — wd)(9 — 2w)

0.
(1+ 2wd)3 ~

fl/ (u)



114 Vasile Cirtoaje

Therefore, f is convex on I<,. By the LHCF-Theorem, it suffices to prove the original inequality
for b = c and ab® = 1; that is,

1 " 265 > 1
ROO+2) 1+ 200

Since
14+20° <1+0b" 415,

it suffices to show that

1 213
>1 = Vb
x(m5+2)+1+x2+x3_ 7

This inequality can be written as follows:
Pt - -2 -1+ (2 -1)2 >0,

Plr— 12+ 2 + 22 - D)+ (- 1)2>0
(x—1?z" +2° + (2® -2+ 1)] > 0.
The equality holds for a =b=c=1.

P 1.76. If a,b,c are positive real numbers so that abc = 1, then

V2502 + 144 + /2502 + 144 + /25¢2 + 144 < 5(a + b+ ¢) + 24.

(Vasile C., 2008)

Solution. Using the notation

we need to show that
f@)+ fy) + f(z) 2 3f(s), s=—7—=0,

where

f(u) = be" — v25e?v + 144,  wu e R.

We will show that f(u) is convex for u < 0. From

5w (25w? + 288
w( w* + ):|’ wZGUE(O,l],

f//<u) =bw [1 — (25w2 + 144)3/2

we need to show that
(25w? + 144)% > 25w? (25w? + 288)%

25
Setting 25w? = 144z, we have z € (0, m} and

(25w* + 144)% — 25w (25w® + 288)% = 144% (2 + 1) — 144°2(z + 2)?
= 14431 - 2z- 2% >0.
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By the LHCF-Theorem, it suffices to prove the original inequality for
a=t, b=c=1/t, t>0;

that is,

53 + 24t + 10 > /2510 + 1442 + 2v/25 + 144¢2.

Squaring and dividing by 4t give

60> + 25t% — 36t + 120 > /(254 + 144) (14412 4 25).
Squaring again and dividing by 120, the inequality becomes
25t5 — 36t* + 105> — 112t> — 72t + 90 > 0,

(t — 1)%(25¢% + 14¢> 4 108t + 90) > 0.
The equality holds for a =b=c=1.

P 1.77. If a,b, c are positive real numbers so that abc = 1, then

V16a2 + 9 + V1602 + 9+ V16¢2 +9 > 4(a + b+ ¢) + 3.

(Vasile C., 2008)

Solution. Using the substitution

we need to show that
f(@)+ fy) + f(z) 2 3f(s), s=—7—"=0,

where
flu) = V16e2* 4+ 9 —4e",  u€R.
We will show that f(u) is convex for u > 0. From

Aw(16w? + 18)
(16w? + 9)3/2

-1, w=e">1,

" (u) = 4w

we need to show that
16w?(16w? + 18)* > (16w? + 9)°.

16
Setting 16w? = 9z, we have z > n and

16w? (16w? + 18)* — (16w* + 9)® = 7292(z + 2)? — 729(z + 1)*
=729(z* +2—1) > 0.
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By the RHCF-Theorem, it suffices to prove the original inequality for
a=1t*, b=c=1/t, t>0;

that is,

V166 + 9¢2 + 24/16 + 92 > 4¢3 + 3t + 8.

Squaring and dividing by 4t give

V(1684 + 9)(92 4 16) > 61> + 16t> — 9t + 12.
Squaring again and dividing by 12¢, the inequality becomes
9t — 16t* + 9> + 12¢% — 32t + 18 > 0,

(t — 1)%(9¢> + 2t* + 4t + 18) > 0.
The equality holds for a =b=c=1.

P 1.78. If ABC is a triangle, then
A B
sin A (2Sin§ — 1) +sin B (28in§ — 1) +sinC (25in§ — 1) > 0.

(Lorian Saceanu, 2015)
Solution. Write the inequality as

FA)+(B)+ F(O) 23(s), s=2T2TE =T

where

3
f(u) =sinu (2sing - 1) = cosg —cos;u —sinu, wuwel=]I0,m7.

We will show that f is convex on I<,. Indeed, for u € [0, 7/3], we have
f(u) = Cosg (2 + QSiIlg — 9sin? g) > Cosg (2 + QSing — 125in” g)

:2cosg <1+3smg> (1—281ng) > 0.

By the LHCF-Theorem, it suffices to prove the original inequality for B = C, when it transforms
into B
sin2B(2cos B — 1) + 2sin B (QSiHE — 1) >0,

B B B 2
sin Bsin — [ sin— + 1 2sin——1] > 0.
2 2 2

The equality occurs for an equilateral triangle, and for a degenerate triangle with A = 7 and
B = C =0 (or any cyclic permutation).
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Remark. Based on this inequality, we can prove the following statement:

o [f ABC is a triangle, then
sin2A(2cos A — 1) +sin2B(2cos B — 1) +sin2C(2cos C — 1) > 0,

with equality for an equilateral triangle, for a degenerate triangle with A =0 and B = C = 7/2
(or any cyclic permutation), and for a degenerate triangle with A = m and B = C =0 (or any
cyclic permutation).

If ABC is an acute or right triangle, then this inequality follows by replacing A, B and C'
with 7 — 2A, 7 — 2B and 7 — 2C' in the inequality from P 1.78. Consider now that

A>%>Bzcza

The inequality is true for B < 7/3, because
sin2A(2cos A—1) >0, sin2B(2cosB—1) >0, sin2C(2cosC —1) > 0.

Consider further that 5
T T T
—>A>—-—>B>—-—>C2>0.
3 2 3 -

From
1—2cosA>1-—2cosB,

it follows that
(—sin2A)(1 —2cos A) > (—sin2A4)(1 — 2cos B).

Therefore it suffices to
(—sin2A)(1 —2cos B) +sin2B(2cos B — 1) +sin2C(2cos C' — 1) > 0,
which is equivalent to
(sin2A +sin2B)(2cos B — 1) +sin2C(2cos C — 1) > 0,
2sinC'cos(A — B)(2cos B— 1) + 2sinC cos C'(2cosC' — 1) > 0.
This inequality is true if
cos(A— B)(2cos B— 1)+ cosC(2cosC — 1) > 0,
which can be written as
cos C(2cosC' — 1) > cos(A — B)(1 — 2cos B).

Since
2r 0w T

C<A-B<—_-IZ_T
3 3 3’

we have cos C' > cos(A — B). Therefore, it suffices to show that
2cosC —1>1—2cosB,

which is equivalent to
cos B +cosC > 1.

From B + C' < /2, we get cos B > cos(m/2 — C) = sin C, hence
cos B +cosC >sinC +cosC =+v1+sin2C > 1.
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P 1.79. If ABC is an acute or right triangle, then
A B C
sin 2A (1 — 23in§> + sin 2B <1 - 231115) + sin 2C (1 — QSiDE) > 0.

(Vasile C., 2015)

Solution. Write the inequality as

A+B+C 7«
FA)+F(B)+ (02 3(s), =TT C =T
where 3 5
f(u) = sin2u (1 — 23in§> = sin 2u — Cosgu + cos gu, uwel=][0,m/2]
We will show that f is convex on [s,7/2]. From
9 3 25 5
f"(u) = —4sin2u + Zcosgu — Zcosgu
and 3 .
COSEU — cos;u = QSingSiHQU >0,
we get
9 5 25 5
f"(u) > —4sin 2u + ZCOSTU — ZCOSEU
-5 — Sr—9
=—4 sinQu—i—sin7T Y :831117T ucos T u'
4 4
For 7/3 < u < /2, we have
T Sm—9%u 7
< <.
8 — 4 -2

hence f”(u) > 0. By the RHCF-Theorem, it suffices to prove the original inequality for B = C,
0 < B < m/2, when it becomes

B
—sin4B(1 —2cos B) + 2sin 2B (1 —23in§> >0,

B
2sin2B |cos2B(2cos B — 1) + 1 — sin 5} > 0.

We need to show that B
cos2B(2cos B—1)+1— sina >0,

which is equivalent to g(t) > 0, where

B
g(t) = (1 -8 +8t)(1 —4*) +1 -2, t=sing, 0<t<

Nl

Indeed, we have
g(t) =201 —t)2(1 + 3t + 26> — 43 — 4t*) > 0
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because
1436422 -4 —at* > 1+3t+22 =2t — 22 =1+t > 0.

The equality occurs for an equilateral triangle, for a degenerate triangle with A = 0 and
and B = C = /2 (or any cyclic permutation), and for a degenerate triangle with A = 7 and
B = C =0 (or any cyclic permutation).

Remark 1. Actually, the inequality holds also for an obtuse triangle ABC. To prove this,
consider that -

The inequality is true for B < 7/3, because
A B
sin 2A <1—2$in§> >0, sin2B (1—251n5) >0, sin2C (1—251ng> > 0.

Consider further that 5
T T T
—>A>—-—>B>—-—>C>0.
3 2 3 -

From

A B
2sin — —1 > 2sin — — 1,

2 2

it follows that
: A . . B
(—sin2A4) 281115—1 > (—sin24) 281n§—1 .
Therefore it suffices to
B B C
(—sin2A) (QSinE — 1) +sin2B (1 - 281n5> + sin 2C (1 — QSiDE) >0,

which is equivalent to

B C
(sin 2A + sin 2B) (1 — 2sin 5) + sin2C (1 — 25sin 5) >0,

B
2sin C cos(A — B) (1 —QSin5> +2sinCcosC (1 —28111%) > 0.

This inequality is true if
cos(A — B) (1 - 251n§> + cosC' (1 - 25111%) >0,
which can be written as
cos C (1 — 28111%) > cos(A — B) (28111? - 1) :

Since

21 s
C<A-B<———=—
3 3’

s
3
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we have cos C' > cos(A — B). Therefore, it suffices to show that
B
1-— ZSing > 2sin — — 1,
2 2

which is equivalent to
sin —+sin— <1
2 + 2 — 7

B+ C B-C
2sin Z cos 1 <

This is true since

T
< 2sin— <1
Sln8 s COS 1

2 sin

Remark 2. Replacing A, B and C'in P 1.79 by 7 — 2A, 7 — 2B and 7 — 2C, respectively, we

get the following inequality for an acute or right triangle ABC:

sin4A(2cos A — 1) +sin4B(2cos B — 1) 4+sin4C(2cosC — 1) > 0,

with equality for an equilateral triangle, for a triangle with A = 7/2 and B = C = n/4 (or any
cyclic permutation), and for a degenerate triangle with A = 0 and and B = C' = 7/2 (or any

cyclic permutation).

P 1.80. Ifa,b,c,d are real numbers so that a +b+ c+ d =4, then

a n b n c . d <1
a2—a+4 bV2—b4+4 2—c+4 d2—d+4

Solution. Write the inequality as

Fl@)+ 1)+ (0) + f(d) = 4f(s), 5= TPy
where Ly
fu) = m, u € R.
We see that ( 2
U —
f(“)_f(2)2m20~
From

, 2(—ud 4+ 12u — 4
filu) = <(u2;—u—l—u4)3 g

it follows that f is convex on [1,2]. Define the function

]

(Sqing, 2015)
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Since fo(u) < f(u) for uw € R and fy(1) = f(1), it suffices to show that
fola) + fo(b) + fole) + fo(d) > 4fo(s).
The function fy is convex on [1,00) because it is differentiable on [1,00) and its derivative

flw), uw<?2
folu) = 0, u > 2

is continuous and increasing on [1,00). Therefore, by the RHCF-Theorem, we only need to show
that fo(x) 4+ 3fo(y) > 4fo(1) for all x,y € R so that z <1 <y and = + 3y = 4. There are two
cases to consider: y < 2 and y > 2.

Case 1: y < 2. The inequality fo(x) + 3fo(y) > 4fo(1) is equivalent to f(x) + 3f(y) > 4f(1).
According to Note 1, this is true if h(z,y) > 0 for = + 3y = 4. We have

flw) = f1) _~ u—4

9lu) = u—1 4w —u+4)
_g9(x) —gly) Az +y) —zy

) = T @ e P =y )
_ 3(y—2)*+4 e

A —z+4)(y* —y +4)

Case 2: y > 2. From y > 2 and = + 3y = 4, we get © < —2 and

—T

— > 0.
2 —x+4

Jo(x) +3foly) —4fo(1) = fz) +3f(2) —4f(1) =

The equality holds fora=b=c=d =1.

P 1.81. Let a,b, c be nonnegative real numbers so that a +b+c = 2. If

In2

FoSk<3, ko=

~ 1.71,

then
a"(b+c)+ b (c+a) +Fla+b) <2

Solution. Write the inequality as

fla) + f(0) + f(e) <2,

where
flu) =uf(2—u), wuel0,00).
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From

" (u) = kub 212k — 2 — (k + 1],

2k —2 2k — 2 .
1 P ,2]. According to LCRCF-

Theorem, the sum f(a) + f(b) + f(c) is maximum when either a =0 or 0 < a < b =c.
Case 1: a = 0. We need to show that

it follows that f is convex on |0, and concave on [

be(b* 1+ cF1) <2
for b+ c¢=2. Since 0 < (k — 1)/2 < 1, Bernoulli’s inequality gives

k—1 k—1
bk—l + Ck—l — (b2)(k—1)/2 + (CQ)(k—l)/2 S 1+ T(bQ . 1) +14

—1
:3—k+kT(b2+c2).

(c* 1)

Thus, it suffices to show that

(3 — k)be + be(b® 4 %) < 2.
Since )
be < (b+c) 1
2
we only need to show that
3—k+ k_lbc(b2+02) <2,

which is equivalent to
be(b* + ) < 2.

Indeed, we have
8[2 — be(b? + )] = (b +c)* — 8be(B* + ¢*) = (b—c)* > 0.

Case 2: 0 < a < b= c. We only need to prove the homogeneous inequality

a®(b+c) + b (c+a)+cFla+b) <2 (%)
forb=c=1and 0 < a < 1; that is,
k1
(1—1—9) —ad"—a—-1>0.
2
a k+1
Since (1 + 5 is increasing and a” is decreasing with respect to k, it suffices consider the case

k = ko; that is, to prove that g(a) > 0, where

a ko+1 k
g(a):(l—i—E) —a™® —a—1, 0<a<l
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We have I
/ 0 a> 0 ko—1
= 1+=) — o=l _ 1
@) === (1+3) —koa™ -1,
1, ko—i—l( a\ko-1 kg —1
—¢"(a) = 1+2)" - 25
kog (a) 4 * 2 a2~ ko
Since ¢” is increasing on (0, 1], ¢”(04) = —oco and
1, ko+1 /3\" ko + 1 2(2 — ko)
—g"(1) = ° kot 1= k1= o
ROY T2 ot o 3 !

there exists a; € (0,1) so that ¢"(a;) = 0, ¢"(a) < 0 for a € (0,a;), ¢"(a) > 0 for a € (ay,1].
Therefore, ¢ is strictly decreasing on [0, a;] and strictly increasing on [aq, 1]. Since

ko — 1 ko + 1
/ pr— pr—
9(0) = —; 5

there exists as € (0,a1) so that ¢'(az) = 0, ¢’(a) > 0 for a € [0,a2), ¢'(a) < 0 for a € (az,1).
Thus, ¢ is strictly increasing on [0, as| and strictly decreasing on [ag, 1]. Consequently,

g(a) = min{g(0), (1)},

> 0, g'(1)

[(3/2)% —2] =0,

and from
9(0)=0, g(1)=(3/2)*" -3 =0,

we get g(a) > 0.
The equality holds for @ = 0 and b = ¢ (or any cyclic permutation). If k = ko, then the
equality holds also for a = b = c.

O
P 1.82. Ifay,as,...,a, are positive real numbers so that a; + as + - - - + a, = n, then
o 1 1 1 2 2 2 2
(n+1) p s Sk >4(n+2)(af +a5+---+a;)+n(n°—3n—6).
1 2 n

(Vasile C., 2006)

Solution. Write the inequality as
flar) + f(ag) + -+ flan) > n(n® = 3n —6),

where )
Fu) = @ A+ 202, we (0,00).
From )
Py = 20 g 19),

w3
it follows that f is strictly convex on (0, ¢] and strictly concave on [c, 00), where

_ (n+1)2
\4(n+2)
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In addition, f(0+) = oco. According to LCRCF-Theorem and Note 6, it suffices to consider the
case
ag=a=--=a,1=2, a,=n—(n—1)z, 0<z<1,

when the inequality becomes as follows:

(n+1)? (”;1 + a—ln) > 4(n+2)[(n — 1)z + a2) + n(n? — 3n — 6),

n(n—1)2r — 1)*[(n +2)(n — )2 — (n +2)(2n — Dz + (n + 1)?] > 0.

The last inequality is true since

(n—1)a* - (2n — 1) + 2D z(n—1)<x—2n_1> LT 3(n —2)

n -+ 2

The equality holds for

1
a1:a2:"':an—1:§7 ap =

(or any cyclic permutation).

P 1.83. Ifa,b,c,d, e are positive real numbers such that a +b+c+d+ e =15, then

1 1 1 1 1

(Vasile Cirtoaje)
Proof. Write the inequality as
a+b+c+d+e

fla) + f(b) + flc) + f(d) + fle) = 5f(s), s= i =1,
where o7
f(u)zz—élu?’, O<u<b
From
i = SO0

it follows that f is convex on (0,1]. According to LHCF-Theorem, it suffices to prove that

f(@) +4f(y) = 5f(1)

forx > 1>y >0 and z + 4y = 5. This occurs if h(x,y) > 0, where

_g(z) —g(y) _ Sflw) = f(@)
h(z,y) = x——y’ g(u) = T u—1
Since o7
gu) = —— —4(u® +u+1),

u
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A
o) = 2 Ay = 27— dogla+y+ 1),

we need show that A(z,y) > 0. Indeed,

1
§A(a:, y) =9 —4y(4y — 5)(y — 2) = 9 — 40y + 52y* — 16y°

= (1-2y)*(9—4y) > 0.

The equality holds fora =b=c=d=e=1,and fora =3 and b=c=d =e = 1/2 (or any
cyclic permutation).

Generalization. If aq, as, ..., a, are positive real numbers such that

ap+a+---+a,=n,

then
2 1 1 1 2/ 3 3 3
(04 1220 =)o =+ =) 2 20— DX} + a4 al =),
with equality for a; = ay =--- =a, = 1, and for
2n—1 n+1

a; = Qg =+ = 0ap =

3 I

(or any cyclic permutation).

P 1.84. If a,b,c are nonnegative real numbers so that a + b+ ¢ =12, then
(a® 4+ 10)(b* + 10)(¢* + 10) > 13310.

(Vasile C., 2006)

Solution. Write the inequality as

fla)+ f(b) + f(c) > 2In11 + In 110,

where
f(u) = In(u* +10), w€0,12].
From 2(10 2)
" . — U
Jw) = o

it follows that f is convex on [0, 1/10] and concave on [v/10,12]. According to LCRCF-Theorem,
the sum f(a) + f(b) + f(c) is minimum when a = b < ¢. Therefore, it suffices to prove that
g(a) > 0, where

gla)=2f(a)+ f(c) —2In11 —In110, c¢=12—2a, a € [0,4].
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Since ¢/(a) = —2, we have

a2+10 ¢+ 10
_ 4(a—c)(10—ac) 24(4—a)(5—a)(a—1)

(a2 +10)(c® 4 10) (a2 + 10)(c® 4 10)

/1) =2 @) - 27 =1 ( )

Therefore, ¢'(a) < 0 for a € [0,1) and ¢'(a) > 0 for a € (1,4), hence g is strictly decreasing on
[0, 1] and strictly increasing on [1,4]. Thus, we have

g(a) = g(1) = 0.
The equality holds for a = b =1 and ¢ = 10 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

o Let aj,as,...,a, be nonnegative real numbers so that a; + ag + -+ + a, = 2n(n — 1). If
k=(n-—1)(2n—1), then

(a2 +k)(a3+k)--- (a2 +k) > k(k+1)",

with equality for ay =k and ay = -+ = a, = 1 (or any cyclic permutation,).
O
P 1.85. Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then
2 n
5 ) 5 (n® —2n+2)
(a1 +1)(a3+ 1) (a, +1) > (n— 1)2n2
(Vasile C., 2006)
Solution. Write the inequality as
(n? —2n +2)"
f(a1)+f(a2)+"'+f(an)Zlnk> k= (n_1)2n72 ’
where
fu) =In(u*+1), uel0,nl.
From )
2(1 — u?)
" o
f (U’) - (u2+1)27
it follows that f is strictly convex on [0, 1] and strictly concave on [1,n]. According to LCRCF-
Theorem, it suffices to consider the case a; = ay = -+ = a,_1 < a,; that is, to show that

g(x) > 0, where

g(x) = —=1)f(z)+ fly) —Ink, y=n—(n—1z, =zecl01]
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Since y'(z) = —(n — 1), we get
g (@) =n=1f(z) = (n=1)f () = (n =D (x) = f'(y)]

2n—1)(x — y)(1 — ay)
”_1(9:2 1 y+1) @+ D)y + 1)

—1)(z—=1)2[(n— 1)z —1]
(a: + (2 +1) ’

1
Therefore, ¢'(x) < 0 for x € |0, —J and ¢'(z) > 0 for z € ,n], hence ¢ is decreasing
n J—

n—1

1 1 1
on |0, and increasing on |——,1|. Since g [ —— | = 0, the conclusion follows.
n—1 n—1 -1
The equality holds for a; = ay = -+ =a,_1 = and a, = n — 1 (or any cyclic permuta-
n —
tion).

]

P 1.86. If a,b,c are nonnegative real numbers so that a +b+ c = 3, then
(a® +2)(b* +2)(c* +2) < 44.

(Vasile C., 2006)

Solution. Write the inequality as

fla) + f(0) + f(c) < In44,

where
fu) =In(u*+2), uelo,3].
From 22 2)
" - — U
f(u) = 2 x2)

it follows that f is strictly convex on [0,/2] and strictly concave on [v/2,3]. According to
LCRCF-Theorem, the sum f(a) + f(b) + f(c) is maximum for eithera =0o0r 0 < a <b=c.

Case 1: a = 0. We need to show that b + ¢ = 3 involves
(b* +2)(c* +2) < 22,

which is equivalent to
be(be —4) < 0.

b+c\? 9
be < = - < 4.

Case 2: 0 < a < b= c. We need to show that a +2b =3 (0 < a < 1) involves

This is true because

(a® +2)(b* +2)* < 44,
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which is equivalent to g(a) < 0, where

g(a) =In(a®>+2) +2In(b* +2) —Indd, b= 5 a€(0,1].

Since b'(a) = —1/2, we have

pon . 2a 20 2(a—b)(2—ab)

I@=s  rra (a2 +2)(1? + 2)
~ 3(a—1)(a* —3a+4)

T 2@+ 21 2)

Because
a>—3a+4=(a—-2)>*+a>0,

we have ¢'(a) < 0 for a € (0,1), g is strictly decreasing on [0, 1], hence it suffices to show that
g(0) < 0. This reduces to 16 - 22 > 17%, which is true because

16-22 — 17° = 63 > 0.
The equality holds for a = b= 0 and ¢ = 3 (or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

9
e Let a,b,c be nonnegative real numbers so that a +b+c=3. If k > 3’ then

(a2 + k) (B2 + k) (2 + k) < k2(k +9),

with equality for a = b =0 and ¢ =3 (or any cyclic permutation). If k = 9/8, then the equality
holds also for a =0 and b = c=3/2 (or any cyclic permutation).
O

P 1.87. If a,b,c are nonnegative real numbers so that a + b+ c = 3, then

1
(@®+1)P*+1)(c*+1) < 1%9.

(Vasile C., 2006)

Solution. Write the inequality as
f(a)+ f(b) + f(c) <In169 — In 16,

where
f(w)=In@@*+1), wuelo0,3.
From 21 2)
" o —Uu
f'(u) = [CESEL

it follows that f is strictly convex on [0, 1] and strictly concave on [1,3]. According to LCRCF-
Theorem, it suffices to consider the cases a =0 and 0 < a < b=c.
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Case 1: a = 0. We need to show that b + ¢ = 3 involves
169
VP +1)(+1) < —
(7 + (@ +1) < 7
which is equivalent to
(4bc + 1)(4bc — 9) < 0.
This is true because
4bc < (b+c)* = 9.
Case 2: 0 < a < b= c. We need to show that a +2b =3 (0 < a < 1) involves
169
(a® + D" +1)* < —,
16
which is equivalent to g(a) < 0, where
3
g(a) = In(a?+ 1) + 2In(b* + 1) ~ln 169 + In 16, b= " ¢ ae(01]
Since V'(a) = —1/2, we have
(a) 2a 2b 2(a —b)(1 — ab)
a) = —_ =
g 2+1 B+l (@+DE+ 1)
— 1)2(q —
_ 3(a—1)*(a—2) <0,
2(a®+ )2+ 1) —
hence g is strictly decreasing. Consequently, we have
g(a) < g(0) = 0.
The equality holds for a = 0 and b = ¢ = 3/2 (or any cyclic permutation).
O

P 1.88. If a,b,c are nonnegative real numbers so that a + b+ c =3, then
121
(2a° +1)(26° +1)(2¢° +1) < -
(Vasile C., 2006)
Solution. Write the inequality as

fla)+ f(b) + f(c) <In121 —In4,
where

fuw)=In(2u*+1), weo0,3]

From

" _ 4(1 B 2u2>
Filu) = (2u2? +1)%’
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it follows that f is strictly convex on [0,1/v/2] and strictly concave on [1/v/2,3]. By LCRCF-
Theorem, it suffices to consider the cases a =0 and 0 < a < b= c.

Case 1: a = 0. We need to show that b 4+ ¢ = 3 involves

121

(2b2 + 1)(2C2 + ].) S T,

which is equivalent to
(4bc + 5)(4bc — 9) < 0.

This is true because
4be < (b+¢)* = 9.

Case 2: 0 < a < b= c. We need to show that a +2b =3 (0 < a < 1) involves

121
(2a* +1)(26* +1)? < ——,

which is equivalent to g(a) < 0, where

g(a) =In(2a*> + 1) +2In(20* + 1) —In121 +In4, b=

Since V'(a) = —1/2, we have
, 4a 4b 4(a — b)(1 — 2ab)
9= " w1 R )@ )
_ 6(a—1)(a®>—3a+1)
o (2a2 +1)(202 4+ 1)
3(1 —a)(3+ V5 —2a)(2a — 3+ /)
2(2a2 4+ 1)(202 + 1) ’

hence ¢’ <3_\/5> =0, ¢(a) < 0 for a € [0,3_\/§>, g'(a) > 0 for a € (3_\/5,1)

2 2 2
3—5
9

Therefore, g is strictly decreasing on |0, and strictly increasing on [ , 1] . Since

g(0) = 0, it suffices to show that g(1) < 0, which reduces to 27 -4 < 121.
The equality holds for a = 0 and b = ¢ = 3/2 (or any cyclic permutation).
[l

P 1.89. If a,b,c are nonnegative real numbers so that a + b+ ¢ > ko, where
3/
ko = 3 66 + 10V 105 ~ 4.867,

Y@ DF D@+ 1) < (%”C)QH,

then

(Vasile C., 2018)
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Solution. Consider first the case a + b+ ¢ = kg, and write the inequality as

_CL+b+C_k'0

F@)+ 10)+ £ 2 30(s), s =g =2,

where
f(u)=—In(w*+1), wue 0,k

For u € [s, ko], f(u) is convex because

6(3u? — 1
(Bu—1) _

[ (u) = Gy

By the RHCF-Theorem, we only need to show that
f(@)+2f(y) = 3f(s)

for 0 < x < s <y so that z + 2y = 3s; that is, to show that g(x) > 0 for x € [0, s], where

_ko—.f

o) = F) + 2 ) = 3f(s),  y="

Since y'(z) = —1/3, we have
/ gt ! pl o —2z 2y
2@ —y)(zy—1)  3(s—x)(a® — kox 4 2)

@+ D2+ 22+ 1D)(2 1)

ko — /K2 — 8

Since ¢ is increasing on [0, s;] and decreasing on [s1, s|, where s; = ————— it suffices to

show that g(0) > 0 and g(s) > 0. These inequalities are true because ¢g(0) = 0 and g(s) = 0.
The equality g(0) = 0 is equivalent to

m:%”)QH,

where y = 50.
According to RHCF-Theorem, if the inequality

F(a@) + F0) + f(o) > 3f (*—“)

3

holds for a 4+ b + ¢ = kg, then it holds for a + b + ¢ > kg, too.
The equality holds for a = b = ¢. In addition, for a + b + ¢ = kg, the equality occurs again for
a=0and b=c=ky/2 (or any cyclic permutation).
O
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P 1.90. Ifa,b,c,d are nonnegative real numbers so that a + b+ ¢+ d = 4, then
(a®> +3)(b* + 3)(c* + 3)(d* + 3) < 513.
(Vasile C., 2006)

Solution. Write the inequality as
fla) + f(b) + f(e) + f(d) <513,

where
fu) =In(u*+3), wuelo4].
From 23 2)
[ (u) = m,

it follows that f is strictly convex on [0, /3] and strictly concave on [v/3, 4]. By LCRCF-Theorem,
it suffices to consider the casesa =0and 0 < a < b =c.

Case 1: a = 0. We need to show that b+ ¢ + d = 4 involves
(b +3)(c* + 3)(d* +3) < 171.
Substituting b, ¢, d by 4b/3,4c/3,4d/3, respectively, we need to show that b + ¢ + d = 3 involves
(b + k) + k) (d®+ k) <K (k+9),

where k = 27/16. According to Remark from the proof of P 1.86, this inequality holds for all
k>9/8.

Case 2: 0 < a <b=c=d. We need to show that a +3b =4 (0 < a < 1) involves
(a® + 3)(b* + 3)* < 513,

which is equivalent to g(a) < 0, where

g(a) =In(a®+3) +3In(b* +3) —In513, b=

Since b'(a) = —1/3, we have

) 2b  2(a—1b)(3 — ab)
)= 3" F 3 @13 19
S )@ —ta+9)

9(a® + 3)(0? + 3)

Because

a’ —4a+9=(a—2)?*+5>0,
we have ¢'(a) > 0 for a € [0,1), g is strictly decreasing on [0, 1], hence it suffices to show that
g(0) < 0. This reduces to show that the original inequality holds for a = 0 and b = ¢ = d = 4/3,

which follows immediately from the case 1.
The equality holds for a = b = ¢ =0 and d = 4 (or any cyclic permutation).
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P 1.91. Ifa,b,c,d are nonnegative real numbers so that a + b+ ¢+ d = 4, then
(a® +2)(b* + 2)(c® + 2)(d* + 2) < 144.
(Vasile C., 2006)
Solution. Write the inequality as

fla) + () + f(e) + fd) < Inl44,

where
fu) =In(u*+2), wuelo4].
From 22 2)
[ (u) = m,

it follows that f is strictly convex on [0, v/2] and strictly concave on [v/2, 4]. By LCRCF-Theorem,
it suffices to consider the casesa =0and 0 < a < b =c.

Case 1: a = 0. We need to show that b+ ¢ + d = 4 involves
(b +2)(2 +2)(d® +2) < 72.
Substituting b, ¢,d by 4b/3, 4c/3,4d/3, respectively, we need to show that b + ¢ + d = 3 involves
(8b% +9)(8¢* + 9)(8d* 4+ 9) < 9*.

This is true according to Remark from the proof of P 1.86.
Case 2: 0 <a <b=c=d. Weneed to show that a +3b =4 (0 < a < 1) involves

(a® 4+ 2)(b* 4 2)* < 144,

which is equivalent to g(a) < 0, where

g(a) =In(a®+2) +3In(b* +2) —Inl144, b=

Since V'(a) = —1/3, we have

. 2a 20 2(a—b)(2—ab)
)= Frr @2 1Y)
S0 1) dat0)

9(a? + 2)(b% + 2)

Because
a’—4a+6=(a—2)*+2>0,

we have ¢'(a) > 0 for a € [0,1), g is strictly decreasing on [0, 1], hence it suffices to show that
g(0) < 0. This reduces to show that the original inequality holds for a = 0 and b = ¢ = d = 4/3,
which follows immediately from the case 1.
The equality holds for a = b = ¢ = 0 and d = 4 (or any cyclic permutation), and also for
a=b=0and c=d=2 (or any permutation).
[
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P 1.92. Ifa,b,c,d are nonnegative real numbers such that
a+b+c+d=4,
then

a . b i c . d
3a3+2 3¥4+2 3c3+2  3d3+2

4
< -
)

(Vasile Cirtoaje, 2019)

Solution. Consider the function

—u
Since ) ,
() = 18u*(4 — 3u?)

(3ud +2)3

is positive for u € [0,1], f is left convex on I<;. According to LHCF-Theorem and Note 1, it is
enough to show that h(z,y) > 0 for z,y € [0,4] such that x 4+ 3y = 4. We have

f(u)— f(1)  3u®+3u—2

g(u) = u—1 3342
g(x) —gly 2F(x,y
P [Co R 1) B () N
T —y (33 4 2)(3y® + 2)
where
F(z,y) = 2(2* + 2y + y°) + 2(x + y) + 2 — 32°y* — 3zy(z + ).
From

4 =x+ 3y > 2+/3xy,

we get 3zy < 4. Thus, we have
F(r,y) > 22> + 2y +9) +2(x +y) + 2 — day — 4(z +y) = 26(y — 1)? > 0.

The proof is completed. The equality occurs fora =b=c=d = 1.

P 1.93. Ifa,b,c,d are positive real numbers such that

1 N 1 N 1 N 14
9a+2 9+2 9c¢+2 9d+2 11’
then
1 1 1 1
a+b+c+d)+20>8| ~+-+-+-].
a b ¢ d

(V. Cirtoaje, 2021)
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Solution. Using the substitution

I I a
9a+2_117 9b+2_117 .. 5
that is . .
=gl-2 b=-(—-2
9 <a1 ) ’ 9 (a2 ) ’ ’
the required inequality can be written as
+as+as+
flar) + f(ag) + f(as) + flas) > 4f(s), g tata : ag+as 1,
where . " .
u
MW=~ “6(0’7)=
with X , 1
" _ L mes
2! W= T a2
For u € (0, 1], we have
1 432 > 1 432 50
wb (11— 2u)® — 93 ’

therefore f is convex on (0, s|. By the LHCF-Theorem, it suffices to show that
f@)+3f(y) = 4f(1),
where x 4+ 3y = 4. According to Note 1, this is true if h(z,y) > 0 for = + 3y = 4. We have

M=)y (22,

g(u): u—1 u_11—2u
_ g(x) — g(y) _ 48
Way) == — =1 L_y T (11— 22)(11 — 2@/)}

0 363(2y — 1)? -0
Coay(11 —22)(11 —2y) —

12111 — 21(x + y) — day]
 ay(11 — 22)(11 — 2y)

=4f(1) for a1 = ay = a3 = a4 = 1, and for a; = - and

We have f(a1) + f(a2) + f(as) + f(a4)
1
as = az = a4 = — (or any cyclic permutation). Therefore, the original inequality is an equality

4
fora=b=c=d=1,and also fora=—and b=c=d = 9 (or any cyclic permutation).
m

P 1.94. If ay,as,...,a, are nonnegative real numbers such that a1 + as + --- + a, = 1, then

+al +ay+ - +ap.

(Vasile C., 2018)
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Solution. We use the induction method. For n = 2, denoting
amaz=p, p<1/4,

we have
a3 + a3 = (ay + az)® — 3aras(ay + ag) =1 — 3p,

al +a5 = (a3 +a3)? — 2a%al = 2p* — 4p + 1,

and the inequality is equivalent to
(4p—1)* > 0.

Consider further that n > 3, a3 < as < --- < a,, and write the inequality as

) + Flaz) + -+ flan) < 5,

where

From
1" (u) = 6u(l — 2u),

it follows that f is strictly convex on [0,1/2] and strictly concave on [1/2,1]. By LCRCEF-
Theorem, it suffices to consider the cases a1 =0 and 0 < a; < ay = -+ = a,.

Case 1: a; = 0. The inequality follows by the induction hypothesis.
Case 2: 0 < a; < ag =--- = a,. We only need to prove the homogeneous inequality

8(ay +ag+ -+ ay) + (a1 +ag+ -+ a)' >8(ar +ag + -+ an)(aj + a3+ +a;)
foray =x and ay = --- = a,,_1 = 1, that is
8(z* +n—1)+(@+n—-1D*>8x+n—-1)(z*+n—-1),
vt —4(n —1)a* +6(n —1)%2* +4(n —1)(n* —2n — )z + (n — 3)(n — 1)(n® — 5) >0,

2 x—2n+2)2+2(n— 12> +4(n - 1)(n* —2n — Da + (n — 3)(n — 1)(n* = 5) > 0.

The equality holds for a; = --- = a,_2 = 0 and a,_; = a, = 1/2 (or any permutation).

P 1.95. Ifay,aq,...,a, (n > 4) are nonnegative real numbers such that
ay +az + -+ ap =M,

then
- 1

(Vasile C., 2018)
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Solution. Write the inequality as
ay+ag+---+a,
flan) + flaz) + o+ flan) 2 nf(s), 5= ———— =1,
where ( @ 0
~n(n— n—1)
flu) = — u®,  wel0,n].
For u < 1, we have
1., n(n—1)(2n —1) (n—1)(2n—-1) n*—3n+1
- = —1> = >0
2f () (u+n—1)3 - n? n? ’
therefore f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that
f@)+(n=1)f(y) =2 nf(1),
where x > 1>y and = + (n — 1)y = n. Write this inequality as follows:
(n—1)(2n—1) Loy L)) i) n 20
n(n — n— -1 -z n— -n
r+n—-1 y+n-1 Y -
—1)22n—-1)(y—1)2
TL(TL ) ( n )(y ) —n(n—l)(y—l)QZO,
2n—1—(n—1yl(ly+n—1)
n(n — Dy(y — 1)*[(n — 1)y +n? —4n + 2] > 0.
Clearly, the last inequality is true for n > 4.
The equality occurs for a; = as = -+ = a, = 1, and also for

G =ay=--=a,_1=0, a,=n
(or any cyclic permutation).
Remark. The inequality is equivalent to

(2n—1)zn: L, > aa;>2n
izlai-l-n—l n(n_1>1§i<j§n te= T
O

P 1.96. Ifay,as,...,a, are nonnegative real numbers such that

a+ag+---+a, =n,

then

n

n(nQ—n—l—l)Z

mﬁﬁ—%@—i—---—l—ai—l—n%n—l).

(Vasile C. and L. Giugiuc, 2021)
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Solution. Write the inequality as

flar) + flag) + -+ f(an) = nf(s), s= - =1,
where )
f(“):UQ—%, u € [0,n].

For u > 1, we have

1 n(n*—n+1)

§f”(u) =1-

2 _ _
>1_n n—l—lzn 1

ek S ) >0
(u+n—1)3 — n? n? ’

therefore f is convex on [s,n]. By the RHCF-Theorem, it suffices to show that

f@)+(n=1)f(y) = nf(1),

where
n

x4+ (n—1y=n, r<1<y< )
n—1

Write this inequality as follows:

1 n—1
2 =12 —n—nn®—n+1 1) >0
+n—-1y"—n—n(n"—n+1) x+n—1+y—i—n—l >0,

o =1 —n+1)(y—1)°
n(n =1y —1) 2n—1—(n—1ylly+n—1)
n(n—1)(y = 1)*n—(n - Dylly +n—2) > 0.

Clearly, the last inequality is true.
The equality occurs for a; =as =---=a, =1, and also for a; =0 and ay = a3 =--- =a, =
n

>0

?

1 (or any cyclic permutation).
n —

Remark. The inequality is equivalent to

P 1.97. Ifay,as,...,a, (n>4) are nonnegative real numbers such that

1 1 1
+ +eooid—2>1,
ai+n—1 ay+n—1 an, +n—1

then

n?—n-—1

2 2 2
a4+adi+ o +ad-n>——
1 2 n = n—2

(a1+a2+'--+an—n).

(L. Giugiuc and V. Cirtoaje, 2021)
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Solution. Using the substitution

1 €Z; .
_ = 1=1,2,...,n,
a;+n—1 n
that is

n n .
a;=——n+1, O0<a; < ——, 1=1,2,...,n,
T; n—1

the required inequality can be written as

Flon) + flea) + o+ flan) 2 nf(s), LTy,
where a7 5
n n®— i+ n
f(fu’)_ﬁ_ (n_2)u ) u6(07n_1:|7
with ) -
1 1 3n®—Tn+3
For u € (0, 1], we have
2 _ 2 _ —
3n_3n 7n—|—3u23n_3n 7n—|—3:n 3>07
n—2 n—2 n—2
therefore f is convex on (0, s]. By the LHCF-Theorem, it suffices to show that
f@)+(n=1)f(y) = nf(1),
where S .
n—1 n—1
Write this inequality as follows:
1 n-1 3n?—Tm+3 /1 n-1
n(S+—-—n)-—F—(=+ —n) >0,
x Y n—2 x Y
n*(r —1)2n+2n— 1)z —2* nBn®>—Tn+3)(x —1)* =0
22(n — x)? (n—2)z(n —x) -
The inequality is true if
nn+2n—1z—2? 3n?>—Tn+3 =0
x(n — x) n—2 -
which is equivalent to
[n—(n—1)z]n(n —2) — (2n — 3)x] > 0.
It is true for n > 4 since
n(2n—3) n*—5n+5
—2)—(2n—3)r > —2)— = > 0.
nn—2)—(2n—3)z > n(n — 2) S —
The proof is completed. The equality occurs for a; = ay = --- = a, = 1, and also for
A=Ay =+ =Qp_1] = BT and a, = 0 (or any cyclic permutation).
n —_—

O
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P 1.98. Let a,b, c be nonnegative real numbers, no two of which are zero, and

2a 2b 2c
T = = Z = .
b+c’ 4 c+a’ a+b
Prove that
1 1 1

+ + > 1.
Vhr+4 Vhy+4 bz +4

(V. Cirtoage, 2021)

Solution. Due to homogeneity, we may assume a + b + ¢ = 3, when

2a 2b 2c
T30 Y73y T3 e
Thus, we need to show that
fla) + f(b) + f(c) = 3f(s),
where
o a+b+c _q
3
and ;
—u
flu) = T u u € [0,3).
From
[ I Uit

S 4/EHupBE -
it follows that f is convex on [0, s|]. By the LHCF-Theorem, it suffices to consider the case where
two of a, b, ¢ are equal. Due to homogeneity, we may set b = ¢ = 1, when

2
a+1

1 49 a+1 > 1
v/ba + 4 Vda+14 =

Sa+4 =92  t>

T =a, y=2z=

So, we need to show that

Using the substitution

GV )

Y

the inequality becomes
11 /2(92+1
— 4= g > 1,
3t 3 2t2 43

2(9t2 + 1) - 3t—1
20243 —  t

By squaring, the inequality becomes
443 — 92 46t — 1 > 0,
(t—1)%(4t—1) > 0.

The equality occurs for a = b = c.
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P 1.99. Ifa,b,c,d are positive real numbers such that abed = 1, then
A+ E 4> 200+ 0+ E+dP).
(V. Cirtoage, 2021)

Solution. Using the substitutions

we need to show that
@)+ fy) + f(z) + f(w) = 4f(s),

where

For u > 0, we have
f"(u) = e**(9e" — 8) > 0,

hence f is convex for v > 0. By the RHCF-Theorem and Note 2, it suffices to show that
H(z,y) > 0 for z,y € R so that x + 3y = 0, where

’ o
oy = L@ =70
r—y
From
f'(u) = 3e*" — 4e**,
we get
T _ oy
H(x,y) = c-C. [3(e* + €™M + ) — 4(e" + ¢Y)] .
r—y

Since (e —e¥)/(z —y) > 0, we need to prove that
3(e* + e 4 ) — 4(e” 4+ ¢e¥) > 0
for x 4+ 3y = 0. This is true if
3(a® 4+ ab+b*) —4(a+b) >0
for ab®> =1, a,b > 0. The inequality is equivalent to
30 + 0"+ 1) —4b*(b* +1) > 0,

36° > (b* +1)(4b° — 3).

Since
4% < 20 + 20,

it suffices to show that
308 > (b 4 1)(2b" 4 20 — 3).
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Denoting b? = z, the inequality becomes
3zt > (2 +1)(22° + 22 — 3),
x4—2x3+x2—2x—|—320,

2*(r—1)* =22 +3>0.

For x < 1, we have
2*(r —1)* -2 +3> 22 +3 >0,

and for x > 1, we have
2 r—12-20+3>(r—1)*-22+3=(z—2)*>0.

The equality occurs fora =b=c=d = 1.

P 1.100. Ifa,b,c,d € [—1,1] such that a+ b+ c+d =1, then

-1 f 7
?§a5+bg+cg+d3§1

(V. Cirtoaje, 2021)

Solution. We will apply LCRCF-Theorem to f(x) = —x3, which is convex on [—1,0] and
concave on [0, 1]. In addition, assume that a < b < ¢ < d.
-7
I. Write the right inequality as f(a) 4+ f(b) + f(c) + f(d) > T According to Note 7, it

suffices to consider the cases d=1anda=b=c < d.

3
Case 1: d = 1. We need to show that a® + 0% + ¢* < 1 for a +b+c=0. Since

a+b=—ce[-1,0],

we have
3 3 3 3 3 3 3
Z—a3—b3—c3:Z—a3—b3—|—(a—|—b)3:Z—L+3ab(a—|—b)ZZ—L—Fz(a—kb)?’zz—é—l:()

\]

Case 2: a = b = ¢ < d. We need to show that 3a®> + d®> < - for 3a +d = 1. We have
3a=1—d >0, hence

W

7 7 3
1—3a3—d3:Z—Sa?’—(1—3a)3:24a3—27a2+9a+1>3a(8a2—9a+3)20.

-1
The equality occurs for a = b = > and ¢ = d =1 (or any permutation).
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I1. Write the left inequality as f(a)+ f(b)+ f(c)+ f(d) <

1
<3 According to LCRCF-Theorem,

it suffices to consider the cases a = —1 and a < b =c¢ = d.

8
Case 1: a = —1. We need to show that b + ¢* + d* > 9 for b4+ ¢+ d = 2. According to

LCRCF-Theorem, it suffices to consider the cases b = —1 and b < ¢ = d. For b = —1, we get

8
¢+ d = 3, which is not possible. For b < ¢ = d, we need to show that b3+ 2¢® > 9 for b+2c = 2.

We have b = 2(1 — ¢), hence

2 2
b+ 2¢% — g =8(1—c¢)*+2c° — g = §(32 — 108¢ + 108¢* — 27¢*) = §(2 —3¢)*(8 — 3¢) > 0.

1
Case 2: a < b =c¢ = d. We need to show that a3+3b3+§ > 0 for a+3b = 1. From

1 2
1:a—|—36§4band3b:1—a§2,wehaveZgbgg,hence

1 11 1
a® + 3b° + 5= (1—3b)° +3b° + 5= §(10 — 81b + 243b* — 216b%) = §(2 — 3b)(5 — 33b + 72b%)

1 2
> §(2 — 3b)(4 — 34b + 72b*) = 5(2 — 3b)(4b — 1)(9b — 2) > 0.
2
The equality occurs fora=—land b=c=d = 3 (or any permutation).

19
P 1.101. Prove that 7 18 the minimum positive value of the constant k such that

i),/b—l—c "‘i/ c+a _'_{,/ a+b > 30 2
ka+b+c kb+c+a kc+a-+b k+2

holds for any nonnegative real numbers a,b,c with a +b+ ¢ > 0.

(V. Cirtoage, 2024)

[ 2 19
Solution. For b = ¢ = 0, the inequality becomes 2 > 3¢ T2 which is equivalent to k& > T

19
To show that vy is the minimum value of the constant k, we need to prove the inequality

b+c c+a \/ a+b
3 3 3 > 32.
\/19a—1—4l)—|—40+\/1917—1-40+40L+ 190~|—4a+4b_\/—

Due to homogeneity, we may assume that a + b+ ¢ = 3. Thus, we need to show that

fla) + f(b) + flc) = 3f(s),

where

a+b+c_
; —

1
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4/ 3—u
f)= e, weld)

,oo 38(26 — 15u)
I = a3 50y B — w

it follows that f is convex on [0, s]. By the LHCF-Theorem, it suffices to consider the case where
a > b = c. Due to homogeneity, we may set a = 1, hence b = ¢ := x < 1. So, we need to show

that
2 z+1
v/ 24/ > v/2.
893+19Jr 23934—4_\/_
‘o 5 27x <1,
8x + 19

5/ 4(1183 + 27)

and

From

Denoting

the inequality becomes

t >3
+ 153 +4 — 7
4(1143 + 27) 3
"/ > (3¢
15¢3 + 4 = )

t(5t° — 45t* + 135t — 119¢* — 12t + 36) > 0,
t(t — 1)*(5t° — 35t* + 60t + 36) > 0.

It is true because
5t% — 35t% + 60t + 36 > 35t(1 — t) > 0.

The equality occurs for a = b = ¢, and also forb=c=0,orc=a=0,0r a =b=0.



Chapter 2

Half Convex Function Method for
Ordered Variables

2.1 Theoretical Basis

The following statement is known as the Right Half Convex Function Theorem for Ordered
Variables (RHCF-OV Theorem).

RHCF-OV Theorem (Vasile Cirtoage, 2008). Let f be a real function defined on an interval 1
and convex on I>,, where s € int(I). The inequality

ay+ag+---+ap
)+ fla) oo (o) 2 g (A5
holds for all ai,as,...,a, €1 satisfying

a +ag + -+ +a, =ns

and
ag<ay<---<a,<s, me{l,2...,n—1},

if and only iof
f@)+n—m)f(y) > (L+n—m)f(s)

for all x,y € 1 so that

Proof. For

the inequality
flar) + fla2) + -+ + f(an) = nf(s)
becomes

f(@) 4+ (n—m)f(y) = (1+n—m)f(s);

thus, the necessity is proved. To prove the sufficiency, we assume that

a; < ax < - < ay.

145
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From a; < as < --- < a,, < s, it follows that there is an integer
ke{mm+1,...,n—1}

so that
alg---gakgsﬁakﬂﬁ“'ﬂaw

Since f is convex on Is, we may apply Jensen’s inequality to get

flaga) +---+ flan) = (n = k) f(2),

where n n
a “ . a
z =t " zel
n—=k

Therefore, to prove the desired inequality
flar) + flag) + -+ flan) > f(s),
it suffices to show that
flar) + -+ fla) + (n = k) f(2) = nf(s). (*)
Let by, ..., b, be defined by
a+mn—m)b;=(14+n—-—m)s, i=1,... k.

We claim that

Indeed, we have

b1> Zbkn
s—a
by — s = E >,
n—m
and
ZZbl
because

(n—m)by=(1+n—m)s—a
=—(m-—1s+ (aa+ -+ ar) + (a1 + -+ an)
S—(m—1)8+(l€—1)8+<ak+1+"'+@n):
=(k—m)s+(n—Fk)z<(n—m)z.

Since by, ..., by € 14, by hypothesis we have

flar) + (n—=m)f(b1) = (1 +n—m)f(s),

flag) + (n—m) f(be) = (1+n—m)f(s),
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hence

flar) 4+ flax) + (n =m)[f(br) + - - - + f(bx)] = k(1 +n —m)[f(s),

flar) + -+ flax) 2 k(L +n—m)f(s) = (n —m)[f(b1) + -+ f(bx)].
According to this result, the inequality (*) is true if

(L= m) () — (= m)[F(0) + -+ F00)] + (0~ K)F() = i (s),

which is equivalent to

pf(z) + (k=p)f(s) = f(br) +--+ flbu), p=
By Jensen’s inequality, we have

pf(z) + (L=p)f(s) = f(w), w=pz+(1-p)s=s.

Thus, we only need to show that

fw)+(k=1)f(s) = f(br) + -+ f(br).
Since the decreasingly ordered vector Ay = (w,s,...,s) majorizes the decreasingly ordered vector
By = (b1, b, ..., by), this inequality follows from Karamata’s inequality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem for Ordered Variables (LHCF-
OV Theorem).

LHCF-OV Theorem. Let f be a real function defined on an interval I and convexr on I,
where s € int(l). The inequality

n

f<a1)+f(a2)+"'+f(an)an<a1+a2+"'+an>

holds for all aq,as, ..., a, €1 satisfying
art+ay+---+a, =ns

and
ag > ag > >a, >s, me{l,2...,n—1},

if and only if
f@)+n—=—m)f(y) = (1+n—m)f(s)

for all x,y €1 so tht
rT>s52>Y

- — I

z+ (n—m)y=(1+n—m)s.

From the RHCF-OV Theorem and the LHCF-OV Theorem, we find the HCF-OV Theorem
(Half Convex Function Theorem for Ordered Variables).

HCF-OV Theorem. Let f be a real function defined on an interval I and convex on 1> (or 1<),
where s € int(l). The inequality

n

f(a1)+f(a2)—|-...+f(an)an(a1+a2—}-...+an>
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holds for all ay,as,...,a, €1 so that
ay +ag+---+a,="ns

and at least m of ay,as, ..., a, are smaller (greater) than s, where m € {1,2,...,n — 1}, if and
only if
f@)+(n—m)f(y) = (L+n—m)f(s)

for all x,y € I satisfying x + (n —m)y = (1 +n —m)s.

The RHCF-OV Theorem, the LHCF-OV Theorem and the HCF-OV Theorem are respectively
generalizations of the RHCF-Theorem, the LHCF Theorem and the HCF-Theorem, because the
last theorems can be obtained from the first theorems for m = 1.

Note 1. Let us denote

WS, 8w =g
o) = =T i) = O

In many applications, it is useful to replace the hypothesis
f@)+n—m)f(y) = (L+n—m)f(s)

in the RHCF-OV Theorem and the LHCF-OV Theorem by the equivalent condition
h(z,y) >0 forall x,y €l sothat z+ (n—m)y = (14+n—m)s.

This equivalence is true since

f@)+(n—m)f(y) —(1+n—m)f(s) = [f(x) = f(s)] + (n—m)[f(y) — f(5)]
= (z — s)g(x) + (n —m)(y — s)g(v)
(

= (e = w)la(@) — g(v)]
= (@ y)h(e,y).

Note 2. Assume that f is differentiable on I, and let
f'(@) = ['(y)
r—y
The desired inequality of Jensen’s type in the RHCF-OV Theorem and the LHCF-OV Theorem
holds true by replacing the hypothesis

flx)+(n—m)f(y) > (1 +n—m)f(s)
with the more restrictive condition

H(z,y) >0 forall z,y €l sothat x+ (n—m)y=(1+n—m)s.

H(x,y) =

To prove this, we will show that the new condition implies

f@)+(n—m)f(y) = (1+n—m)f(s)
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for all z,y € [ so that x + (n —m)y = (1 +n — m)s. Write this inequality as
file) = (L+n—m)f(s),

where

fila) = f(a) + (0= (LAY

n—m

From

fmmzfm»—f(“+”‘m”‘x)

= /@)~ f(y
= - (),

it follows that f; is decreasing on I<4 and increasing on I,; therefore,
filz) = fi(s) = (1 +n—m)[f(s).

Note 3. The RHCF-OV Theorem and the LHCF-OV Theorem are also valid in the case
when f is defined on I\ {ug}, where ug € I, for the RHCF-OV Theorem, and ug € I for the
LHCF-OV Theorem.

Note 4. The desired inequalities in the RHCF-OV Theorem and the LHCF-OV Theorem
become equalities for
a; = Qa9 = -+ = Qp = S.

In addition, if there exist x,y € I so that
r+m—my=0+n-—m)s, f(x)+n-—m)f(y)=0+n-—m)f(s), =#y,
then the equality holds also for
Gy =2, Gy =" ""=0Qp =25, (Upi1 =" ""=0,=1Y
Notice that these equality conditions are equivalent to
z+(n—m)y=1+n—m)s, h(z,y)=0
(x <y for the RHCF-OV Theorem, and = > y for the LHCF-OV Theorem).

Note 5. The WRHCF-OV Theorem and the WLHCF-OV Theorem are extensions of the
weighted Jensen’s inequality to right and left half convex functions with ordered variables ( Vasile
Cirtoage, 2008).

WRHCF-OV Theorem. Let p1,ps,...,p, be positive real numbers so that
prtpet-+p, =1,

and let f be a real function defined on an interval I and convex on Is,, where s € int(I). The
inequality
pif(@1) +paf(@2) + -+ puf(xn) = f(pra1n+ poza + - + ppy)



150 Vasile Cirtoaje

holds for all xq,xs,...,x, €1 so that p1x1 + poxs + -+ + ppry, = s and
xleQS"'ana l'mSS, m€{1727"'7n_1}a

of and only iof
for all x,y € 1 satisfying

where
_ Pm+1 +pm+2 + - +pn

y4!

WLHCF-OV Theorem. Let pi,ps,...,p, be positive real numbers so that
pPrtpet-+pa=1,

and let f be a real function defined on an interval I and convex on lI<,, where s € int(I). The
imequality
pif(x1) +paf(ze) + -+ + puf(zn) = f(P171 + p2va + - + pun)

holds for all x1,xs,...,x, €1 so that p1x1 + poxs + -+ + ppx, = s and
XL > Ty > >y, Ty >s, me{l,2,...,n—1},
if and only if

f(@) +kf(y) = (1 +k)f(s)

for all x,y € 1 satisfying
r>s>y, z+ky=(1+k)s,

where
_ Pm+1 + Pmy2 + -+ Dy

b1

k
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2.2 Applications

2.1. Find the least value ko € [1,00) of the constant k such that

1 1 1 3
>
ka2+b+c+kb2+c+a+k‘02+a+b_ k+2

for any nonnegative real numbers a, b, ¢ with at most one of them larger than 1 and a+b+c = 3.

2.2. If a, b, ¢, d are real numbers so that
a<b<1<c<d, a+bt+c+d=4,
then

(3a* — 2)(a — 1)* + (3b* — 2)(b— 1)* + (3¢® — 2)(c — 1)* + (3d* — 2)(d — 1)* > 0.

2.3. If a, b, ¢, d are nonnegative real numbers so that

a>b>1>c>d, a+bt+c+d=4,

then
1 n 1 n 1 n 1 <4
263 +5  2034+5 26345 24345 T
2.4, If
—2n—1
1 < < <a, <1< ap1 <0 < agy, ay + ag + -+ + ag, = 2n,
n_
then

a§’+a§’+---+a§n22n.

2.5. Let ay,as,...,a, (n > 3) be real numbers so that a; + as + - -+ + a,, = n. Prove that
(a) if =3<a; <~ <ap2<1<a, 1 <ay, then

aj + a5+ -+ ay > af +a;+ -+ ad;

n’

n—1

n —

(b) if —

<a; <ay<1<---<ay,, then

aj + a5+ -+ ay +n>2(af + a3+ +al)

n
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2.6. Let ay,as,...,a, be nonnegative real numbers so that a; + as + --- 4+ a, = n and let
m € {1,2,...,n— 1}. Prove that

(a) ifag <ag <---<apy, <1, then
(n—m)(ay + a3+ +a, —n) > (2n —2m+1)(af + a3 + -~ +a; —n);
(b) ifa; >ay>--+>a, >1, then

adtat-+ad-—n<(m-—m+2)(ad+as+---+a:—n).

2.7. Let ay,aq,...,a, (n > 3) be real numbers so that a; + as + - - - + a, = n. Prove that

(a) if a3 <---<a,—1 <1< a,, then

ai+ay+ -+ —n>6(af +ay e+ a; —n);
(b) if a1 <+ <ap—2 <1< apo1 < ay, then

4 4 4 14 5 5 2

a1+a2+“‘+an_”2?(a1+a2+”'+an_”)§
(c) if a3 <ay<1<a3z3<---<a,, then

2(n* — 3n + 3)
n?—>5m-+7

at+ay+---+ab—n> (a3 +a3+---+a2—n).

2.8. Let a, b, c,d, e be nonnegative real numbers so that a + b+ c+ d + e = 5. Prove that
(a) if a>b>1>c>d>e, then

21(a* + 0> + A+ d* +¢€*) > a* +b* +c* + d* + e* +100;
(b) if a>b>c>12>d> e, then

13(a®> + b+ +d*+e) >a* + b+t +d* + et +60.

2.9. Let ay,as,...,a, (n > 3) be nonnegative numbers so that a; + as + -+ + a, = n. Prove
that

(a) if a7 >+ >a,-1 >12>a,, then
T(a3+ a3+ +ad) > 3(af + a3+ +ay) + 4n;
(b) if alZ"'Zan72212anfl Zana then

13(a} + a3 + -+ +ay) > 4(a] +ay + - + ay,) + 9n.
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2.10. If ay, ao, ..., a, are positive real numbers so that a; + as + - -+ + a, = n and

> > > 1> g > >a,,  me{l,2,...,n—1},

then
1 1 1
(n —m+1)? <—+——i—~~~+——n) >4(n—m)(a] + a3+ +a2—n).
aq a9 (07%
o 1
2.11. If a4, ao, ..., a, are positive real numbers so that — + — +--- 4+ — =mn and
ap  a an
< <ap<l<ap1<---<a, me{l,2,...,n—1},
then
vn—m
a%+a§+---+ai—n22(1+—)(al—l—aQ—i—---—l—an—n).
n—m+1
2.12. Let aq,as,...,a, be nonnegative real numbers such that

ap > ay = -z ap =12 a1 2 2 ay, a +as+ -+ a, =n.

Ifn>3and 1 <k <n-—1, then

1 1 1 n
> )
kﬁ+k+1+k@+k+1+ +hﬁ+k+1—2k+1

2.13. If ay, as, ..., as, are nonnegative real numbers so that
ap > -+ >ay, 212 ap11 > 2 a2y, a1+az+---+a =2n,
then

1 1 1 2n
4.+ < .
na%+n2—|—n+1+na%+n2+n+1 na, +n2+n+1" (n+1)2

2.14. If a,b,c,d, e, f are nonnegative real numbers so that
a>b>c>1>d>e>f, a+b+c+d+e+ f=06,
then

3a+4+36+4+3c+4+3d+4 e+ 4 3f+4<6
3a2+4  302+4 3c2+4 3d*P+4  3e2+4  3f244 7
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2.15. If a,b, ¢, d, e, f are nonnegative real numbers so that
a>b>1>c>d>e>f, a+b+c+d+e+f=6,
then
a?—1 -1 -1 d?> -1 e? —1 -1
+ + + + - > 0.
(2a4+7)2  (20+7)2  (2c+7)? (2d+7)2 (2e+7)2  (2f +7)?
2.16. If a,b,c,d, e, f are nonnegative real numbers so that
a<b<1l1<c<d<e<f, a+bt+c+d+e+f=06,
then
a?—1 b -1 -1 d?—1 e? —1 fA—-1
- - —- - - <0.
(2a+5)2  (20+5)2  (2¢+5)? (2d+5)> (2¢+5)?2  (2f +5)?
2.17. If a, b, ¢ are nonnegative real numbers so that
a<b<1<e¢ a+b+c=3,
then
Vb c+ a b -
2.18. If ay, ao, ..., as are nonnegative real numbers so that
ay > ay>az>ay;>1>a5>a¢ > a7 >as, a+ay+---+ag=S3§,
then
(@ +1)(a2+1)--- (a2 +1)> (a1 +1D(ag+1)---(ag + 1).
2.19. If a,b, ¢, d are real numbers so that
-1
E—Sagbélgcéd, a+b+c+d=4,
then

()

(b)

1 1
b2

’%—+—+ + =

(1
3 +

1

b

1 1
a2

1
st

if —1<a<b<1<c<d, then

1 1

(1
2 +

b

Zt5+

1 1 1 1
+3( =47 +-+=) >0
a b ¢ d

2.20. Let a, b, c,d be real numbers such that a + b+ ¢+ d = 4. Prove that
if —1<a<b<c<1<d,then

d2

1
2

1)2

)z

gripl 1L
a b ¢ d

Sqpiplply]
a b ¢ d
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2.21. If a,b, ¢, d are positive real numbers so that
a>b>1>c>d, abed = 1,
then
9 o o o 1 1 1 1
a”+b"+c+d°-4>18(a+b+c+d————-——— = .
a b ¢ d
2.22. If a,b, ¢, d are positive real numbers so that
a<b<1<c<d, abed = 1,
then
Va2 —a+ 14V —b+1+Ve—c+1+Vd—d+1>a+b+c+d
2.23. If a,b, ¢, d are positive real numbers so that
a<b<c<1<d, abced = 1,
then
1 1 1 1 2
+ + + > 5
a3+3a+2 VB+3b+2 A4+3c+2 d3B+3d+2 3
2.24. If a1, a9, ...,a, are positive real numbers so that
ap > - >ap1>21>a,, aay---a, =1,
then
1 1 1
—+ =+t —2ata+-+a,
aq (05} Qp,
2.25. Let aq, a9, ..., a, be positive real numbers so that
ap <---<a,1<1<a, aa--a,=1
If £ > 1, then
1 N 1 P 1 S
1+ka; 1+ kay 14+ ka, ~ 1+Ek
2.26. If aq,as, ..., a9 are positive real numbers so that
ap < - <ag<1<ay, @aaz --a9=1,
then
1 1 1

>,
@12’ (mr2r T T r2r
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2.27. Let aq,as,...,a, be positive real numbers so that
a < <apr <1< a, wmar-a, =1

If p,qg > 0 so that

2pq
+qg>1+ )
b= p+4q
then
1 n 1 P 1 S n
1+ pay +qa? 1+ pas + qa3 14+pa, +qa2 — 1+p+q
2.28. Let ay,as,...,a, be positive real numbers so that

ar << apo1 <1< ay, aiay - ap = 1.

If m>1and 0 <k <m, then

1 N 1 . 1 - n
(a1 + k)™ (ag + k)™ (a, + k)™ = (1+ k)™

2.29. If a1, ao, ..., a, are positive real numbers so that
ap <--<a,1<1<a,, wa--a,=1,
then
1 1 1 n
+ Fo >
\/14‘3@1 \/14’3&2 \/1—|—36Ln 2
2.30. Let aq,as,...,a, be positive real numbers so that
ap<--<a,1<1<a, @a --a,=1L
If 0 land 0 < k£ < ! th
<m< 1l an <K= W, en
1 1 1 n

(R R T

2.31. Let aq,as,...,a, be positive real numbers so that
ay > ay > -2 a>21>app =22 a, >0, ajaz---a, = 1.

Ifn>3and 1 <k <n-—1, then

1 N 1 T 1 SN
ka; +1  kay+1 ka,+1 — k+1
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2.32. If aj, as, ..., a, (n > 4) are positive real numbers so that

ap>ay>a3>1>a, > >ay,  aay---a, =1,

then
1 n 1 P 1 SN
(Cll —+ 1)2 (a2 + 1)2 (an + 1)2 - 4
2.33. If ay, ao, ..., a, are positive real numbers so that
ap = Zap 12 1>a,,  aazy---a, =1,
then
1 n 1 P 1 <
(CLl + 3)2 (CLQ + 3)2 (CLn + 3)2 - ].6
2.34. Let aq, a9, ...,a, be positive real numbers so that

ap > -2 ap1 2>212a,, aaz---a, =1

If p,q > 0 so that p+ ¢ < 1, then

1 1 1 n
+ et < .
1+ pa; +qai 1+ pay + qa3 1+pa,+qa2 ~ 1+p+gq

2.35. Let aq,a9,...,a, be positive real numbers so that
ap > 2ap121>a,, waz---a, =1
If 1 and k£ > ! th
m > 1 an = m, en
1 1 1 n
<

O R (e S Y PR h i S A T

2.36. If a1, a9, ...,a, are positive real numbers so that
ap > - >ap1>21>a,, aaz---a, =1,
then
1 1 1

<

n
+ b <
V1+2a; V14 2a V1+2a, ~ /3
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2.37. Let ay,as,...,a, be positive real numbers so that
ay = -2 a1 = 12 ay, ayaz---a, = 1.

If0<m<1andk >m, then

1 n 1 n n 1 < n
(a1 + k)™ (ag + k)™ (a, + k)™ = (1+ k)™

2.38. If ay,as,...,a, (n > 3) are positive real numbers so that
ap >+ >ap22>1>a,12a,  aaz---a, =1,
then
1 1 1 n

@ +5?  (@a+52 T ss? S 36

2.39. If ay, as, ..., a, are nonnegative real numbers so that

alZ"'Zan—lzlzanu a%—i_a%_f—”'—’—ai:na

then
1 n 1 P 1 o
3—a; 3—ay 3—a, ~ 2
2.40. Let aq,as,...,a, be nonnegative real numbers so that
a < <a, 1 <1< ay, a+as+---+a, =n.
Prove that

3 3 3
3 3 . 3_ > _12 n_a/l n_a2 . n_a/n _ .
aj+ay+---+a,—n>(n-1) [(n—l + mo—] +- w— n
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2.3 Solutions

P 2.1. Find the least value ky € [1,00) of the constant k such that

1 1 1 3
+ + >
ka?+b+c kb2+c+a kE+a+b T k42

for any nonnegative real numbers a,b, c with at most one of them larger than 1 and a+b+c = 3.
(Vasile C., 2007)

Solution. For a = 0, b = 1 and ¢ = 2, the constraint is satisfied and the inequality leads to
2k? — 6k + 1 > 0, hence
34T

2
To prove that kg is the least value of k, we need to prove the inequality for k = kg, hence for

ko ~ 2.823.

2k* —6k+1=0.

Write the inequality as

fla) + F0) + Q) 2 3(s), s ="Tg 0=,
where )
flu) = W —uis uwel=]0,3]
Without loss of generality, assume that
a<b<l<e.
We have ) 29(u)
W= e — a3

where g(u) = 3k?u® — 3ku — 3k + 1. For u > 1, we have
g(u) =3(ku —1/2) =3k +1/4>3(k—1/2)> =3k +1/4=3k*> -6k +1=k*>0,

hence f is convex on I-,. By applying the RHCF-OV Theorem for n = 3 and m = 2, it suffices
to show that f(z)+ f(y) > 2f(1) for 0 < z <y and =+ y = 2. Denoting p = xy, we have p < 1,
while the inequality is equivalent to

2k+2 —kp

> 1-— 2k — (K% — p — k2p® >
22— (8k—1)p+12k+3°~ k12’ 6k +2k" — (k" =6k + L)p — kp" 2 0,

(1 —p)(1 — 6k + 2k* + k*p*) >0, (1—p)p? > 0.

So, the proof is finished. For k& = kg, the equality occurs when a = b = ¢ = 1, and also when
a=0,b=1and ¢ =2 (or any permutation).
O
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P 2.2. Ifa,b,c,d are real numbers so that
a<b<1<c<d, a+b+c+d=4,
then
(3a*> — 2)(a —1)* + (3b* — 2)(b— 1)* + (3¢ — 2)(c — 1)* + (3d* — 2)(d — 1)* > 0.
(Vasile C., 2007)

Solution. Write the inequality as

Fla)+ FO)+ F(0) + f(d) 2 4f(s), 5= TPy
where
fu)=(Bu*-2)(u—1)*, uel=R.
From

f"(u) = 2(18u* — 18u + 1),

it follows that f”(u) > 0 for u > 1, hence f is convex on Is,. Therefore, we may apply the
RHCF-OV Theorem for n = 4 and m = 2. Thus, it suffices to show that f(z) + 2f(y) > 3f(1)
for all real x,y so that x 4+ 2y = 3. Using Note 1, we only need to show that A(z,y) > 0, where

Wz y) = g(l':z - z(y)7 g(u) = f(ui = {(1)‘

We have
gu) =3+l +u+1)—6(u® +u+1)+u+1=3u®—3u>—2u—2,

h(z,y) = 3(a* +ay +y°) = 3(z +y) —2=(3y —4)* > 0.

From x + 2y = 3 and h(z,y) =0, we get + = 1/3, y = 4/3. Therefore, in accordance with Note
4, the equality holds for a =b=c=d =1, and also for

Remark. Similarly, we can prove the following generalization:

e Letay, as,...,as, be real numbers so that

01 < <ap <1< appy <o <dony  arFag+ oo+ az, = 20,

n
Ifk=——— th
/ 2 —nt1 e

(a3 —k)(a1 — 1)* + (a3 — k)(ag — 1)* + - -+ + (a3, — k)(ag, — 1)* >0,

with equality for ay = ay = -+ = asp, = 1, and also for
1 1 n?
1 n2_n+17 2 n ) n+1 n n2_n+1
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P 2.3. Ifa,b,c,d are nonnegative real numbers so that
a>b>1>c>d, a+b+c+d=4,

then
1 1 1 1

2a3+5+2b3—|—5+203+5+2d3+5

4
< -
T

(Vasile C., 2009)
Solution. Write the inequality as

Fla)+ F0) + (0) + f(d) = 4f(s), 5= 0TIy
where .
W =gwrs 20
From
= s )

it follows that f”(u) > 0 for u € [0, 1], hence f is convex on [0, s|]. Therefore, we may apply the
LHCF-OV Theorem for n =4 and m = 2. Using Note 1, we only need to show that h(z,y) > 0
for z,y > 0 so that x + 2y = 3. We have

flu)— f(1) 2(u? +u+1)

I =TT T @t
W) = 9(x) —g(y) _ : 2E N
r—y 7(223 +5)(2y3 + 5)
where
E = —22%" — 2zy(x +y) — 2(2® + 2y + 9°) + 5(x +y) + 5.
Since

E=(1-2y)*2+3y—2y°) = (1-2y)*(2 +y) >0,
the proof is completed. From x 4+ 2y = 3 and h(x,y) = 0, we get © = 2, y = 1/2. Therefore, in
accordance with Note 4, the equality holds for a = b =c¢=d =1, and also for

a=2, b=1, c:dzl.
2

Remark. Similarly, we can prove the following generalization.
e Ifay,as,...,as, are nonnegative real numbers so that
ap = 2ap 21 2ap4 20 2 agm, a1 t+ag+ -+ ag, =20,

then

1 N 1 o 1 S 2n?
ad+n+=  al+n+1 ad, +n+i 7 nten+1
with equality for ay = ay = -+ = as, = 1, and also for
1
a=n, a@=-=a, =1 A = = a9 = —
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P 2.4. If

—2n—1

<a
n—1 = !

IN
N
]

< ap S 1< apy <0 < agy, ar+az+---+a, =2n,
then
al+ay 4 - +as, > 2n.
(Vasile C., 2007)

Solution. Write the inequality as

ap+ag+---+ag,

flar) + flag) + -+ f(agn) > 2nf(s), 5= 5 =1,

where 5 )
3 —an =
= P
fl)=u', uz s
From f”(u) = 6u, it follows that f(u) is convex for u > s. Therefore, we may apply the RHCF-
OV Theorem for 2n numbers and m = n. By Note 1, it suffices to show that h(z,y) > 0 for all

x,yzn—lsothata:+ny:1+n. We have

flu) — (1)

2
pu— p— ]_
g(u) — u”+u+1,
— -1 2 1
T —y n—1
From z + ny =1+ n and h(z,y) = 0, we get
—2n—1 n+2
r=—" Yy = )
n—1 n—1
In accordance with Note 4, the equality holds for a; = as = -+ = a9, = 1, and also for
—2n—1 n+2
G =——" G=--=a, =1, aQu1=-=ayk= :
n—1 n—1

P 2.5. Let ay,as,...,a, (n>3) be real numbers so that a; + as + - -+ + a, = n. Prove that
((1/) Zf _SSCLI S San—Q S 1 San—l Saﬂw then

ai + a3+ +ay >ai+ a3+ +ad;
, n—1
(b) if ———5 Susa <1< <ay, then
n_
aj + a5+ -+ ay +n>2(af + a3+ +ay)

(Vasile C., 2007)
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Solution. (a) Write the inequality as

flay) + fla) + -+ flay) > nf(s), s=

where

For u > 1, we have
f"(u) =6u—2>0,

hence f(u) is convex for u > s. Thus, we may apply the RHCF-OV Theorem for m = n — 2.

According to this theorem, it suffices to show that

f@)+2f(y) = 3f(1)

for —3 < z < y satisfying = 4+ 2y = 3. Using Note 1, we only need to show that h(z,y) > 0,

e () ~ 9(v) Flu) — (1)
g\r)— gy u)—
h = - ="’
(z,9) g g(u) 1
We have
g(u) = u?,
x+3
hz,y)=z+y=——20.
From x + 2y = 3 and h(x,y) = 0, we get © = —3 and y = 3. Therefore, in accordance with Note
4, the equality holds for a; = ay = --- = a, = 1, and also for
a=—-3, a=---=a,92=1, a,_1=a,=3.

(b) Write the inequality as

flay) + flag) + -+ f(an) > nf(s), S:a1+a2;...+an
where 1
n—
f(u):u3_2u27 uz_n_?)

For u > 1, we have
f"(u) =6u—4>0,

hence f(u) is convex for u > s. Thus, we may apply the RHCF-OV Theorem for m = 2.

According to this theorem, it suffices to show that

f@)+(n—=2)f(y) = (n—1)f(1)

n—1

for —
n p—
h(xz,y) > 0, where

3 < x < y satisfying z + (n — 2)y = n — 1. Using Note 1, we only need to show that
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We have
g(U) :U2—U—1,
-3 —1
h(m,y):x+y—1:(n Jetn > 0.
n—1
n—1 n—1
From  + (n — 2)y = n — 1 and h(x,y) = 0, we get x = — 3 and y = . Therefore,
n— n —
in accordance with Note 4, the equality holds for a; = ay = --- = a, = 1. If n > 4, then the
equality holds also for
n—1 n—1
alz—n_?), a2:1, a3:---:an:n_3.
O
P 2.6. Let ay,as,...,a, be nonnegative real numbers so that ay + as + -+ + a, = n and let

m € {1,2,...,n—1}. Prove that
(a) ifa; <as <---<a, <1, then

(n—m)(a +a3+---+a, —n) > (2n —2m + 1)(a} + a3 + - +a; —n);
(b) ifay >as > -+ >ay, > 1, then
ai+ay+-+a—n<(n—m+2)(al+a;+ - +a’—n).
(Vasile C., 2007)

Solution. (a) Write the inequality as

flan) + flaz) + -+ flan) Z nf(s),  s= =1,

where
fu) = (n—m)u®— (2n—2m+ u?, wel=][0,nl.

For u > 1, we have

f"(u) =6(n —m)u—2(2n —2m + 1)
>6(n—m)—22n—-2m+1)=2n—m—1) >0,

hence f is convex on Is4. Thus, by the RHCF-OV Theorem and Note 1, we only need to show
that h(z,y) > 0 for all nonnegative numbers z,y so that = + (n — m)y =n —m + 1. We have

g(u):%:(n—m)(u2+u—i—1)—(2n—2m—|—1)(u+1)
=m-—mu*—nm—-—m+Du—n+m-—1,
h(x,y):M:(n—m)(:x+y)—n+m—1:(n—m—l)sz.

r—Yy
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From x + (n —m)y = 14+ n—m and h(z,y) =0, we get =0, y = (n —m + 1)/(n — m).
Therefore, in accordance with Note 4, the equality holds for a; = as, = --- = a,, = 1, and also for

a; =0, Qg =+ =Qpy = 1, Qa1 =+ =0y =1+ .
n—m

(b) Write the inequality as

flar) + flag) + -+ flan) > nf(s), s= =1,

where

For u <1, we have
f"(u)=2n—m+2-3u)>2(n—m+2-3)=2(n—m—1) >0,

hence f is convex on I<;. By the LHCF-OV Theorem and Note 1, it suffices to show that
h(z,y) > 0 for all z,y > 0 so that x + (n —m)y = 1 +n —m. We have

g(u):w:(n—m+2)(u—|—1)—(u2+u—|—1)
=—u’+n—m+Du+n—m+1,
h(x,y):w:—($+y)+n—m+1:(n—m—l)yZO.
From z + (n —m)y =14+ n —m and h(z,y) =0, we get x = n —m + 1, y = 0. Therefore, the
equality holds for a; = as = --- = a, = 1, and also for
ag=n—m-+1, a=---=a,=1, ap1="=a,=0.

Remark 1. For m = 1, we get the following results:

e Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then

(n—1)(ai+a3+ - +a) —n) > (2n—1)(a} + a3+ +a; —n),

with equality for aq = ay = --- =a, =1, and also for
n
CLIIO’ a2:a3:~~':an:
n—1
(or any cyclic permutation).
e Ifay, as,...,a, are nonnegative real numbers so that ay + as + - - - + a, = n, then

ai +ay+ - +ay —n < (n+1)(af +a3+- - +a; —n),
with equality for a; = ay = -+ =a, =1, and also for

ag=n, a=a3=-+=a,=~0
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(or any cyclic permutation).

Remark 2. For m =n — 1, we get the following statements:

o Ifay, as,...,a, are nonnegative real numbers so that

a <---<a,1<1<a,, a+a+---+a,=n,

then

al+ai+--+ad+2n>3(ad+ai+ - +ad),
with equality for ay = ay = --- =a, =1, and also for

a1 =0, a=---=a,1=1, a,=2.
e Ifay,as,...,a, are nonnegative real numbers so that
ap 2> 2ap1212a, a+ay+---+a,=n,

then

al+as+--+ad+2n<3(ai+ay+ - +al),
with equality for ay = ay = -+ =a, =1, and also for

a=2, a=---=a,1=1, a,=0.

Remark 3. Replacing n with 2n and choosing then m = n, we get the following results:

o Ifay,as,...,as, are nonnegative real numbers so that

@< Sy S 1< Gppr S Sagn, a1 Fagt o+ ag, = 20,

then
n(ai +ay+---+a3, —2n) > (2n+1)(a +a3+---+a3, —2n),
with equality for a1 = ay = -+ = as, = 1, and also for
1
ap =0, a=---=a,=1, apu=--=ap=1+—.
n
o Ifay, as,...,as, are nonnegative real numbers so that
ap > Za, 212 ay11 > 2 a2, atay+---+a =2n,
then
ay+ay+ oo Fay, =20 < (n+2)(0] + @ + -+ az, — 2n),
with equality for a1 = ay = -+ = as, = 1, and also for

ag=n+1, a=-=a,=1, apy1=---=a9, =0.
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P 2.7. Let ay,as,...,a, (n > 3) be real numbers so that a; + as + - - - + a, = n. Prove that

(a) if a1 <--- < any <1< ay, then
al +ay+---+ap —n>6(al+as+---+al —n);

' S Ap—2 S 1 S Ap—1 S Qn s then

(b) Zf ay

IN

14
a‘f—i—a%—k---%—ai—nzg(a%—i-a%%—-“—l—ai—n);

(c) if a1 <ay<1<az<---<a,, then

2(n? — 3n + 3)
n2—>om-+7

at+ay+---+al —n> (a2 +a3+---+a>—n).

(Vasile C., 2009)
Solution. Consider the inequality
at+ay+--+at —n>k(a®+ai+---+a:—-n), k<6,

and write it as

flar) + flaz) + -+ + flan) Z nf(s), s= =1,

where
fu) =u* —ku?, ueR.

From f”(u) = 2(6u® — k), it follows that f is convex for u > 1. Therefore, we may apply the
RHCF-OV Theorem for m =n — 1, m = n — 2 and m = 2, respectively. By Note 1, it suffices
to show that h(z,y) > 0 for all real z,y so that x + (n —m)y = 1 + n —m. We have

flu) = f(1)

1 =+ +u+1—Fk(u+1),
u_

g(u) =

~g(z) —g(y)
hz,y) = =—— = )

=2 tay+yP+arty+1—k
(a) We need to show that h(z,y) >0 for k =6, m =n — 1, z + y = 2. Indeed, we have

1
hw,y) =1—ay=2(@—y)*>0.

From = +y = 2 and h(z,y) = 0, we get © = y = 1. Therefore, in accordance with Note 4, the
equality holds for a; = a; =---=a, = 1.

(b) For k=14/3, m =n — 2 and x + 2y = 3, we have

1
h(z,y) = §(3y ~5)2>0.
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From z + 2y = 3 and h(z,y) = 0, we get x = —1/3 and y = 5/3. Therefore, the equality holds
foray =ay =--- =a, =1, and also for

-1 1 )
aG=—, GGy=+ " "=0aypo=1, (Q1=0a,==.
1 3 2 2 1 3
2(n? -3 3
(¢) We have k = (:2 — 5:j7), m =2 and z + (n — 2)y = n — 1, which involve
[(n? —5n+7)y —n®*+3n— 1]
L _ > 0.
(z,9) S —— >
From z + (n —2)y =n — 1 and h(z,y) = 0, we get
—n?+5n—-5 n?—3n+1
r=-———— =\
n2—5n+7" 4 n?2—>5n+7
Therefore, the equality holds for a; = ay =--- = a, = 1, and also for
—n?+5n—-5 . n?—3n+1
aq = Ao = a :...:an:—‘
o—snyr 2T n2 —bn+7

P 2.8. Let a,b,c,d, e be nonnegative real numbers so that a +b+ c+d+e=15. Prove that
(a) if a>b>1>c>d>e, then

21(a* + b + A+ d* +e?) > a* + b+t +d* + e 4 100;
(b) if a>b>c>1>d>e, then
13(a®> + 0>+ +d* +¢€*) > a* + b + ¢t + d* + et +60.
(Vasile C., 2009)
Solution. Consider the inequality
k(@>+b0+F+d*+e*=5)>a* +bv'+c +d* +e* -5, k>6,

and write it as

a+b+c+d+e

fla) + f(b) + fle) + f(d) + f(e) = 5f(s), s= : =1,

where
flu) = ku* —ut,  u>0.

From f”(u) = 2(k — 6u?), it follows that f is convex on [0,1]. Therefore, we may apply the
LHCF-OV Theorem for m = 2 and m = 3, respectively. By Note 1, it suffices to show that
h(z,y) > 0 for all z,y > 0 so that z + (5 — m)y = 6 — m. We have

flu) — f(1)

1 =k(u+1)— (v +u*+u+1),
u_

g(u) =
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h(x,y)ZWZk—(x2+xy+y2+x+y+l)'

(a) We need to show that h(z,y) > 0 for k =21, n =5, m = 2 and = + 3y = 4; indeed, we
have

h(x,y):21—(x2+xy+y2+a:~l—y+1):y(22—7y):y(10—|—3x+2y)20.

From z + 3y = 4 and h(z,y) = 0, we get © = 4 and y = 0. Therefore, in accordance with Note
4, the equality holds for a =b=c=d =e =1, and also for

(b) We have k =13, n =5, m = 3 and x + 2y = 3, which involve
h(z,y) =13 — (2 + 2y + >+ +y+ 1) = y(10 — 3y) = y(4 + 22 +y) > 0.

From z + 2y = 3 and h(z,y) = 0, we get x = 3 and y = 0. Therefore, the equality holds for
a=b=c=d=e=1, and also for

P 2.9. Let aj,as,...,a, (n > 3) be nonnegative numbers so that ay + as + - -+ + a, = n. Prove
that

(a) if a1 >+ >a,1>12>a,, then
T(ad4as+---+a3)>3(a] +a3 +---+a>) +4n;
(b) if a1 >--->a,2>1>a,1> ay, then
13(a3 + a3+ +a3) > 4(a] + a3 +--- +ad) + 9.
(Vasile C., 2009)
Solution. Consider the inequality
k(a3 +a3+---+ad—n)>al+a3+ - +at —n, k>2

and write it as

fla) + flaz) + -+ flan) Z nf(s),  s= =1,

where
flu) = ku® —u*, uw>0.
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From f”(u) = 6u(k — 2u?), it follows that f is convex on [0,1]. Therefore, we may apply the
LHCF-OV Theorem for m = n — 1 and m = n — 2, respectively. By Note 1, it suffices to show
that h(z,y) > 0 for > y > 0 so that « +my = 1 +m. We have

g(u>=%#(u%wl)—(u%u%uﬂ),
h(x,y):%@g/@):—(a:2+xy+y2)+(k—1)(:U—|—y+1).

(a) We need to show that h(z,y) >0 for k =7/3, m=n —1, v +y = 2. Indeed,
h(z,y) = zy > 0.

From z >y, x +y = 2 and h(z,y) = 0, we get x = 2 and y = 0. Therefore, in accordance with
Note 4, the equality holds for a; = as = --- = a, = 1, and also for

=2, a=---=a,1=1, a,=0.
(b) We have k = 13/4, m =n — 2, x + 2y = 3, which involve
h(z,y) = 3y(9 — 4y) = 3y(3 + 2x) > 0.

From z 4+ 2y = 3 and h(z,y) = 0, we get © = 3 and y = 0. Therefore, the equality holds for
a1 =ay =---=a, = 1, and also for

a =3, a=--=a,92=1, ap_1=a,=0.

P 2.10. If ay,as,...,a, are positive real numbers so that ay + as + -+ 4+ a, =n and

alz---zam>12am+12"'2ana m€{1727"'7n_1}7

then

1 1 1
(n —m+1)? <—+——i—~-+——n) >d4(n—m)(a] + a3+ +a2 —n).
aq a9 Qp,

(Vasile C., 2007)

Solution. Write the inequality as

flan) + flaz) + -+ flan) Z nf(s),  s= =1,

where
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For u € (0, 1], we have

i = 202D

w3
>2n—m+1)>=8n—-m)=2(n—-m-—1)>>0.

Since f is convex on (0, s|, we may apply the LHCF-OV Theorem. By Note 1, it suffices to show
that h(z,y) > 0 for all 2,y > 0 so that z + (n —m)y = 1 +n —m. We have

flw) = f1)  —(m—m+1)?

— = —4(n — 1
olu) = T - (n = m)(u+ 1),
- 1)? - 1—2(n —m)y)?
Ty Ty
From z + (n —m)y =1+n—m and h(x,y) = 0, we get
n—m+1 n—m+1
r=— = —\
2 Y 2(n —m)
Therefore, in accordance with Note 4, the equality holds for a; = as = --- = a, = 1, and also for
n—m+1 1 n—m-+1
1 5 2 3 +1 2(n —m)

Remark 1. For m =n — 1, we get the following elegant statement:

o Ifay,as,...,a, are positive real numbers so that

ay > > Apo1 > 1 2> ay, ay +as + - +a, =n,

then
1 1 2, 2 2
—+ =4+t —2=2a7+a;+ - +a,,
ap Qg n

with equality for ay =a, =---=a, =1

Remark 2. Replacing n with 2n and choosing then m = n, we get the following statement:

o Ifay,as,...,as, are positive real numbers so that

a2 2ap 212 a1 20 2 a2, a1+ ag+ -+ ag, =20,

then ) ) .
(n+ 1) (—+—+--~+——2n) > dn(a] + a3+ -+ + a3, —2n),
ay a2 QA2p,
with equality for ay = ag = -+ = as, = 1, and also for
n+1 n+1
ay = ) Gp=az=:-=ap, =1, QGpy1 =+ =ag, = .
2 2n
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1
P 2.11. Ifay,as,...,a, are positive real numbers so that — + — +---+ — =mn and
a1 a2 Qp,

< <an<l<apmn <--<a,, me{l,2,...,n—1},

then

Ji=m

2 24 ... 2 _n>9(1 —l
ai +ay+---+a, —n> +n—m+1 (a1 +as+---+a, —n)

(Vasile C., 2007)

Solution. Replacing each a; by 1/a;, we need to prove that

a2 2ap=>12ap1 220, atat+---+a,=n

involves G tast--ta
fla) + flaz) + o+ flan) Znf(s),  s=———"—"=1,
where "
1 2 vm —
flu)=——-—, k=1 ﬂ, u>0
U U n—m-+1

For u € (0, 1], we have

_ _ — _ 1)2
_ 6 4ku>6 4k:2(\/n m—1) >0

wt Tt (n—m+1ut —

" (u)

Thus, f is convex on (0,1]. By the LHCF-OV Theorem and Note 1, it suffices to show that
h(z,y) > 0 for z,y > 0 so that x + (n —m)y = 1 + n — m, where

hz.y) = 9(z) — 9(y). o) = flu) = ()

T =y u—1
We have
(u) -1 2k-1
u) = —
g u? U
and
1 1
hz,y)=—(—-+—-+1-2k
TYy \x Y
We only need to show that
Lol 2vn=m
Ty n—m-+1

Indeed, using the Cauchy-Schwarz inequality, we get

1+1>(1+\/n—m)27(1+\/n—m)271+2\/n—m
r y r+Mm-my  n-m+l n—m-+1

From z + (n —m)y =1+ n—m and h(x,y) = 0, we get
n—m-+1 n—m-+1

1—1—\/n—m’ y:n—m+\/n—m‘

xr =
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By Note 4, we have
fla) + flaz) + -+ + f(an) = nf(1)

fora; =ay =---=a, =1, and also for
n—m-+1 1 n—m+1
a :—7 Ao = Qaq = -+ = QA = s a = .= = .
e N e 2 3 m m+1 T gy
Therefore, the original inequality becomes an equality for a; = ay, = --- = a,, = 1, and also for
1++v/n—m n—m++vn—m
) = ———» g = a3 = -+ = Gy = 1, m41 = " = Qp = .

n—m-+1 n—m-+1

Remark. Replacing n with 2n and choosing then m = n, we get the statement below.

e Ifay,as,...,as, are positive real numbers so that
1 1 1
ap <o <ap <1< apr <0 < agy, —+—+--+— =12n,
ai a2 Q2n
then
n
af+a§+---+a§n—2n22(1+n‘/+—1)(a1+a2+---+a2n—2n).
with equality for ay = ag = --- = as, = 1, and also for
1++n n+n
ap = , Gy=az3=---=ap, =1, Qpp1 =" =ag, = .
1 il 2 3 +1 2 P
O]
P 2.12. Let ay,ao, ..., a, be nonnegative real numbers such that
ay = ay > -2 ap =12 ap 1 20 = ap, ay+as+ -+ a, =n.

Ifn>3and1 <k<n-—1, then

1 1 1 n
> .
ka§+k+1+ka§+k+1+ +kag+k+1—2k+1

(Vasile C., 2007)

Solution. Write the inequality as

flar) + flag) + -+ flan) 2 nf(s), s= - =1,
and )
f) = st 2 0.

For u > 1, we have
B 2k(3ku® —k — 1)

, 2%k (2k — 1
UG e Bay AU D

(ku?+k+1)3 ’

>
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hence f(u) is convex for u > s. Therefore, we may apply the RHCF-OV Theorem for m = n— k.
By Note 1, it suffices to show that h(z,y) > 0 for all =,y > 0 so that x + ky = 1 + k. Since

(u) = flu) = f(1) _ —k(u+1)

! u—1 @k Dk h D)

h(l’ )_g(x)—g(y)_ k ) ]{i(l‘y+x—|—y—1)_1
T ey TR e R (R D)

we only need to show that
k(zy+z4+y—1)—1>0.

Indeed,
k(zy+x+y—1)—1=ky(l+az)+ker—k—-1=14+k—2)1+z)+kr—k—1

=x(2k—z)=2(k—1+ky) >x(k—1)>0.

The proof is completed. The equality holds for a; = ay = --- = a,, = 1, and also for
1
alzagz---:akzl—i-E, Qg1 =" =0p_1 =1, a,=0.

Solution. Consider the inequality

1 1 1 n
ey s A e p AR U |
and write it as
Flan) 4 flaa) o4 fla) 2 nf(s), o= BTGy
and )
f(u):u2+k;’ u > 0.

For u > 1, we have

2(3u®* — k) _ 2(3—k)
1 — > > O
hence f(u) is convex for u > s. Therefore, we may apply the RHCF-OV Theorem for m =n —1

and m = n — 2, respectively. By Note 1, it suffices to show that h(z,y) > 0 for all z,y > 0 so
that © + (n — m)y = 1 +n — m. Since

_fw—f1) _ —u—l
9 =TT T AR R
Cg(@)—gly) ry+r+y—Fk
he,y) == —, T (k) (@2 R) (k)

we only need to show that
xy+x+y—k>0.
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(a) We need to show that zy +z+y—k>0for k=2 m=n—1, z+y = 2; indeed, we
have
ry+x+y—k=xy>0.

Fromzx <y, x+y=2and 2y +z+y—k =0, we get v =0 and y = 2. Therefore, by Note 4,
the equality holds for a; = ay =--- =a, = 1, and also for

a=0, a=---=a,1=1, a,=2.

(b) We have k =3/2, m =n —2, x + 2y = 3, hence

r(4—x)  x(l+2y) -

— k= =
Ty +xr+y 9 9 >

From z +2y =3 and 2y + x +y — k = 0, we get x = 0 and y = 3/2. Therefore, the equality
holds for a; = ay =--- = a, = 1, and also for

3
a; =0, g =+ = Qp_3 = 1, an—lzanzé-

P 2.13. Ifay,as,...,as, are nonnegative real numbers so that
a > >a,>1>ap41 > >ag,, a +ax+---+ag, =2n,

then
1 1 1 2n

< .
na%+n2+n+1+na%+n2+n+1+ +n&§n+n2+n+1_(n+1)2
(Vasile C., 2007)

Solution. Write the inequality as

ar t+ag+ -+ agy

f(al) + f(CLQ) + -+ f(agn) > an(s), S = on = 1,

where
-1

:nu2+n2+n—|—1’

f(u)
For u € [0, 1], we have

_2nu(n2+n—|—1—3nu2)>2nu(n2+n+1—3n)
 (m2+n24dn+1)3 T (e n2+n+1)3

S (u) >0,

hence f is convex on [0, s]. Therefore, we may apply the LHCF-OV Theorem for 2n numbers
and m = n. By Note 1, it suffices to show that h(z,y) > 0 for all 2,y > 0 so that z+ny = 1+n.

We have
f(u) = f(1) n(u+1)

9 = T T r e e s )
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h.y) = 9(x) —g(y)
r—y
n(n*+n+1—nr — ny — nry)
(n+1)2nz2+n>+n+1)(ny>?+n?>+n+1)
n(ny — 1)?

_ > 0.
(n+12Mna?2+n2+n+1)(ny?+n?+n+1) —

From z +ny = 1+ n and h(z,y) = 0, we get © = n and y = 1/n. Therefore, the equality holds
for a1 = ay = --- = as, = 1, and also for

1
a1 =mn, Qy=-'+=0a, =1, an+1:~--:an:ﬁ.

P 2.14. Ifa,b,c,d, e, f are nonnegative real numbers so that
a>b>c>1>d>e>f, a+b+c+d+e+ [f=6,

then
3a+4 3b+4  3c+4  3d+4 3e+4 3f—|—4<6

3a2—|—4+3b2+4+362—|—4+3d2+4+3€2+4+3f2—|—4_ '
(Vasile C., 2009)

Solution. Write the inequality as
~atbtctdte+f

fla)+ f(b) + f(c) + f(d) + f(e) + f(f) = 6f(s), s G 1,
where _3u—4
)= g5 uz0.

For u € [0, 1], we have

() = 6(16 — 9u®) + 216u(1 — u)
(3u? +4)3

hence f is convex on [0,s|. Therefore, we may apply the LHCF-OV Theorem for n = 6 and

m = 3. By Note 1, it suffices to show that h(x,y) > 0 for all z,y > 0 so that x + 3y = 4. We

> 0,

have
 fw) = f(1)  3u
o) == =T T3z
~g(@)—gly)  3(4—3xy)
T, y) = -y (B +4HB2+4)
3(x — 2)?

> 0.
(3x24+4)(3y2 +4) —

From x+ 3y = 4 and h(x,y) = 0, we get x = 2 and y = 2/3. Therefore, in accordance with Note
4, the equality holds fora =b=c=d=e = f =1, and also for

a=2, b=c=1, d:e:fzg.
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P 2.15. Ifa,b,c,d, e, f are nonnegative real numbers so that
a>b>1>c>d>e>f, at+b+c+d+e+ f=6,

then 2 b2 2 P2 2 2
a® —1 -1 cc—1 -1 ec—1 fF=1 >0

Qo+ 72 @72 @t @d+TE et TR T Rf+TEC
(Vasile C., 2009)

Solution. Write the inequality as
g_atbtetdtetf

fa) + f(0) + f(e) + f(d) + f(e) + [(f) = 6 (s), G 1,
where
Flu) = w1 w> 0
(2u+T7)%’ -
For u € [0, 1], we have
Lo 2(37 — 28u)
f (“)_—(2u+7)4 >0,

hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for n = 6 and
m = 2. By Note 1, it suffices to show that h(z,y) > 0 for all x,y > 0 so that z + 4y = 5. We

have
S = f1) w4l
g(u) = u—1  (2u+T7)%
_g(@) —g(y) 21 —do — 4y — 4oy
M, y) = r—y  (20+7)22y+7)>
_ (x —4)? _

e +T7)2Q2y+7)2 —

From = + 4y = 5 and h(z,y) = 0, we get x = 4 and y = 1/4. Therefore, the equality holds only
fora=b=c=d=e= f =1, and also for

1
a=4, b=1, c:d:e:fzzl.

P 2.16. Ifa,b,c,d, e, f are nonnegative real numbers so that
a<b<l<c<d<e<f, a+b+c+d+e+ f=6,

then 2 b2 2 2 2 2
a®—1 -1 c—1 s —1 e“—1 fF—1 <0

(204572 (@457 (2152 @2d15)? (2452 @F 452
(Vasile C., 2009)
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Solution. Write the inequality as

fla)+ f(b) + f(c) + f(d) + fle) + f(f) = 6f(s), 5:a+b+c+d+e+f:

1,

6
where )
1—wu
= — > 0.
fu) (2u + 5)?’ v=
For u > 1, we have
2(20u — 13)
" = — > >0,

hence f(u) is convex for u > s. Therefore, we may apply the RHCF-OV Theorem for n = 6 and
m = 2. By Note 1, it suffices to show that h(x,y) > 0 for all z,y > 0 so that x + 4y = 5. We

have
flw)—f1) = —u-1

g(u) = u—1 - (2u +5)2°

) = 2250

Cdzy+dr+4y —5
(22 4 5)2(2y + 5)2
dxy + 3x

(2x +5)%(2y +5)% —

From x+4y = 5 and h(x,y) =0, we get x = 0 and y = 5/4. Therefore, in accordance with Note
4, the equality holds only fora=b=c=d=e = f =1, and also for

P 2.17. If a,b, c are nonnegative real numbers so that

a<b<1<e¢ a+b+c=3,
2a 2b 2¢
+ + > 3.
b+c c+a a+b

Solution. Write the inequality as

then

(Vasile C., 2008)

a+b+c_

F@+I0)+ F0) 2 3/(s), 5= "

1,

where
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From ( )
3(4u — 3
" o
f (U’) - 4u3/2(3_u)5/27

it follows that f(u) is convex for u > s. Therefore, we may apply the RHCF-OV Theorem for
n =3 and m = 2. So, it suffices to show that

f@)+ fly) = 2f(1)
for x +y =2, 0 <z <1 <y. This inequality is true if g(x) > 0, where
g(@) = fa)+ fly) —2f(1), y=2—-=  xz€[01]

Since 3’ = —1, we have

J@) = @) =W =5 | s~

The derivative f’(x) has the same sign as h(x), where

h(z) =yB—y)? —z2B -2 =2—-2)1+2)* 23 —2)°
2(1 — 11z + 152° — 52°) = 2(1 — x)(1 — 10z + 5z?).

Let

2
pp=1-—.

V5

Since h(zy) = 0, h(z) > 0 for z € [0,21) and h(z) < 0 for = € (z1,1), it follows that ¢ is
increasing on [0, z1] and decreasing on [z1, 1]. From

9(0) = f(0) + f(2) —2f(1) = 0,

g(1) = f(1) + (1) —2f(1) =0,

it follows that g(z) > 0 for x € [0, 1].
The equality holds for a = b =c¢ =1, and also for a =0, b =1 and ¢ = 2.

P 2.18. If ai,as, ..., as are nonnegative real numbers so that
ap > ay>a3>ay>1>a5>as>ar >as, ap+az+---+ag=38,

then
(@i +1)(az+ 1) (ag+1) > (a1 +1)(az + 1) - (as + 1).

(Vasile C., 2008)
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Solution. Write the inequality as

flar) + flaz) + -+ flag) > 8f(s), s= 2=,

where
flw)=@w*+1) —In(u+1), u>0.

For u € [0, 1], we have

2(1 — u?) 1 (@ —ut)+4u(l —u?)+u?+3

IR @R @ lE

f"(u) =

Therefore, f is convex on [0,s]. According to the LHCF-OV Theorem applied for n = 8 and
m = 4, it suffices to show that f(x)+4f(y) > 5f(1) for =,y > 0 so that x + 4y = 5. Using Note
2, we only need to show that H(z,y) > 0 for x,y > 0 so that = + 4y = 5, where

f'(@) = f'(y) 2(1 — ay) 1

A = = @D+ D) T Gr D)

The inequality H(z,y) > 0 is equivalent to
21 —zy)(z+ 1)y + 1)+ (@ +1)(* +1) > 0.
Since 2(z% + 1) > (z + 1)% and 2(y? + 1) > (y + 1)?, it suffices to prove that
81—zy)+(z+1)(y+1)>0.
Indeed,
8(1 —ay) + (z 4+ 1)(y + 1) = 2822 — 38z + 14 = 28(x — 19/28)* + 31/28 > 0.

The proof is completed. The equality holds for a; = ay = - -+ = as.

P 2.19. Ifa,b,c,d are real numbers so that
-1
7§a§b§1§c§d, a+b+c+d=4,

then
7 1%-1+1-F1 +3 1+1+1+1 > 40
a2 b2 2 2 a b ¢ d)
(Vasile C., 2011)

Solution. We have

1 1
d=4—a—-b—c<4+-4+-—1=4.
a c< +2—|—2

Write the inequality as

a+b+c+d
§=——

Fla) + F0) + F(0) + F(d) > 41(), -
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where

7T 3 -1

f(u)z;—i—— UEH:[7,4:|\{O}.
: 7 3 :

Clearly, f(u) is convex for u > 1 (because — and — are convex). According to Note 3, we may

apply the RHCF-OV Theorem for n = 4 and m = 2. By Note 1, we only need to show that
h(z,y) > 0 for z,y € I so that x 4+ 2y = 3, where

TPPECES PRI (DS C
We have - 10
g(u) = T2 u
_ T(x+y)+10zy (2 +1)(—bx +21)
h(z,y) = 122 B 22212 2 0.

From z 42y = 3 and h(z,y) = 0, we get x = —1/2, y = 7/3. Therefore, in accordance with Note
4, the equality holds for a = b =c¢=d =1, and also for

7
a s s Cc 4

P 2.20. Let a,b,c,d be real numbers such that a + b+ ¢+ d = 4. Prove that
(a) if —1<a<b<c<1<d, then
3(1+1+1+1)28+1+1+1+1;
b? d? a b ¢ d
(b) if —1<a<b<1<c<d, then
E I U TS .00 1
b? d? b ¢ d
(Vasile C., 2011)
Solution. (a) We have

d=4—a—-b—c<4+1+4+1+1="7.
Write the desired inequality as

at+b+c+d

fla) + f0) + fle) + f(d) 2 4f(s),  s=—p—— =1,

where

fluy=—=—--=, wel=[-1,7]\{0}.
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From 2(9 )
—Uu
fw) = = s,

it follows that f is convex on I-,. According to Note 3, we may apply the RHCF-OV Theorem
for n = 4 and m = 3. By Note 1, it suffices to show that h(z,y) > 0 for all z,y € I so that

r+y = 2. We have
oy 1) 28

u—1 u  u?’

g(x) —gly) 3z +y)+2zy

h(z,y) = Ty 2,
20z +1)3—2) 2@+1)(y+1)
$2y2 x2y2 -

From x < y, z+y =2 and h(z,y) = 0, we get x = —1 and y = 3. Therefore, in accordance with
Note 4, the equality holds for a = b =c=d =1, and also for

a=-1, b=c=1, d=3.
(b) We have
d=4—a—-b—c<4+14+1-1=5.
Write the desired inequality as
atbt+c+d

fla) + f(0) + f(c) + f(d) = 4f(s), s= 1 1,
where 5 )
f(u)zﬁ—a, uwel=[-1,5\{0}.
From o6
pry =202

it follows that f is convex on I-,. According to Note 3, we may apply the RHCF-OV Theorem
for n = 4 and m = 2. By Note 1, it suffices to show that h(z,y) > 0 for all x,y € I so that
x + 2y = 3. We have

u—1 u o u?’
g(x) —g(y)  2(x+y)+azy
=Yy 7y
_ (x4 1)(6 — x) >0,
2222 =

From = + 2y = 3 and h(z,y) = 0, we get x = —1 and y = 2. Therefore, the equality holds for
a=b=c=d=1, and also for
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P 2.21. Ifa,b,c,d are positive real numbers so that
a>b>1>c>d, abcd = 1,
then

1 1 1 1
A+ +E+d*—-4>18lat+btetd——— - — = —= :
a b ¢ d

(Vasile C., 2008)

Solution. Using the substitution

we need to show that

where

For u < 0, we have
f(u) = 4e* +18(e” ™ — e*) > 0,

hence f is convex on (—o0,s]. By the LHCF-OV Theorem applied for n = 4 and m = 2, it
suffices to show that f(z) + 2f(y) > 3f(0) for all real x,y so that x + 2y = 0; that is, to show

that

1 2
a2+2b2—3—18<a+2b———5) >0

a
for all a,b > 0 so that ab® = 1. This inequality is equivalent to
(> —1)2(20* +1)  18(b—1)*(b+1)
b " 02 =0
(b—1)2(2b— 1)?(b+ 1)(5b + 1)
b
The proof is completed. The equality holds for a = b =c=d = 1, and also for

> 0.

a=4, b=1 c=d=1/2.

P 2.22. Ifa,b,c,d are positive real numbers so that

a<b<1l1<ce<d, abed = 1,

then

Va2 —a+14+Ve2 —b+1+VE—c+1+Vd2—-d+1>a+b+c+d.

(Vasile C., 2008)
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Solution. Using the substitution

we need to show that

where

flu)=ver —er+1—¢" uck.

We claim that f is convex for u > 0. Since

4e3* — 6" + 9e* — 2

—u gl — _ 1
W= e ey b

we need to show that
43 — 612 +9t—2>0

and
(4t — 6t° + 9t — 2)* > 16(t* — t + 1)°,

where t = e > 1. Indeed, we have
47 — 6% + 9t — 2 > 4t® — 6t + Tt > 4t — 61> + 2t = 2t(t — 1)(2t — 1) > 0

and
(4t — 6% + 9t —2)* —16(t* —t +1)> = 1263t — 1) + 9 + 12(t — 1) > 0.

By the RHCF-OV Theorem applied for n = 4 and m = 2, it suffices to show that f(z)+2f(y) >
3f(0) for all real z,y so that  + 2y = 0; that is, to show that

Va2 —a+1+2V2 —b+1>a+2b

for all a,b > 0 so that ab®* = 1. This inequality is equivalent to

VI — 2+ 1 1
b—2++2\/b2—b+12b—2+2b,

Vit —-b2+1-1
b2+ +2(WB —b+1-1) >0,
b —1 P B
VP ri4l VP _brl4bo

2 —1 >b2—1
V-2 +1+1 " 2+1

b2—1+ 20-b)
P+l VE—bri4b=

Since

it suffices to show that
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which is equivalent to

b+ 1 2
b1 - >0,
( )[b2+1 mm}—
@—D[@+DVW—b+1—§+ﬁ—Q]ZQ
(b-1PER-20+3)
b+1)Vvb2—b+1+b02—-b+2

The last inequality is clearly true. The equality holds for a =b=c=d = 1.

P 2.23. Ifa,b,c,d are positive real numbers so that
a<b<c<1<d, abed = 1,

then
1 1 1 1

a3—|—3a—|—2+b3+3b+2+c3+30—|—2+d3+3d+2

2

> —.

-3
(Vasile C., 2007)

Solution. Using the substitution

we need to show that

where ot
r<y<z<0<w, =T,
fw) = ueR
u = u .
edu 4 3eu 4 2’

We claim that f is convex for v > 0. Indeed, denoting ¢t = e*, t > 1, we have

337 + 2t — 612 4 3t — 2)
B (t3 + 3t + 2)3
3t(t —1)(3t* + 3t + 5t* — t + 2)

— > 0.
(t3 4 3t + 2)3 =

By the RHCF-OV Theorem applied for n = 4 and m = 3, it suffices to show that f(z)+ f(y) >
2£(0) for all real x,y so that z + y = 0; that is, to show that

1 1 1
>
a® + 3a + 2 - B*+3b+2 3
for all a,b > 0 so that ab = 1. This inequality is equivalent to

S (u)

(a—1)*a*+a+1)>0.

The equality holds fora=b=c=d =1.
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P 2.24. If ay,as,...,a, are positive real numbers so that
ay = Zap1 21> ap,  waz---a, =1,
then
1 1 1
—+—+-t—2ata+- -+ a,
aq a9 Qp,

we need to show that

where

For u < 0, we have
f//<u> — efu _ eu Z 07

(Vasile C., 2007)

therefore f(u) is convex for u < s. By the LHCF-OV Theorem applied for m = n — 1, it suffices
to show that f(x) + f(y) > 2f(0) for all real =,y so that = +y = 0; that is, to show that

1 1
——a+-—-b2>0
a b

for all a,b > 0 so that ab = 1. This is true since

1 1 1 1
__a+——b:——a,+a——:0-
a b a a
The equality holds for
a>1, a=--=a,1=1 a,=1/a;.
P 2.25. Let ay,ao,...,a, be positive real numbers so that
ap < - <apq <1< ay, aiaz---a, = 1.
If k> 1, then
1 N 1 - 1 SN
1+ka; 1+ ka, 14+ka, ~ 1+Ek

(Vasile C., 2007)
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Solution. Using the substitution

we need to show that

where et
I :I/’ .. "En
wlg"'gxnflg()an; § = ! 2 207
n
Flu) = — R
U)=——, u )
1+ kev’
For v > 0, we have
ke (ke* — 1)
" _
Fw) =4 ey 20

therefore f(u) is convex for u > s. By the RHCF-OV Theorem applied for m = n — 1, it suffices
to show that f(x) + f(y) > 2f(0) for all real x,y so that 2 + y = 0; that is, to show that

1 1 2
+ >
l+ka 1+kb~ 1+k

for all a,b > 0 so that ab = 1. This is true since

1 n 1 2 _k(k—l)(a—1)2>0
l+ka 14+kb 1+k (1+ka)(a+k) =
The equality holds for a; = as =--- =a, = 1. If £k =1, then the equality holds for
a <1, a=--=a,1=1a,=1/a;.
m
P 2.26. If ay,as,...,a9 are positive real numbers so that
ap < - <ag <1< ay, ajag---ag =1,
then
1 1 1
> 1.

(a1 +2)%  (ag + 2)? (ag +2)% —
(Vasile C., 2007)

Solution. Using the substitution
a; = e, 1=1,2,...,9,
we can write the inequality as

flx1) + f(x2) + -+ f(xe) 2 9f(5),
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where Yt n
B <o Sag<0<a,  s= =,
f(u) L SN
u = u .
EE
For u € [0, 00), we have
4e"(e* — 1)
" =_—_ 2 7>

hence f is convex on [s,00). According to the RHCF-OV Theorem (case n = 9 and m = 8), it
suffices to show that f(z) + f(y) > 2f(0) for all real x,y so that =+ y = 0; that is, to show that

1 N L2
(@+2)2  (b+2?279

for all a,b > 0 so that ab = 1. Write this inequality as

b? N 1 S 2
(20+1)2  (b+2)2 9
which is equivalent to the obvious inequality
b-1*>0.
The equality holds for a1 = as =--- = a9 = 1.
m
P 2.27. Let ay,ao,...,a, be positive real numbers so that
a; < - <a,1 <1< ay, ajag - - a, = 1.
If p,q > 0 so that
2pq
+g>1+ ,
b= p+4q
then
1 1 1 n

+ +ot > .
1+ pay +qa? 1+ pas + qa3 1+ pa, +qa2 ~— 1+p+gq
(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

flan) + flo) + -+ flan) Z nf(s),

where

<<y <0< 3, 5= — =0,
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1
f(u) = T u € R.
We have .
f”(u) _ € fl(u) 7
(1 + pe* + ge?)3
where

fi(u) = 4¢%e3" + 3pge™™ + (p2 —4q)e" — p.

The hypothesis p+q¢ > 1+

is equivalent to
p+4q b

p* + 3pg + 4¢* > p + 4q.
For u € [0, 00), we have
fi(u) > 4¢%e" + 3pge" + (p* — 4q)e" —p > p(e” — 1) > 0,

hence f is convex on [s,00). According to the RHCF-OV Theorem (case m = n — 1), it suffices
to show that f(x) + f(y) > 2f(0) for all real =,y so that = + y = 0; that is, to show that

1 1 2
+ >
l+pa+qga?> 1+pb+qb> ~— 14+p+q

for all a,b > 0 so that ab = 1. Write this inequality as
1 a? 2
+ >
l+pa+qa® a*+pat+q  1+p+gq

which is equivalent to

(a —1)*h(a) >0,

where
h(a) = q(p+q—1)(a* +1) + (p* +pg +2¢* —p — 2q)a

> 2q(p+q—1)a+ (p° +pg+2¢* — p— 2q)a

= (p* + 3pq + 4¢° —p — 4q)a > 0.
The equality holds for a1 = ay =---=a, = 1.
Remark. For p =1, ¢ = 1/4 and n = 9, we get the preceding P 2.26.

m

P 2.28. Let ay,ao,...,a, be positive real numbers so that

a; < - <ap1 <1< ay, ajag - - a, = 1.

Ifm>1and 0 <k <m, then
1 N 1 P 1 S n
(a1 + k)™ (ag + k)™ (a, + k)™ = (1+ k)™

(Vasile C., 2007)
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Solution. Using the substitution

we can write the inequality as

where

For u € [0, 00), we have

” me*(me* — k)

= >0
f (U) (eu + k)m+2 -
hence f is convex on [s,00). According to the RHCF-OV Theorem (case m = n — 1), it suffices
to show that f(z) + f(y) > 2f(0) for all real x,y so that z < y and x + y = 0; that is, to show

that
1 1 2

+ >
(a+k)m  (b+k)m™ ~ (1+k)m
for all a,b > 0 so that a € (0,1] and ab = 1. Write this inequality as g(a) > 0, where
1 a™ 2

9= i T e r QR

with
g(a)  a"™ Ma+ k)™ — (ka+1)"+!

m (a+ k)™t (ka + 1)m+1
If ¢’(a) <0 for a € (0,1], then g is decreasing, hence g(a) > g(1) = 0. Thus, it suffices to show

that -
gt < (ka + 1) .

a+k

Since
ka+1 ma+1  (m—Fk)(1—a? -0

a+k a+m  (a+k)(a+m) =

e (ma+ 1)m+17
T \a+tm

which is equivalent to h(a) < 0 for a € (0, 1], where

9

we only need to show that

h(a) = (m —1)Ina+ (m+ 1)In(a +m) — (m + 1) In(ma + 1),
with
m—-1 m+1 mm+1) m(m—1)(a—1)>
+ - - _
a a+m  ma+1 a(a+m)(ma+ 1)
Since h/(a) > 0, h(a) is increasing for a € (0, 1], therefore h(a) < h(1) = 0. The equality holds
for a1 = ay =

h'(a) =

e=a, = 1.

Remark. For k =m =2 and n = 9, we get the inequality in P 2.26.
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P 2.29. Ifay,as,...,a, are positive real numbers so that
ar << ap1 <1 <an, aaz--a, =1,
then
1 N 1 P 1 N
\/1+36L1 \/1+3a2 m_Q
(Vasile C., 2007)
Solution. Using the substitution
a; = e’ 1=1,2,...,n,
we can write the inequality as
f(@1) + f(@2) + -+ + f(za) = nf(s),
where et
B< o<z, <0<, 5= T _ o,
n
flu) = —— cR
U) = ——,
Vv 1+ 3ev
For u > 0, we have
3e"(3e" — 2
f//<u> — € ( € ) > O,

4(1 + 3ew)5/2

hence f is convex on [s,00). According to the RHCF-OV Theorem (case m = n — 1), it suffices
to show that f(x) + f(y) > 2f(0) for all real =,y so that = + y = 0; that is, to show that

1 1
+ > 1
V1+3a V1430

for all a,b > 0 so that ab = 1. Write this inequality as

1 a
———— t4/ > 1.
V14 3a a+3

=1, 0 <t < 1, the inequality becomes

1—t2
>1-—1.
82 +1

t(1—1t)(2t — 1)* >0,

Substituting

1
v1+3a

By squaring, we get

which is true. The equality holds for a; = as =--- =a, = 1.
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P 2.30. Let ay,as, ..., a, be positive real numbers so that
ap < - <app <1< ay, ajag---a, = 1.
1
Ifo<m<1 and0<k§m, then
1 1 1 n

+ et > .
(a1 + k)™ (ag + k)™ (an, + k)™ — (1+ k)™
(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

1
o2vm > 14—,
m
hence
k< St 1 <M< 1
Using the substitution
a; = e"t, 1=1,2,...,n,

we can write the inequality as

flxy) + f(w2) + -+ flan) = nf(s),

where

For u € [0, 00), we have

" me*(me* — k)

— >0
f (U) (eu + k)m+2 - 7

hence f is convex on [s,00). According to the RHCF-OV Theorem (case m = n — 1), it suffices
to show that f(x) + f(y) > 2f(0) for all real =,y so that = +y = 0; that is, to show that

1 N 1 - 2
(a+ k)™ (b+k)m™ — (1+k)m

for all a,b > 0 so that ab = 1. Write this inequality as g(a) > 0 for a > 1, where
1 a™ 2

P ST (P § T R A T

g(a) =
(
The derivative
g/(a) B am—1<a + k;)m—l-l _ (ka + 1)m+1
m (a + k)™t (ka + 1)m+1

has the same sign as the function

h(a)=(m—1)Ina+ (m+1)In(a+ k) — (m+ 1) In(ka + 1).
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We have

/ _m—l 1 k . khl(a)
fla)=——+m+1 (a+k:_k:a+1) alatk)(ka+1)°

where

hi(a) = (m —1)(a® +1) — 2 (k - %) a.

The discriminant D of the quadratic function hy(a) is

lgz<k—%§2—0n—w2:ﬂ—%%(%§—l>.

Since D > 0, the roots a; and as of hy(a) are real and unequal. If a; < as, then hy(a) > 0 for
a € [ay,as] and hy(a) <0 for a € (—o0,a1] U [ag, 00). Since

_ 2(k+1)(m — k)

hy(1) ’

>0,

it follows that a; < 1 < aqg, therefore hi(a) and h'(a) are positive for a € [1, as) and negative for
a € (ag, 00), h is increasing on [1, as] and decreasing on [ag, 00). From h(1) = 0 and

lim h(a) = —o0,

a—00

it follows that there is a3 > ag so that h(a) and ¢’(a) are positive for a € (1, a3) and negative for
a € (ag,00). As a result, g is increasing on [1, a3] and decreasing on [as,00). Since g(1) = 0 and

1 2
ahm g(a) = k; T 0,

it follows that g(a) > 0 for @ > 1. This completes the proof. The equality holds for a; = ay =
ce=a, =1

1 1
Remark. For k = 3 and m = 3 we get the preceding P 2.29.

P 2.31. Let ay,as,...,a, be positive real numbers so that
ap > ay > -2 ap =212 ap 20 > ap, ayas---a, = 1.

Ifn>3and1 <k<n-—1, then

1 L 1 n n 1 S n
ka; +1  kas+1 ka, +1 — k+1

(Vasile C., 2007)
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Solution. Using the substitution
a; = e, 1=1,2,...,n,
we can write the inequality as

flxy) + f(w2) + -+ flan) = nf(s),

where
Ty > Ly > > x> 1> Ty > > X, 5:x1+x2+"'+x":07
n
f(u) ! €R
U) = ——+—, u
kev 41’
For u € [0, 00), we have
ke"(ke* — 1)
"(u) = ————= >0,
) (kev 4+ 1)3

hence f is convex on [s,00). According to the RHCF-OV Theorem (case m = n — k), it suffices
to show that f(z)+kf(y) > (1+k)f(0) for all real z,y so that x + ky = 0; that is, to show that

1 k

> 1
a1l bl

for all @, b > 0 so that ab® = 1. The inequality is equivalent to

i LA kg(b) >0
otk kb1 g\0) =5

where

g(b) =b" —kb+k — 1.

From ¢'(b) = k(b*~! — 1), it follows that g(b) is decreasing on (0, 1] and increasing on [1,00),
hence
g(b) = g(1) = 0.

The equality holds for ay = ay =--- =a, = 1.

P 2.32. Ifay,aq,...,a, (n>4) are positive real numbers so that

ag > ay>az3>1>a4 > - > ay, ajasg - a, =1,
then
1 N 1 - 1 _n
(@ + 12 (as+1)? (@, +12 =4

(Vasile C., 2007)
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Solution. Using the substitution
a; = e, 1=1,2,...,n,

we can write the inequality as

f(@y) + f(x2) + -+ f2n) 2 nf(s),

where T+ Tot et
P> a >y >0>ay > >, s= =,
n
fu) ! eR
u) = ———= u .
(ev + 1)
For u € [0, 00), we have
2e"(2e" — 1)
" :—>0
fiw) (" + 1) !

hence f is convex on [s,00). According to the RHCF-OV Theorem (case m = 3), it suffices to
show that f(z) + 3f(y) > 4f(0) for all real x,y so that x + 3y = 0; that is, to show that

1 n 3 > 1
(a+1)?2  (b+1)2 —

for all a,b > 0 so that ab® = 1. The inequality is equivalent to

o° + 3 >1
M+1)?2  (b+1)2 '

Using the Cauchy-Schwarz inequality, it suffices to show that

(0* +3)? .-
(B3 +1)2+3(b+1)2 =

which is equivalent to the obvious inequality

(b—1)2(4b+5) > 0.

The equality holds for a1 = ay =--- =a, = 1.
m
P 2.33. If ai,as,...,a, are positive real numbers so that
ay > Zap1 > 1> an,  wmay-a, =1,
then
1 1 1 n

@432 (@m+3? T @432 16
(Vasile C., 2007)
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Solution. Using the substitution
a; = e’ 1=1,2,...,n,
we can write the inequality as

f(@y) + f(x2) + -+ f2n) 2 nf(s),

where
Ty > > Ty 2 02>y, At
n
flu)= 3
= u
EEE
For u € (—o0, 0], we have
2e"(3 — 2e")
"(u) = ————7=->0
Jw) =i ’

hence f is convex on (—oo, s]. According to the LHCF-OV Theorem (case m = n — 1), it suffices
to show that f(x) + f(y) > 2f(0) for all real =,y so that = + y = 0; that is, to show that

1 1

@32 T ogap S

1
8
for all a,b > 0 so that ab = 1. Write this inequality as

b 1

Ghr 1) (i s

1
3’
which is equivalent to the obvious inequality

(b —1)* +12b(b — 1)* > 0.
The equality holds for ay = ay =--- =a, = 1.

Remark. Similarly, we can prove the following generalization:

e Letay,as,...,a, be positive real numbers so that
ay > Zap1 =2 12>a,  aag-c-a, =1,

If k> 142, then

1 1 1 n
- ot < :
(a1 +k)? (a2 +k) (an +k)* = (1+k)

with equality for ay = ay =---=a, = 1.
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P 2.34. Let ay,as, ..., a, be positive real numbers so that
a2 201 21 2a,, aay---a, =1

If p,q >0 so that p+ q < 1, then

1 1 1 n
1 +pay +qa? 1+ pay + qa3 1+ pa, +qa2 ~— 1+p+gq

(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

flan) + flz2) + -+ flan) Z nf(s),

where . n
Ty 2> 2Ty 202z, =hrh xn:(),

n

f(uw) _ eR

u) = )

1+ pev + ge?v’
For u < 0, we have
() = e'[—4q¢%e™ — 3pge® + (4q — p*)e" + p]

(1 + pev + ge?+)3
e*[—4¢" — 3pq + (4 — p*) + 1]

(1 + pe + ge?+)3
_e®[lp+49)(1 —p—q) +2pq|
(1 + pe* + ge?v)3

> 0,
therefore f(u) is convex for u < s. According to the LHCF-OV Theorem (case m = n — 1), it
suffices to show that f(z) + f(y) > 2f(0) for all real x,y so that z +y = 0; that is, to show that

1 1 2
+ <
l+pa+qga®> 14+pb+qb> ~ 14+p+gq

for all a,b > 0 so that ab = 1. Write this inequality as
(a—1)%[q(1 —p—q)a® + (p+2q — p* — pg — 2¢°)a+ q(1 — p — q)] > 0,
which is true because
p+2q¢—p" —pg—2¢" = (p+20)(p+q) — p* — pa — 2¢" = 2pq > 0.

The equality holds for a1 = ay =--- =a, = 1.
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P 2.35. Let ay,as, ..., a, be positive real numbers so that

ap 2> -+ 2 ap1 212 ay, ajag - - a, = 1.
[fm >1 and k Z m, then

1 1 1 n

+ +o < .
(a1 + k)™ (ag + k)™ (an + k)™ — (1+ k)™
(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

1
2lm < 14 =,
m

hence

k> L 1

Using the substitution

we can write the inequality as

f(@y) + f(w2) + -+ flan) = nf(s),

where

For u < 0, we have

wo y me'(k —me")
f (U) - (eu +k)m+2 = 0’

hence f is convex u < s. By the LHCF-OV Theorem (case m = n — 1), it suffices to show that
f(z)+ f(y) > 2f(0) for all real x,y so that x + y = 0; that is, to show that

1 n 1 < 2
(a+ k)™  (b+k)™ — (1+k)m

for all a,b > 0 so that ab = 1. Write this inequality as g(a) < 0 for a > 1, where

1 am 2
9la) = (a+k)m - (ka+ 1™ (1+k)m

The derivative
g(a)  a™ Ma+ k)" — (ka4 1)"t!

m  (a+k)"t(ka + 1)mt

has the same sign as the function

h(a)=(m—1)Ina+ (m+1)In(a+ k) — (m+ 1) In(ka + 1).
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We have

W (a) = 1+(m+1)(1 ki ): ki (a)

a+k ka+1) ala+k)(ka+1)
where

hi(a) = (m —1)(a* +1) — 2 (k - %) a.

The discriminant D of the quadratic function hq(a) is

.gz(k_%QQ—@n—m2:@9—3<1—%§>.

Since D > 0, the roots a; and as of hy(a) are real and unequal. If a; < as, then hy(a) < 0 for

a € [ay,as] and hy(a) > 0 for a € (—o0,a1] U [ag, o). Since

k+1)(m — k)
k

(1) = 2 <0,

it follows that a; < 1 < ay, therefore hy(a) and h'(a) are negative for a € [1,as) and positive for
a € (az,00), h(a) is decreasing for a € [1, as| and increasing for a € [ag, c0). From h(1) = 0 and

lim h(a) = oo,

a—0o0

it follows that there is a3 > ag so that h(a) and ¢’(a) are negative for a € (1, as) and positive for
a € (ag,00). As a result, g is decreasing on [1, a3] and increasing on [a3, 00). Since ¢g(1) = 0 and

1 2
li =——-—<0
ML) = 5~ T =0
it follows that g(a) < 0 for @ > 1. This completes the proof. The equality holds for a; = ay =
ce=ay =1,
m
P 2.36. If ai,as,...,a, are positive real numbers so that
a2 201 21 2a,, aay---an =1,
then
1 1 1 n

+ +...+—
V14241 1+ 2as V14 2a,
(Vasile C., 2007)

Solution. Using the substitution
a; = e’ 1=1,2,...,n,
we can write the inequality as

flan) + fla2) + -+ flan) Z nf(s),
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where et
B>z, 20>, 5= 2 T — ),
n
flu) = —— €R
= —, u
V14 2ev

For u < 0, we have
e"(1 —e")
(L + 2605/

' (u) = > 0,

hence f is convex on (—o0, s]. According to the LHCF-OV Theorem (case m = n — 1), it suffices
to show that f(x) + f(y) > 2f(0) for all real x,y so that z + y = 0; that is, to show that

\/ 3 N 3 <9
1+ 2a 1426 —

for all a,b > 0 so that ab = 1. By the Cauchy-Schwarz inequality, we get

¢3+¢3< o)) (12 ) 2o
1+ 2a 1420 — 1+ 2a 1420)

The equality holds for a1 = ay =---=a, = 1.
P 2.37. Let ay,as,...,a, be positive real numbers so that
ap = -+ a1 212> ay, ajag - - a, = 1.

If0 <m <1 and k > m, then
1 N 1 P 1 < n
(a1 + k)™ (az + k)™ (an +E)™ = (L+ k)™

Solution. Using the substitution

we can write the inequality as

fQxy) + f(w2) + -+ flan) = nf(s),

where

B> > > 0> 1, 5= — =0,

For u < 0, we have

(Vasile C., 2007)
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hence f is convex on (—o0, s]. According to the LHCF-OV Theorem (case m = n — 1), it suffices
to show that f(x) + f(y) > 2f(0) for all real =,y so that = +y = 0; that is, to show that

1 N 1 < 2
(a+ k)™ (b+k)m™ — (1+k)m

for all a,b > 0 so that ab = 1. Write this inequality as g(a) < 0 for a > 1, where

B 1 a™ 2
99 =0 T arr  QF R

with
g’(a) _ U,mil(a—F /{J)m+1 _ (k:a—l— 1)m+1

m (a+ k)m+1(ka 4 1)m+1
If ¢(a) <0 for a > 1, then g is decreasing, hence g(a) < ¢g(1) = 0. Thus, it suffices to show that

m+1
G-l < ka+1 ‘
a—+k

Since
ka+1 ma+1 (k —m)(a®—1) >0

a+k a+m  (a+k)(a+m) ~

m—+1
a1 < (ma—i—l) 7
a+m

Y

we only need to show that

which is equivalent to h(a) < 0 for a > 1, where
h(a) = (m —1)Ina+ (m+ 1)In(a +m) — (m + 1) In(ma + 1),

m—1+m+1_m(m—|—1) ~ m(m—1)(a—1)?

fila) = a a+m  ma+1  ala+m)(ma+1)

Since h'(a) <0, h(a) is decreasing for a > 1, hence
h(a) < h(1) =0.
This completes the proof. The equality holds for ay = as =--- =a, = 1.

1 1
Remark. For k = 3 and m = 50 We get the preceding P 2.36.

[
P 2.38. Ifay,aq,...,a, (n > 3)are positive real numbers so that
alZ"‘Zan72212an712an7 a1a2"'an:17
then
1 1 1 n

(@57 (@i T (an B2 36
(Vasile C., 2007)
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Solution. Using the substitution
a; = e, 1=1,2,...,n,

we can write the inequality as

fl@) + f(wo) + - 4 f(2n) > nf(s),

where +rp+ -+
T €T .. xn
B> 2Ty 20>y > E,, 5=
n
fl) = —— <R
u) = —— u :
EE
For u € (—o0, 0], we have
2e"(5 — 2e*)
M) = 26020
f"(u) (e 4 5)4 ’

hence f is convex on (—oo, s]. According to the LHCF-OV Theorem (case m = n — 2), it suffices
to show that f(x) +2f(y) > 3f(0) for all real x,y so that x 4+ 2y = 0; that is, to show that

1 n 2 < 1
(a+5)2  (b+5)? ~ 12
for all a,b > 0 so that ab® = 1. Since
1 bt b b?
— 5 <

(@+52  (GB2+1)

it suffices to show that
b? n 2 < 1
426+ 1)2  (b+5)?2 — 12’

which is equivalent to the obvious inequality

(b—1)*(b* +16b+ 1) > 0.
The equality holds for a; = as =---=a, = 1.

Remark. Similarly, we can prove the following refinement:

e Letay,as,...,a, be positive real numbers so that

(462 +2b)2  4(2b+ 1)2’

alZ"'Zan—2212an—12an7 a1a2"'an:1'

If k> 2+ /6, then
1 1 1

<
(a1+k)2+(a2+k:)2+ + (a, + k)2 = (1+ k)%

with equality for ay =ay =+ =a, = 1.
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P 2.39. Ifay,as,...,a, are nonnegative real numbers so that
alZ"'Zan—lzlzana a’%—i_ag—}_”'_’_a’?ﬁ,:na
then
1 1

3-@1 3—&2

—_

w
IA
SIE

_an

(Vasile C., 2007)

Solution. From
n=a}+ (a3+ - +a>_;)+a:>al+(n—2)+0,

we get

a; < V2.

Replacing ay, ap, ..., a, by y/ai,\/asz, ..., /a, , we have to prove that
flar) + flaz) + -+ flan) = nf(s),

where

For u € [0, 1], we have
3(1 —
dur/u(3 — /u)?
Therefore, f is convex on [0, s]. According to the LHCF-OV Theorem and Note 1 (case m =
n — 1), it suffices to show that h(z,y) > 0 for z,y > 0 so that x + y = 2. Since

L= 10) -1
I -1 2B Va)l+u)

and
9(x) —g(y) _ 2—Vr—\y
x—y 2(Vo + y) 1+ V) (1 + y)B = Vo) 3 — i)

h(x,y) =

we need to show that

Vi + .y < 2.

Indeed, we have
VI+y<\2x+y) =2

This completes the proof. The equality holds for a; = as =--- =a, = 1.
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P 2.40. Let ay,as, ..., a, be nonnegative real numbers so that
a < <apq <1< ay, a+ag+---+a, =n.

Prove that

3 3 3
3 3 . 3_ > _12 n_a/l n_a2 L n—an o .
aj+ay+---+a,—n>(n-1) ] + o + e — n

(Vasile C., 2010)

Solution. Write the inequality as

flar) + flaz) + -+ flan) Z nf(s), s= =1,

where

n—1

f(u):u3—(n—1)2<n_u)3, u>0.

For u > 1, we have
6n(u —1)
" o
7w = 2=

Therefore, f(u) is convex for u > s. Thus, by the RHCF-OV Theorem (case m = n — 1), it
suffices to show that f(z) 4+ f(y) > 2f(1) for z,y > 0 so that z + y = 2. We have

fla)+ fly) —2fQ) =2 +4° —2— (n — 1)° [(n_x>3+ (n_y)3—2]

> 0.

n—1 n—1

61— ) — 000 - 1?1 = 2
This completes the proof. The equality holds for
<l a=---=a,1=1, a,=2—a;.



Chapter 3

Partially Convex Function Method

3.1 Theoretical Basis

The following statement is known as the Right Partially Convex Function Theorem (RPCEF-
Theorem).

Right Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real function
defined on an interval I and convex on [s, so], where s,s0 € 1, s < sg. In addition, f is decreasing
on l<s, and f(u) > f(so) for u € L. The inequality

f(a1)+f(a2)+...+f(an)an(a1+a2+...+an)

n

holds for all ay,as,...,a, €I satisfying
ay +ag+ -+ a, =ns

if and only iof
f@)+(n=1)f(y) = nf(s)

forall z,y € I so that x < s <y and x + (n — 1)y = ns.

Proof. For
a =@, A = Q3 = - =0ap = Y,

the inequality
flar) + flag) + -+ flan) = f(s)
becomes

f(x)+(n—=1)f(y) = nf(s);

therefore, the necessity is obvious.
The proof of sufficiency is based on Lemma below. According to this lemma, it suffices to
consider that aq,as, ..., a, € J, where

J = I<s.

Because f(u) is convex on Jss, the desired inequality follows from the RHCFEF Theorem (see
Chapter 1) applied to the interval J.

205
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Lemma. Let f be a real function defined on an interval 1. In addition, f is decreasing on I,
and f(u) > f(so) for u € I, where s,s9 € I, s < s9. If the inequality

flar) + flag) + -+ flan) = nf(s)

holds for all ay, as, ..., a, € Il<y, so that ay+as+---+a, = ns, then it holds for all a;, as, ..., a, €
I so that a1 + as + - - -+ a, = ns.

Proof. For 1 = 1,2,...,n, define the numbers
aj, a; < 5o
bi ==
Sp, Qa; > Sp.

Clearly, b; € 1<y, and b; < a;. Since f(u) > f(so) for u € I, it follows that f(b;) < f(a;) for
1 =1,2,...,n. Therefore,
bl+b2+"'—|—bn <a+a+---+a, =ns
and
Jb1) + fb2) -+ fba) < flar) + flaz) + -+ + flan).
Thus, it suffices to show that

F(br) + f(b2) + -+ + f(bn) = nf(s)

for all by, b, ..., b, € I<, so that by + by + --- 4+ b, < ns. By hypothesis, this inequality is true
for by, by, ..., b, € I<s, and by + by + - - - + b, = ns. Since f(u) is decreasing on I<,,, the more we
have f(by) + f(b2) + -+ + f(b,) > nf(s) for by, by, ..., b, € I<s, and by + by + -+ - + b, < ms.

Similarly, we can prove the Left Partially Convex Function Theorem (LPCF-Theorem).
Left Partially Convex Function Theorem ( Vasile Cirtoaje, 2012). Let f be a real function

defined on an interval I and convex on [sg, s|, where so, s € I, so < s. In addition, f is increasing
on Iss, and f(u) > f(so) for u € L. The inequality

f(a1)+f(a2)+...+f(an)an(a1+a2+...+&n)

n

holds for all ai,as,...,a, €1 satisfying
ai +ag + -+ +a, =ns

if and only if
f@)+(n=1)f(y) = nf(s)
for all x,y €I so that x > s >y and x + (n — 1)y = ns.

From the RPCF-Theorem and the LPCF-Theorem, we find the PCF-Theorem (Partially Con-
vex Function Theorem).

Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real function defined
on an interval 1 and convex on [sg, s] or [s, so|, where so,s € 1. In addition, f is decreasing on
I, and increasing on I>4,. The inequality

f(a1)+f(a2)—|-...+f(an)an(a1+a2—}-...+an>

n
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holds for all ay,as,...,a, €I satisfying
a1 +az+---+a, =ns

if and only if

@)+ (n=1)f(y) =2 nf(s)
for all x,y € T so that x + (n — 1)y = ns.
Note 1. Let us denote

gy = LW =S oy 2 9@ = 90y)

u—Ss =y

As shown in Note 1 from Chapter 1, we may replace the hypothesis condition in the RPCF-
Theorem and the LPCF-Theorem), namely

f(@) +(n=1)f(y) = nf(s),
by the condition
h(z,y) >0 forall x,y €l sothat x+ (n— 1)y =ns.
Note 2. Assume that f is differentiable on I, and let
f'(x) = ['(y)
rT—y

As shown in Note 2 from Chapter 1, the inequalities in the RPCF-Theorem and the LPCF-
Theorem hold true by replacing the hypothesis

f@)+(n=1)f(y) = nf(s)

with the more restrictive condition

H(x,y) =

H(z,y) >0 forall z,y €l sothat x+ (n— 1)y =ns.

Note 3. The desired inequalities in the RPCF-Theorem and the LPCF-Theorem become equal-
ities for
a1 — Qg = = ap = S.

In addition, if there exist z,y € I so that
r+n—Dy=ns, flz)+m-1)[f(y)=nf(s), =#vy,
then the equality holds also for
G =, aG=--=a,=1Y
(or any cyclic permutation). Notice that these equality conditions are equivalent to
r+(n—1y=ns, h(z,y)=0

(x < y for the RPCF-Theorem, and = > y for the LPCF-Theorem).
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Note 4. From the proof of the RPCF-Theorem, it follows that this theorem is also valid in the
case when f is defined on I\ {ug}, where ugy € I.4,. Similarly, the LPCF-Theorem is also valid
in the case when f is defined on I\ {ug}, where ug € I,.

Note 5. The RPCF-Theorem holds true by replacing the condition
f is decreasing on I<g,
with
ns —(n—1)sy < infl.
More precisely, the following theorem holds:
Theorem 1. Let f be a function defined on a real interval I, convex on [s, so| and satisfying

min f(u) = f(so),

UEHZS

where
s,s0 €L, s<sy, ns—(n—1)sy <infl.

If
f@)+(n=1)f(y) = nf(s)

for all z,y € I so that x < s <y and x + (n — 1)y = ns, then

n

for all xy, 29, ..., x, €1 satisfying x1 + x5+ --- + 2, =nS .
In order to prove Theorem 1, we define the function
flw), u<sg, uel
Jo(u) = {

f(s0), u>sg, uel,

which is convex on I-4. Taking into account that fy(s) = f(s) and fo(u) < f(u) for all u € L, it
suffices to prove that

fo(w1) + folwa) + -+ + folxn) = nfo(s)

for all xq, xo, ..., x, € [ satisfying x1 + x5 + - - - + x, = ns. According to the HCF-Theorem and
Note 5 from Chapter 1, we only need to show that

fo(x) +(n—1)foy) > nfo(s)
for all x,y € I'so that x < s <y and z+ (n — 1)y = ns. Since

ns —x ns—(n—1)sg—x _ns—(n—1)sy—infl
— 50 = <
n—1 n—1

Y—So = §07

n—1
the inequality fo(z) + (n — 1) fo(y) > nfo(s) turns into f(x) + (n — 1) f(y) > nf(s), which holds
(by hypothesis) for all z,y € I so that x < s <y and z+ (n — 1)y = ns.

Similarly, the LPCF-Theorem holds true by replacing the condition
f is increasing on Isq,
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with

ns — (n—1)sy > sup .

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval I, convex on [so, s| and satisfying

min f(u) = f(so),

UEHSS

where
s,50 €L, s>s9, ns—(n—1)sy>supl.

If
fl@)+(n=1)f(y) = nf(s)

for all x,y € I so that x > s >y and z + (n — 1)y = ns, then

f(xl)—i_f(@)"‘“'—i—f(xn)an<x1+x2+"'+xn>

n
for all x1, 29, ..., x, €1 satisfying x1 + x5 + - - - + x,, = ns.

The proof of Theorem 2 is similar to the proof of Theorem 1.

Note 6. From the proof of Theorem 1, it follows that Theorem 1 is also valid in the case in
which f is defined on I\ {ug}, where ug is an interior point of I so that ug ¢ [s, so|. Similarly,
Theorem 2 is also valid in the case in which f is defined on I'\ {ug}, where ug is an interior point
of T so that ug ¢ [so, s].

Note 7. In the same manner, we can extend weighted Jensen’s inequality to right and left
partially convex functions establishing the WRPCF-Theorem, the WLPCF-Theorem and the
WPCF-Theorem (Vasile Cirtoage, 2014).

WRPCF-Theorem. Let py,po,...,p, be positive real numbers so that

p1+p2++pn:17 p:min{p17p27"'7pn}7

and let f be a real function defined on an interval I and convex on [s, so|, where s,s0 € 1, s < s¢.
In addition, f is decreasing on <y, and f(u) > f(so) for u € I. The inequality

pif(ar) +paf(az) + -+ poflan) > f(pray + peaz + -+ + ppay)
holds for all ai,as,...,a, €1 satisfying
Dia1 + paag + - -+ + ppay = S,

if and only if
pf(x)+ (L —p)f(y) = f(s)
for all z,y € I so that x < s <y and pr + (1 — p)y = s.
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WLPCF-Theorem. Let py,ps,...,pn be positive real numbers so that

p1+p2++pn:1> p:min{p17p27"'vpn}7

and let f be a real function defined on an interval I and convex on [sg, s], where sg,s € 1, 89 < s.
In addition, f is increasing on s, and f(u) > f(so) for u € I. The inequality

pif(ar) +paf(a2) + -+ puflan) > f(prar + pras + - - - + pray)

holds for all ay,as,...,a, €1 satisfying
pia1 + p2ag + - -+ 4 Py = S,

if and only if
pf(x)+(1=p)f(y) = f(s)
for all x,y €I so that x > s>y and pr + (1 — p)y = s.
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3.2 Applications

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

If a,b, c are real numbers so that a + b+ ¢ = 3, then

16a — 5 L 16b — 5 . 16¢c — 5 <
32a2+1 3202 +1 32¢2+1

If a,b, c,d are real numbers so that a + b+ ¢+ d = 4, then

18a—5+186—5+18c—5+18d—5<
12a24+1 1202 +1  12¢2+1  12d*2+1 —

If a,b,c,d, e, f are real numbers so that a +b+c+d+ e+ f =6, then

5a—1+5b—1+50—1+5d—1+5e—1+5f—1<4
5a2+1 502+1 52+1 5Hd2+1 5e2+1 5f241—

If ay,as,...,a, (n > 3) are real numbers so that a; + as + - - - + a,, = n, then

n(n+1)—2a; nn+1)—2a n(n+1) — 2a, <
... n
n?+(n—2)a? n?+(n—2)d3 n?+(n—2)a2 —

If a,b, ¢, d are real numbers so that a + b+ ¢+ d = 4, then

ala—1) bb—1) cle—=1) d(d—1) _
3a2+4  32+4  3c2+4  3d2+4 —

If a,b, c,d are real numbers so that a + b+ ¢+ d = 4, then
1 1 1

< 1.
3a2—3a—|—4+362—3b+4+3c2—3c+4+3d2—3d+4_
If a,b,c,d are real numbers so that a + b+ ¢+ d = 4, then
1 n 1 L 1 n 1 <4
40?2 —ba+4 462 —5b+4 42 —5c+4  4d2—-5d+4 — 3

If a,b, c,d are real numbers so that a + b+ ¢+ d = 0, then

a+1 b+1 c—|—1+d—i—1<4
a?+3 bV +3 24+3 d*+3 3
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3.9. Let ay,as,...,a, # —k be real numbers so that a; + as + - - - + a,, = n, where
n
k> ——n—.
T 2¢y/n—1
Then,
aj(a; — 1)  as(ag —1) L an(a, — 1) > 0.
(ay + k)? (ag + k)2 (a, + k)?

3.10. Let aq, as,

then

., Gy, # —k be real numbers so that a; +as +--- +a, =n. If

k>14 ——
n—1
2 2 2
a; —1 as — 1 a, —1
LA )
CE AT EAR T

3.11. Let aq,as,as, a4, as; be real numbers so that a; + as + az + a4 + a5 > 5. If

then

3.12. Let aq,as,
where

then

3.13. Let ai, g,
then

1 25
S

1 5)
< .
Zka?—l—ag—l—ag%—az;—l—ag, “ k44

..,as be nonnegative numbers so that a; +as+as+as+as > 5. lf k € [ky, ko,

29— /761

k
! 10

25
~ 0.1414 ky = — =~ 1.
0 , 2= 17 7857,
> 1 =
ka?+as+as+as+as — k+4

.., a, be nonnegative real numbers so that a; +as +---+a, >n. If £ > 1,

1 1 1
<1

k +
a; +ag+---+ay

3.14. Let ai, as, ..

then

e +ot k
ap+az+---+ap ap +az+---+ay
.,a5 be nonnegative numbers so that a; + as + az + a4 + a5 > 5. If

4 61
ke |=, —]|,

5]

)3 P <
ka?+ay+as+as+as ~ k+4
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3.15. Let ay,as,...,a, be nonnegative real numbers so that a; +as +---+a, >n. If £ > 1,

then
a1 a2 Ap,

k + k oot k
ai +ay+---+a, a+ag+---+a, a+ag+ - +ap

<1

1
3.16. Let aq, as, ..., a, be nonnegative real numbers so that a1 +as+---+a, <n. fk>1——

n
then
]_—CL1 ]_—CLQ 1_an
5 + . ot - >0
ka?+as+---+a, a+ka3+---+a, a; +ag + -+ kaz

3.17. Let aq, ao, ..., a, be nonnegative real numbers so that a; +as+---+a, <n. lfk>1——,
n

then

]_—CL1 1-@2 1_an

+ o >
1—a;+ka? 1—ay+ ka3 1 —a, +ka? —

3.18. Let aq, as, ..., a, be positive real numbers so that a1 +as+---+a, =n. f0 <k < Ll’
n_

then

al{:/al + a’;/‘u 4o+ afl/a" <n.

3.19. If a, b, ¢, d, e are nonzero real numbers so that a +b+ ¢+ d + e =5, then
5\ 5\ 5\ 5\ 5\
a b c d e

3.20. If If aq, as, ..., a7 are real numbers so that a; +as + -+ a; =7, then

(a2 +2)(a3+2)--- (a2 +2) >3".

2

3.21. Let a4, ao,...,a, be real numbers so that a; +as +---+a, =n. If £ > ﬁ
n_

, then

(a7 +k)(a3 + k) (ap + k) > (1 + k)"

3.22. Let aq,as,...,a, be real numbers such that a; +as + --- + a, =n. If n <10, then

(a2 —a;+1)(a3 —ag+1)---(a® —a, +1) > 1.
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3.23. Let aq,as,...,a, be real numbers such that a1 +as +--- 4+ a, = n. If n <26, then

(a2 —ay +2)(a5 —ay +2) - (a2 —a, +2) > 2"

3.24. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

(I—a+a")(1—=b+b)(1—c+c') > 1.

3.25. If a, b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 4, then

(1—a+a®)(1—=0+b)1—-c+cH1—d+d*) >1

3.26. If a,b, c,d, e are nonzero real numbers so that a +b+ ¢+ d + e = 5, then

5 1+1—|—1+1+1 +45 > 14 1+1+1+1+1
b2 d? - a b ¢ d e)’

3.27. If a, b, c are positive real numbers so that abc = 1, then

7—6a+7—6b+7—6c>1
24a2 2402 242 77

3.28. If a, b, c are positive real numbers so that abc = 1, then

1 1 1 1
<

a+5bc+b+5ca+c+5ab =9

3.29. If a, b, c are positive real numbers so that abc = 1, then

1 | 1 3
<2
130142 1-301 42 1-3c+42°5

3.30. If a, b, c are positive real numbers so that abc = 1, then

1 1 1
< -
(3a+ 1)(3a? — ba + 3) - (3b+ 1)(3b% — 5b + 3) * (3c+1)(3¢2 —bc+3) ~ 4

w

3.31. Let ay,as,...,a, (n > 3) be positive real numbers so that ajas---a, = 1. If p,qg > 0 so
that p+4qg > n — 1, then

]_—Cll ]_—CLQ 1_an

+ e —— ">,
1+ pay +qai 1+ pay + qa3 1+ pa, +qa2 ~
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3.32. If a, b, c are positive real numbers so that abc = 1, then

1l—a 1-0b 1—c
+ + > 0.
17+4a+6a? 17+ 4b+6b%> 17+ 4c + 6¢2
3.33. If ay, as, ..., ag are positive real numbers so that ajas - --ag = 1, then
1—ay 1—a, 1 —ag
- ot > 0.
(I1+a1)?  (1+a2)? (14 ag)? —
. —-13 13
3.34. Let a, b, ¢ be positive real numbers so that abc = 1. If k € |——=, ——=, then
3v3 3V3

a+k b+ k c+k<3(1+k;)
a2+1 bV*+1 c2+1- 2

3.35. If a, b, ¢ are positive real numbers and 0 < k < 2 + 2v/2, then

a® n b3 n ? at+b+c
ka? +bc  kb24+ca  kc2+ab— k41

3.36. If a,b, c,d, e are positive real numbers so that abede = 1, then

2 1+1+ +1 >3 1+1+ +1
a+1 b+1 e+1) — a+2 b+2 e+2)°

3.37. If ay, as, ..., a4 are positive real numbers so that ajas - - - a4 = 1, then

1 1 1 1 1 1
3 + +. o Ve >2 .
(2a1+1 2&2—}-1 +2CL14+1>_ <a1+1+a2—|—1+ +(114+1>

3.38. Let aq,ao,...,ag be positive real numbers so that ajas---ag = 1. If kK > 1, then

(k:+1)1+1++1>21+1++1
ka1+1 ]CCL2+1 ]CCLg"i‘l - CL1+1 CL2+1 CL8+1.

3.39. If aq,as, ..., a9 are positive real numbers so that ajas---ag = 1, then

1 1 1 1 1 1
2&14’1 20,2+1+ +2a9+1_a1+2+a2+2+ +CL9+2




216 Vasile Cirtoaje

3.40. If aq,as, ..., a, are real numbers so that
a17a27"'aansﬂ-7 CL1+CL2+"'+CLn:7T,

then

s
cosaj + cosag + -+ -+ cosa, < ncos—.
n

3.41. If ay,as,...,a, (n > 3) are real numbers so that

a17a27"'7an> a1+a2+"'+an:n7

then

b R
a?—a;+1 ai—ay+1 az—a,+1 7~
3.42. If a1, as,...,a, (n > 3) are nonzero real numbers so that
—n
a17a27"'7an2 ; a1+a2+"'+an:n7
n—2
then
1 1 1 1 1 1
S+5+ ot >+ttt
ay  a; az — a;  a G,

3.43. If a1, as,...,a, > —1 so that a; + as + - -+ 4+ a,, = n, then

3.44. If ay,a9,...,a, (n > 3) are real numbers so that
—(3n —2)
a1,a2,...,0yp = ————(—, a; +az+---+a, =n,
n—2
then ] ] ]
— aq — as — Ap
o >0,
(I+a1)?  (1+a9)? (14 a,)? —
3.45. Let ay,as, ..., a, be nonnegative real numbers so that a; +as+---4+a, =n. If n > 3 and
2
k> 2 — —, then
n
1—ay 1—as 1—a,

R RN
A=kl 0—kar T 0= kay) ="
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3.46. If a, b, c are positive real numbers such that abc = 1, then

s 1)?a+ 25) b+ 1)?b+ %) e+ 1)Ec+ 25) = 5_32
3.47. Let ay,a9,...,a, ( n > 3)be nonnegative real numbers so that
a4 ag + -+ ap = n.
If p<—4and ¢g=(p+1) <p+%), then
1 1 1 < n

2 + Tt g = :
aj +pay +q  a; +pas +q a, +pa, +q — 1+p+gq

3.48. Let ay,a9,...,a, (n > 3) be nonnegative real numbers so that

artas+---+a, =n.

2
If pe[—4,-2)U (—2, —} and ¢ = , then
n—2

1 1 1 n
5 + = + < .
aj +pay +q  a; +paz +q a; +pa,+q ~ 1+p+gq
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3.3 Solutions

P 3.1. If a,b, c are real numbers so that a + b+ c = 3, then
16a — 5 16b — 5 16¢ — 5

<1.
32a2 +1 +3262+1 +3202—|—1 -
Solution. Write the inequality as
a+b+c
fl@)+ J0)+ f&) 2 3f(s), 5= 0=,
where 5 _ 16
— 16u
=— R.
fW=ggor €
fFrom 16(32u? — 20 1)
u® — 20u —
f(uw) = T IVEE
(32u? + 1)
it follows that f is increasing on
2 — 33
(-OO, T] U [So, OO)
and decreasing on
5— /33
— = 50>
16
where /33
) 33
S0 = i ~ 0.6715.
16
Also, from
lim f(u)=0
U——00
and
f(So) < 0,

it follows that f(u) > f(so) for v € R. In addition, for u € [sg, 1], we have

1 —512u® + 480u? + 48u — 5
64 (322 + 1)3

~ 512u%(1 — w) + 32u(1l — u) + (16u — 5)
B (32u2 + 1)3

> 0,

(Vasile C., 2012)

hence f is convex on [sp,s|. According to the LPCF-Theorem, we only need to show that
f(z)+2f(y) > 3f(1) for all real z,y so that x + 2y = 3. Using Note 1, it suffices to prove that

h(z,y) > 0, where
_g(x) —g(y) _ flw) = f(1)
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Indeed, we have

_32(2u—1)
9W) = 3Gz 1)
_ 64(1 + 16z + 16y — 32zy) 64(4z — 5)?

. _ _ > 0.
(z,y) 3(3222 +1)(32y2 + 1) 3(3222 +1)(32y2 +1) —

Thus, the proof is completed. From z + 2y = 3 and h(z,y) = 0, we get

(or any cyclic permutation).

P 3.2. Ifa,b,c,d are real numbers so that a +b+ ¢+ d = 4, then

18a — 5 . 180 —5 N 18c -5 N 18d — 5
12¢2 +1 120241 12¢2+1  12d*>+1 —

(Vasile C., 2012)

Solution. Write the inequality as

a+b+c+d
fla)+ fO) + fle) + f(d) = 4f(s),  s=——— =1,
where s
— 18u
= R.
J) =g v
o 6(36u? — 20 3)
iy u® — 20u —
it follows that f is increasing on
5— /52
(-OO; 1—g/_] U [SQ, OO)

and decreasing on

Also, from
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and
f(S()) < 0,
it follows that f(u) > f(so) for u € R. In addition, for u € [sg, 1], we have

1, —216u3 + 180u? + 54u — 5
o (W) =

24 (1202 + 1)3

~ 216u*(1 — u) + 36u(l — u) + (18u — 5)
B (32u2 + 1)3

> 0,

hence f is convex on [sg, s|]. According to the LPCF-Theorem and Note 1, we only need to show
that h(z,y) > 0 for 2,y € R so that = + 3y = 4. We have

flu) = fA) _ 6(2u—1)

T R DS K
W) g(z) —g(y) 12(1 + 6z + 6y — 122y) 12(2x — 3)?
x = = _=
Y T —y 1222+ D122 +1) (1222 + (1292 + 1) =

Thus, the proof is completed. From = + 3y = 4 and h(x,y) = 0, we get x = 3/2 and y = 5/6.
Therefore, in accordance with Note 3, the equality holds for a =b=c=d =1, and also for

(or any cyclic permutation).

P 3.3. Ifa,b,c,d,e, f are real numbers so thata+b+c+d+e+ f =06, then

5a—1+5b—1+50—1+5d—1+5e—1+5f—1<
5a?+1  502+1 5241 b5d*2+1  be2+1 5241~

(Vasile C., 2012)
Solution. Write the inequality as
atbtctd+e+f

fla) + f0) + fle) + f(d) + fle) + f(f) = 4f(s), 5= 1,

6
where | _&
—bu
= — R.
From 5(5 29 1)
, _ u® — 2u —
fw) (buz+1)2 7’

it follows that f is increasing on

1-+6
(—oo, 7 ] U [sg, 00)
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and decreasing on

1—+/6 1 6
\/_,80 s So = + \/_ ~ 0.69.
5 5
Also, from
S fw) =0
and
f(S()) < 0,

it follows that f(u) > f(so) for v € R. In addition, for u € [sq, 1], we have

1, —216u® + 180u? + 5du — 5

op (W) =

24 (12u2 + 1)3
~ 216u*(1 — u) + 36u(l — u) 4 (18u — 5)
B (32u2 + 1)3

> 0,

hence f is convex on [sg, s|]. According to the LPCF-Theorem and Note 1, we only need to show
that h(z,y) > 0 for z,y € R so that = + by = 6. We have

fw) = f1) _ 5Q2u—1)

I == T T AT
W) = g(x) —g(y)  5(2+5x+ 5y —10xy) 10(z — 2)2
W T Ty T 3G+ D)2+ 1) 362+ )G+ 1)
In accordance with Note 3, the equality holds fora =b=c=d=e= f =1, and also for
4

(or any cyclic permutation).

P 3.4. Ifaj,as,...,a, (n > 3) are real numbers so that ay + as + - -+ + a, = n, then

n(n+1)—2a; nn+1)—2a n(n+1) — 2a,
n?+(n—2)a? n?+(n—2)d3 n?+(n—2)a2 —
(Vasile C., 2008)
1
Solution. The desired inequality is true for a; > M since
1)—2
n(n+1) a21 ~0
n?+ (n —2)aj
and N9
n(n+1) — 2a; n Ci—23....n

<
n?+(n—2)a? n-—1

(2



Partially Convex Function Method 223

The last inequalities are equivalent to
n(n —2)a? +2(n — 1)a; +n >0,
which are true because
n(n —2)a; +2(n — a; +n > (n—1)a; +2(n — a; +n > (n —1)(a; + 1)* > 0.

Consider further that

a1, A2, ...,0n S Ma
2
and rewrite the desired inequality as
arta+---+ay,
flar) + flaz) + oo+ flan) > nf(s), s == =1,
where ) ( ) ( )
u —n(n+ n(n +
= I=|-00,——=|.
fu) (n —2)u? +n?’ ve ( T }
We have
fw) n*+nln+1)u—u?
2(n—2)  [(n—2)u®+n?)?
and .
fw) A
2(n—2)  [(n—2)u?+n2}3’
where

fi(w) = 2(n — 2)u* — 3n(n + 1)(n — 2)u* — 2n*(2n — 3)u + n®*(n + 1).

From the expression of f’; it follows that f is decreasing on (—o0, sg| and increasing on [so,

where

80:g<n+1—\/n2—|—2n+5> € (—1,0);

therefore,

min f(u) = f(so).

u€el
On the other hand, for —1 < u < 1, we have

fi(w) > —2(n —2) = 3n(n+1)(n —2) —2n*(2n — 3) + n*(n + 1)
=n*(n—3)*+4(n+1) >0,

hence f”(u) > 0. Since [so, s] C [—1,1], f is convex on [sg, s]. By the LPCF-Theorem and Note
1, we only need to show that h(x,y) > 0 for x,y € R and = + (n — 1)y = n, where

_9) —9y) _ S = ()
hz,y) = =y glu) =—— —1—

Indeed, we have
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and
hMzy)  n*—n(z+y) - (n—2)ay
n—2 [(n—2)22+n?[(n—2)y%+ n?
_ (n —1)(n —2)y?
(=222 +n[(n - 2)y2 +n?] T
The proof is completed. By Note 3, the equality holds for a; = as = --- = a, = 1, and also for

a; =n, ag=--+=a, =20

(or any cyclic permutation).

P 3.5. Ifa,b,c,d are real numbers so that a + b+ c+ d = 4, then

ala—1) bb—1) cle—=1) d(d—1) >0
3a2+4  32+4  3c2+4  3d2+4 —

(Vasile C., 2012)
Solution. Write the inequality as

a+b+c+d
fla) + F8) + F(0) + F(@) 2 4f(s), 5=,
where )
us—u
= —— R.
From 22 1 8 A
, Ut Fou —
F="Gero
—4—2 —4 -2
it follows that f is increasing on (—oo, Tﬁ U[so, o0) and decreasing on [Tﬁ, 50] ,
where
—4
So = +—2\/7 ~ 0.43.
3
Since .
Jm flu) =3

and f(sg) < 0, it follows that
min f(u) = f(s0).

u€R
For u € [0, 1], we have

Ly — =90 = 360° + 36u + 14

2 (Bu? +4)3
~ 9u?(1 — u) + 45u(l — u) + (16 — 9u)
B (Bu? +4)3

> 0.
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Therefore, f is convex on [0, 1], hence on [s, s]. According to the LPCF-Theorem and Note 1,
we only need to show that h(z,y) > 0 for z,y € R so that x + 3y = 4. We have

Sl =) w
g(u) = u—1  3uz+4’
_g(z) —gly) 4 — 3xy
hlz,y) = r—y (322 +4)(3y2 +4)
(v —2)?

(B2 +4)(3y2+4) —

The proof is completed. From x + 3y = 4 and h(z,y) = 0, we get x = 2 and y = 2/3. By Note
3, the equality holds for a = b= c¢=d = 1, and also for

2
:2 b: :d:—
a , c 3

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Ifay,as,...,a, are real numbers so that a1 + as + - -+ + a,, = n, then
aj(a; — 1) as(as — 1) L an(ay, — 1) S
4(n —1)a?+n?  4(n—1)a3 + n? 4(n—1)a2 +n% — 7
with equality for ay = ag =--- =a, =1, and also for
n
a — a f— a T e e e — a/TL = -

(or any cyclic permutation).

P 3.6. Ifa,b,c,d are real numbers so that a +b+ c+ d = 4, then

1 1 1 1
<
3a2—3a+4+362—3b—|—4+302—30+4+3d2—3d+4 -

1.

(Vasile C., 2015)

Solution. Write the inequality as

F(@)+ 50 + £+ F(@) 2 4f(s), 5= TEEEE
where
—1
JW=ga g vk
From
3(2u — 1)

J'(u) = (3u? — 3u +4)2’
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it follows that f is decreasing on (—oo, so] and increasing on [sg, 00), where

So==<1=s.

For u € [so, s| = [1/2,1], we have
3(—6u?* 4 6u + 5) 18u(1 — u)
"(u) = > > 0.
JW = 5 —gu s a9~ Gi—sutdp =
Therefore, f is convex on [sq, s|. According to the LPCF-Theorem and Note 1, we only need to

show that h(z,y) > 0 for z,y € R so that x + 3y = 4. We have

INIOESION su
g(u) = u—1  4(3u?—3u+4)
_ g(x) — g(y) _ 3(4 — 3zy)
M) = T T B st DB 3y D)
B 3(3y — 2)?

= > 0.
4322 =30 +4)(3y> — 3y +4) —
From z + 3y = 4 and h(x,y) = 0, we get
5 2
T = =—.
) Yy 3

In accord with Note 3, the equality holds for a« = b = ¢ = d = 1, and also for a = 2 and

2
b=c=d= = (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
2
e Letay,as,...,a, be real numbers so that a; +as +---+a, =n. If k= X n 0y’ then
n —
1 n 1 . . 1 < n
a?—ar+k ad—a+k az—a,+k K
with equality for a; = as = -+ = a, = 1, and also foray = = anday = a3 =---=a, = _n
2 2(n—1)
(or any cyclic permutation).
m
P 3.7. If a,b,c,d are real numbers so that a + b+ ¢+ d = 4, then
1

1 1 1 4
< -.
-3

4a2—5a+4+462—5b+4+402—5c+4+4d2—5d+4

(Vasile C., 2015)



Partially Convex Function Method 227

Solution. Write the inequality as

Fla)+ 1)+ @)+ f(d) = 4f(s), 5= TRy
where 4
flu) = 2 —susr € R.
From
2(8u —5)

/ —
FW) =Gz —sa g e
it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

5
So = 3 <1l=s.
For u € [so, s] = [5/8, 1], we have
() 4(—48u® + 60u — 9) - 4(—48u® + 60u — 12)
u) =
(4u? — 5u + 4)3 (4u? — bu + 4)3
_ A8(—4w® +5u—1)  48(1—w)(4u—1) >0
(4w —bu+4)3 (42 —5Bu+4)3 T
Therefore, f is convex on [sq, s|. According to the LPCF-Theorem and Note 1, we only need to
show that h(z,y) > 0 for z,y € R so that = + 3y = 4. We have

fluw) = (1) du —1)

90 =TT T 3w —Butd)
~g(x) —gly) 4(x +y) — 16xy + 11
M) = r—y  3(422 — 5x +4)(4y? — 5y + 4)
(4y —3)*

> 0.
(4% — bz +4)(4y? — by +4) —
From z + 3y = 4 and h(z,y) = 0, we get

7
In accord with Note 3, the equality holds for a = b = ¢ = d = 1, and also for a = 1 and

3
b=c=d= 1 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

2(n—1
e Letay,asq,...,a, be real numbers so that ay +as + -+ -+ a, = n. ]fk;zl—(n—2), then
n
1 N 1 P 1 < n
ai —2ka; +1 a3 —2kay + 1 a? —2ka, +1 ~ 2(1 — k)’
3n? —6 4
with equality for a1 = ay = --- = a, = 1, and also for a; = % and ay = a3 = -+ - =
n
n?—2n+4

n, (or any cyclic permutation).

n2
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P 3.8. Ifa,b,c,d are real numbers so that a + b+ c+ d =0, then

a+1+b+1+c+1+d+1 4
a2+3 b2+3 2+3 d*+3 3

(Marius Stanean, 2024)
Solution 1. Assume that a < b < ¢ < d and write the inequality as

fla) + 1) + fe) + f(d) = 4f(s),

—u—1
where s = (a + b+ c+d)/4 and f(u) = u2u—+3

Case 1: a > —3. Let [ = [—3,00) and sy = 1. Since
(u—1)(u+3) () = 2(3 + 9u — 3u? — u?)
(u?43)2 7 B (u? +3)? ’

[ is convex on [s, so] and decreasing on [—3, sg]. In addition, f(u) > f(so) for u € I. So, by
RPCF-Theorem, it suffices to prove the required inequality for b = ¢ = d. It is easy to show that
the inequality reduces to a*(a + 3)* > 0.

Case 2: a < -3 and b < 0. We have

f'(u) =

fla)+ f0) + flc) + f(d) >0+ f(O)+ f()+ f(1) =0—5 —5— 5 = — =4f(s).
Case 3: a < —3 and b > 0. Using the Cauchy-Schwarz inequality, we have
3 —a-—1 b—1)2 —1)2 d—1)32
J@) +JO) + o)+ fld) +5 = a2a+3 2<(62+)3) 2((Cc2+)3) 2((d2+)3)
—a—1 (b+c+d—3)> >—a—1 (b+c+d—3)>
T a®’+3 20+ +d)+18 7 a?+3  2b+c+d)?+18

—a—1 (a+3)? a? 1 1
= + = +->-
a?+3  2a*+9) 3(a*+3)(a®*+9) 6 6
hence 1 3 4
F(@) + 1)+ F() + () > ¢ = 5 = == =4](s).
The equality occurs for a =b = ¢ =d =0, and also for a = —3 and b = ¢ =d =1 (or any cyclic

permutation).

Solution 2 (by Nguyen Ngoc Phuc). Let a®> = max{a?,b*, c* d*}. Using the Cauchy-Schwarz
inequality, we have

b4l e+l d+1l 3 (b—12 (=12 (d—1)
P13 243 #13 2 20°+3) 2213 2AL13)
1P (e (A1 _ (b= D)+ (=D _ —(a+3)

2(a? + 3) - 6(a% + 3) 6(a®+3)’

therefore

at+l b+l e+l dtl _a+l (a+3)2+3_—1+3_4
a2+3 ¥+3 2+3 &#2+3 " a2+3 6(a2+3) 2 6 2 3
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P 3.9. Let ay,as,...,a, # —k be real numbers so that a; + as + - - - + a, = n, where

.
“2yn—1
Then,
aj(ay —1)  ag(ag —1) an(a, — 1) _
(a1 + k)2 (ag + k)? (a, + k)2 =
(Vasile C., 2008)
Solution. Write the inequality as
ay +ag+---+a,
flan) + flaz) + o+ flan) 2 nf(s), 5= ———— =1,
where ( D
u(u —
= I=R\{-k}
f) =TS weI=R\{-H)
From (2% + 1) "
/ _ + 1)u —
f ('LL) - (U—|— k)g )
it follows that f is increasing on (—oo, —k) U [sp, 00) and decreasing on (—k, sq|, where
K <1l=
S S T
Since
S A =1
and f(sg) < 0, we have
min f(u) = f(so).
u€l
From 1 Rk +2) — (2K + 1)
Lo\ +2) — + u
k(k +2)

it follows that f is convex on [0, } , hence on [sg, 1]. According to the LPCF-Theorem,

2k +1
Note 4 and Note 1, it suffices to show that h(z,y) > 0 for all z,y € I which satisfy z+(n—1)y = n,

where
hz,y) = %:i(y)’ g(u) = w
Indeed, we have U
g(u) = (u+ k)2
and
kR -ay TG
h(z,y) = (x+ k)2 (y+k)? = (z+k)32(y+k)?
[2(n — 1)y — n)?

T XD+ Ry R
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n
The equality holds for a; =as =--- =a, = 1. If k = ————, then the equality holds also for
q Yy 1 2 2\/m q y
n n
a1 = — a :--.:an:—
T 2(n — 1)

(or any cyclic permutation).

P 3.10. Let ay,asq,...,a, # —k be real numbers so that ay + as + -+ a, =n. If

k>1+

n—1

then
a? —1 az —1 a? —1

R — 0 ]
(a1+k)2+(a2+k)2+ +(an+k)2_

Solution. Write the inequality as

Flm) + f(a) 4ot flan) 2 nf(s), 5= DFET TGy
where
f) = T weT=R\ k)
YR YT |
From 2k 0
1y kU
f(U)— (U+l€)37
it follows that f is increasing on (—oo, —k) U [sg, 00) and decreasing on (—k, sq], where
= loo- > —1
S = & = S, So .
Since
lim f(u)=1
uU——00

and f(sg) < 0, we have

min f(u) = f(so)-

u€el

For u € [—1, 1], we have

2(k* — 3 — 2ku)
(u+ k)4

LR =32 Ak D(k-3)

i) = (u+ k) w+kt  ~

hence f is convex on [sg, 1]. According to the LPCF-Theorem, Note 4 and Note 1, it suffices to
show that h(z,y) > 0 for z,y € I which satisfy  + (n — 1)y = n. We have

fl) = fQA) _ u+tl
9= T T ke
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g(x)—gly) (k=1—-1—-az—y—ay

(Z’,y) T —y (£C+]€)2<y—|—]€>2 - Yy
since ) 1 i
(k=17 -1-2—-y—ay> z —1—1’—y—xy:[<n_ )y —1] > 0.
n—1 n—1
n
The equality holds for a; = ay = --- =a, = 1. If Kk =1+ ———, then the equality holds also
vn—1
for
1
alzn—17 a2::an:
n—1

(or any cyclic permutation).

P 3.11. Let aq,a9,as,a4,as be real numbers so that a1 + as + as + ag + a5 > 5. If
1 25
k -z
< {6’ 14} ’

then

1 5
< .
Zka%+a2+a3+a4+a5 “k+4
(Vasile C., 2006)
Solution. We see that

1 3 —3)?
kaf—ai+(a1+a2+a3+a4—|—a5)>éaf—amtﬁz%zo

for all i € {1,2,...,n}. Since each term of the left hand side of the inequality decreases by
increasing any number qa;, it suffices to consider the case

a1+a2+a3+a4+a5:5,

when the desired inequality can be written as

a1 + as + az + ayq + as

flar) + f(a2) + f(as) + f(as) + f(as) > 5f(s), s= - —1,
where .
fw) =5 uekR
From
fu) = (lmjk—uu_Jr1 5)2’

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

1
S0 — —-

2k
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We have 2(u)
" glu 2,,2
= = —3k 3ku + 5k — 1.
P/(0) = G, glu) = =3 Bk
For
1 25
—<k<
27 T 14
we have )
So = % S 1 =S,
and for u € [sg, s], that is
1
— < u<
or =" =h
we have
(1 —u)(2ku—1) >0,
—2ku* > (2k + Du +1,
—2k*u? > k(2k + 1)u + k,
therefore
—3k(2k —1 13k — 2
g(u)2%[k(2k+1)u+k:]+3ku+5k—1: 3k ;“* 5
—3k(2k — 1) + 13k — 2
o TSMER=D IR =2 e g 3k(2— k) 4 (2k—1) > 0.

- 2

Consequently, f is convex on [sg, s].

For ] ]
—<k<-
6~ — 2
we have .
S0 ok = S,
and for u € [s, so], that is
1
1<u< —
SUuUS 9%

we have
g(u) = —3k*u® + 3ku + 5k — 1 > 3ku(l — k) + 5k — 1
>3k(1—k)+5k—1=-3k*+8k—1
> —6k* 4+ Tk —1 = (1 —k)(6k —1) > 0.

Consequently, f is convex on [s, sq).
In both cases, by the PCF-Theorem, it suffices to show that

1 n 4 < 5
kx?—x+4+5 ky —y+5 " k+4

for
r+ 4y =5, x,y € R.
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Write this inequality as follows:

1 1 1 1
— 4 — >0
k+4 ka—x+5+ k+4 ky—y+5| "7
—D(kx+k—-1) 4(y—1)(ky+k—1
(x — 1)(kx + ) My —D(ky + ) >,

kx? —x+5 ky? —y+5 -

Since
dy—1)=1—u,

the inequality is equivalent to

k -1 k—1
(- 1) x+k _ ky+ >0,
kx> —x+4+5 ky>—y+5

5(z — 1)*h(z,y)
4(kx? —x+5)(ky? —y+5)

>0,
where

h(z,y) = —k*xy — k(k — 1)(z +y) + 6k — 1
= 4k*y* — k(2k + 3)y — 5k* + 11k — 1

2k 2 (25 — 14k)(6k — 1
(- BB) ot

16 -

1
The equality holds for a1 = as =a3=ay=a5=1. Ilf k = 6 then the equality holds also for

5
a1:—5, a2:a3:a4:a5:§

25
(or any cyclic permutation). If & = 7L then the equality holds also for

E g = a3 = a _Cl_§
257 2 — W3 — g — 5_50

a|; —
(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

o Let ay,as,...,a, be real numbers so that ay; + ag+ -+ a, < n. If k € [ky, ks], where

. _ (n=1)(/53n% —54n + 101 — 5n + 11)
e 2(Tn2 + 14n — 5) ’

2 —2n+ 14 /(n—1)(3n® —4n? 4 3n — 1)

k
? 2(n> —n+1) ’

then
n

1
Zka2+a +---+a Sk:Jrn—l’
1 2 n
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with equality for ay = agy =--- =a, = 1. If k = ki, then the equality holds also for

2n
0/1:_?7/7 a2:~--:an:n 1

(or any cyclic permutation). If k = ko, then the equality holds also for

@k-Dn-D+1  _ 2%k+n-—2
2k ’ 2T T T 2k(n—1)

a; =

(or any cyclic permutation).

P 3.12. Let ay,as,...,a5 be nonnegative numbers so that a; + as + az + ag + a5 > 5. If

k € [ki, k2], where
29— /761 25

then
> 1 <5
ka?+as+as+as+as ~ k+4

(Vasile C., 2006)

Solution. Since all terms of the left hand side of the inequality decrease by increasing any
number a;, it suffices to consider the case

a1+ag—l—a3+a4+a5:5.

The proof is similar to the one of the preceding P 3.11. Having in view P 3.11, it suffices to
consider the case

1
ke {kl,a} ,
when
1
Sp = 5% >1=s.
For u € [s, so], that is ,
I1<u< BYR

f is convex because

g(u) = —=3k*u* + 3ku + 5k — 1 > 3ku(l — k) + 5k — 1

>3k(l —k)+5k—1=—-3k>+8k—1

(2 — k)(15k — 2)
4

15
>—Zk2+87kz—1: > 0.

Thus, by the RPCF-Theorem, it suffices to show that

1 n 4 < 5)
kx?2—x+5 ky !—y+5" k+4
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for

ot

r + 4y = 5, ngglgygz.

As shown at P 3.11, this inequality is true if h(z,y) > 0, where
Wz, y) = —k*xy — k(k — 1)(z +y) + 6k — 1.

We have
h(z,y) = 4k*y* — k(2k + 3)y — 5k* + 11k — 1
= (5 — 4y)(A — k*y) + B=2(A - k*y) + B,
where
A 3k(14— k)’ B —Ok +429]<; —4

Since B > 0, it suffices to show that A — k?y > 0. Indeed, we have
3k(1—k) 5k k(3 —8k)

2
A—kyZT—T:T>O.
The equality holds for ay = as = a3 = a4y = a5 = 1. If k = kq, then the equality holds also for
a, =0, a2:a3:a4:a5:§
4
(or any cyclic permutation). If & = ks, then the equality holds also for
79 23
4 = 5, (p =03 =a4=0a5=
(or any cyclic permutatio
Remark. Similarly, we can prove the following generalization:
o Let ay,ag,...,a, benonnegative real numbers so that a;+as+---+a, <n. Ifk € [k, ko],
where
by — n4+n—1—vnt+2n3—-5m2+2n+1
2n ’
by — 2n? —2n+1++/(n—1)(3n3 —4n2 + 3n — 1)
2(n? —n+1) ’
then
Z 1 < n
kai+as+--+a, " k+n—-1
with equality for ay = ag =--- =a, = 1. If k = ki, then the equality holds also for
n
a, =0, a2:---:an:n_1

(or any cyclic permutation). If k = ks, then the equality holds also for
2k—1)(n—1)+1 _ 2k+n-—2

2k T T T 1)

a1

(or any cyclic permutation).
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P 3.13. Let aq,as, ..., a, be nonnegative real numbers so that a; +as + ---+a, >n. If k> 1,
then

1 1 1
A + A +-o - < L
ai tag+---+a, a+ay+---+a, ay+az+---+ay

(Vasile C., 2006)

Solution. It suffices to consider the case a; +as + - - -+ a, = n, when the desired inequality can
be written as

ap + ay + -+ ay

flar) + flaz) + -+ flan) 2 nf(s), s= - =1,
where .
f(u):m, UG[O,TL].
From
kuF=t —1

) =

(ub —u+n)?’

it follows that f is decreasing on [0, so] and increasing on [sg, n], where
So = ETE <1 =s.
We will show that f is convex on [sg, 1]. For u € [sg, 1], we have

—k(k+ D)u?*2 + k(k + 3)u*! + nk(k — 1)u"2 — 2 - g(u)

" o
filu) = (ub —u+n)3 (b —u+n)3’
where
g(u) = —k(k + D2 + k(k + 3)u" — 2.
Denoting
t=ku*l, 1<t <k,
we get

kg(u) = —(k + )t* + k(k + 3)t — 2k
=k+Dt-1)(k-t)+(k—-1(t+k)>0.

By the LPCF-Theorem, it suffices to show that

1 n—1
k = <1
¥ —z+n Y —y-+n

forx > 1>y >0and x+ (n— 1)y = n. Since this inequality is trivial for x = y = 1, assume
next that £ > 1 > y > 0, and write the desired inequality as follows:

kE_
yh—y+1
-1 — ok
P Ul | )

yr—y+1
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b —x y—y"

=17 1=y -y+1)

QZk—JJ

Let h(z) = o & > 1. By the weighted AM-GM inequality, we have

xr —

(k—1)z* +1 — ka*!

W(w) = (x —1)2

> 0.

Therefore, h is increasing. Since
r—1=Mmn-1)1-y)>1-y, r>2—y>1,

we get

W) > h(2—y) = 229 Y =2

-y
Thus, it suffices to show that
K y—y"*
2 — +y—2> 27
2-y)"+y—-2> —
which is equivalent to
1
22—y ty—1>—
2-y)"+y—-1=> —

Using the substitution
t=1-—y, 0<t<1,

the inequality becomes
1

(1 —t)k 4t
(I—) +t1+0)" > 1+ +(1—t)"

(1+t) —t >

By Bernoulli’s inequality,
(1=t t(1+ ) > 1 —kt* +t(1+kt) =1+t
So, we only need to show that
L4+t > 1+ 22+ t(1—t)F,

which is equivalent to the obvious inequality
tl—t)[1—-(1 =t >0

The equality holds for a1 = ay =--- =a, = 1.

Remark. Using this result, we can formulate the following statement:

o Letxy,xo,...,x, be nonnegative real numbers so that x1+xo+---+x, >n. If Kk > 1, then

ok — Tk — 1y zk —x,

k + k Tt p 20
ry+ 2o+ -+ 2 T1+Ty A+ Ty, 1+ T+ g
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This inequality is equivalent to

1 1 1 n
k T k Tt P S :
l’l+£€2++l’n l’1+l’2++l’n ZE1—|—I'2++1'” ZE1+$2++[E”

Using the substitutions
6 — Ty +ZTo+ -+ Xy

and

which yields a; + as + - - - + a,, = n, the desired inequality becomes

1
<1.
Zsk*1a§+a2+---+an -

Since s*=! > 1, it suffices to show that

1
> <1
a; +ag+---+ay,

I

which follows immediately from the inequality in P 3.13.

Since x1xy---x, > 1 involves x1 + x5 + - - - + x, > n, the inequality is also true under the
more restrictive condition xyxs---x, > 1. For n = 3 and k = 5/2, we get the inequality from

IMO-2005:

o I[fx,y,z are nonnegative real numbers so that xyz > 1, then
25— 2 ¥ — 2 S5 2

+ + >
Pyt Pty 2t 2ty T

P 3.14. Let ay,aq,...,a; be nonnegative numbers so that ay + as + as + aq + a5 > 5. If
4 61
ke |-, —|,
5 5]

> " :
ka?+as+as+as+as — k+4

then

(Vasile C., 2006)

Solution. Using the substitution

aq a9 as ay as
T = , Lo = , L3 = , Lg = , s = )
S S S S S

where
a; + as + as + ayq + as
S = 5 217
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we need to show that z; + 9 + 23 + 24 + 5 = 5 involves

x x )
ksx? + x +1 e : 7 = '
1 2 T3+ Tg4 + T5 x1+$2+x3+$4+k3x5 k+4

Since s > 1, it suffices to prove the inequality for s = 1; that is, to show that

aq i a9 4 4 asy < 5
ka? —a; +5 ka3 —a;+5 ka? —a,+5 ~ k+4

for
a1+a2+a3+a4—|—a5:5.

Write the desired inequality as

flar) + flaz) + fas) + fas) + flas) = 5f(s),

where
S_a1+a2+a3+a4+a5_1
— - —
and
flw) = —— ' wel0,5]
ku?—u+5’ T
From b2
oy u®—95
f(u)_(kUQ—u+5)2’

it follows that f is decreasing on [0, so] and increasing on [sg, 5], where

so=1/2
0=\ %
We have
" _ 29(“) _ _1.2,,3 o / _ - 2
f(u) = W —ut 5P g(u) = —k*u® 4+ 15ku — 5,  ¢'(u) = 3k(5 — ku®).

4
Case 1: 9 < k < 5. We have

5
50:\/j2128.

For u € [1, s¢], the derivative ¢’ is nonnegative, g is increasing, hence

86k — 25
— >0

g(u)Zg(l):—k2+15kJ—5:<k—g>(5—k’)—l— 9

Consequently, f”(u) > 0 for u € [1, 5o, hence f is convex on [s, so).

5)
80:\/;<1:S.

61
Case 2: 5 <k < = We have
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For u € [so, 1], we have ¢'(u) <0, g(u) is decreasing, hence
glu) >g(1)=—k*+15k—5=(k—1)(13— k) + k +8 > 0.
Consequently, f”(u) > 0 for u € [so, 1], hence f is convex on [s, $].

In both cases, by the PCF-Theorem, it suffices to show that

x . 4y < )
kx?—x+5 ky!—y+5" k+4

for
x4+ 4y =5, z,y > 0.

Write this inequality as follows:

! LAY Y >0
k+4 ka2—z+5 k+4 ky2—y+5] "7

(z — Dbz —5)  Aly—D(ky —5)
kx? —x+5 ky?—y+5

Since

the inequality is equivalent to

(x—l)( kx —5 ky —5 )20,

ka2 —z+5 ky —y+5

(v = 1)*h(z,y)
(kx? — x4+ 5)(ky> —y +5)

>0,
where

h(z,y) = —k*zy + 5k(x +y) + 5k — 5
= 4k*y* — 5k(k + 3)y + 5(6k — 1).

4 61 4
We need to show that h(x,y) > 0 for k € {5, %] For k € {5, 11, we have

15k 5(9k — 4
h(z,y) = (5 —4y) (—k2y+ 1 )+ ( I )
kx(15 — 4ky) n 5(9k — 4)
4 4
ka(kx +415 ~5k) 5(9k4— Yo

while for k € [1, 65—1} , we have

> 0.

5k +15)7 L (61— 5k)(k— 1)
4 16

hz,y) = (Zky -
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4
The equality holds for ay = as =a3 =a4 =a5=1. If k = 9’ then the equality holds also for

)
a1:0, a2:a3:a4:a5zz

61
(or any cyclic permutation). If k = = then the equality holds also for

115 _ _ _ _95
61 ° a2—a3—a4—a5—122

a; =
(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

o Let ay,ag,...,a, be real numbers so that ay + ag + -+ a, < n. If k € [ky, ks], where
—1
kl - n—7
2n—1
. n*+2n —2+2y/(n—1)(2n2 — 1)
2 — n )
then
aq n
> < ,
kai+as+---+a, ~ k+n—1
with equality for a1 = ay = --- =a, = 1. If k = ki, then the equality holds also for
n
a; =0, Qg = a3 = a4 = A5 =
n—1

(or any cyclic permutation). If k = ks, then the equality holds also for

n(k —n+2) n(k+mn—2)
) = —— Ao =+ =Qp = ———F————
! 2k ? 2k(n — 1)
(or any cyclic permutation).
O
P 3.15. Let aq,as, ..., a, be nonnegative real numbers so that a1 +as +---+a, >n. If k> 1,

then
a1 a2 Qp,

k + k Tt k
aij +ax+---+a, ar+ag+---+a, ay +az + - +ay

<1

(Vasile C., 2006)

Solution. Using the substitution

where
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we need to show that z; + 29 + -+ + x,, = n involves

T L
k—1.k +oo Tt k—1,.k —
sy X0+ -0 1y, T+ 22+ -+ 8y

Since s¥=! > 1, it suffices to prove the inequality for s = 1; that is, to show that

ay a2 anp,

k

: + <1

—az2+n a, — ap +1n

for
ap +ag + -+ a, =n.

Case 1: 1 < k <n+ 1. By Bernoulli’s inequality, we have
a¥>1+k(ep—1), af—a+n>k—-1Day+n—k+1.
Thus, it suffices to show that

1.

D
(k—Day+n—-k+1"

This is an equality for Kk =n — 1. If 1 < kK <n + 1, then the inequality is equivalent to

1
>1
Z(k—l)al—l—n—k—l—l_ ’

which follows from the the AM-HM inequality

1 n?
> .
Z(l{:—l)al—i—n—k—i—l S k—1Day+n—k+1]
Case 2: k> n+ 1. Write the desired inequality as
ar+as+---+ay

flar) + flag) + -+ flan) = nf(s), s= - =1,

where u
We have k1)

yoy (B=1u"—n

f'(u) = W —utn)y
e filw)

" _ 1\u

) = (uF —u+n)3’
where

fi(u) = k(k — Du" " (u® —u+n) = 2(ku* " = D)[(k — D)uf —n].

From the expression of f’, it follows that f is decreasing on [0, s¢] and increasing on [sg, n], where

1/k
n
80:(1{:—1) <1=s.
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For u € [so, 1], we have
(k—1Du* —n>(k—1)sf —n=0,

hence

fi(u) > k(k — Du " (u® —u+n) — 2k (k — 1)u” — n)
= ku" (k= 1)(u" +u) +n(k +1)]
> kuF 7 =2(k — 1) + 2(k + 1)] = 4ku™ > 0.

Since f”(u) > 0, it follows that f is convex on [sg, s|. By the LPCF-Theorem, we need to show
that

f(@)+(n—1)f(y) >nf1)
for
r>1>y>0, r+(n—1)y=n.

Consider the nontrivial case where x > 1 > y > 0 and write the required inequality as follows:

x N (n—1)y

<1,

e —x4+n yF—y+n

xk—x+n>x(yk_y+n)
-1 — ok

xk_xz(nk_)y(y v
Y ny+n

Since y < 1 and y* —ny +n > y* — y + 1, it suffices to show that

-1 — ok
WIS (m-Dy -y )7
yr—y+1
which has been proved at P 3.13.
The equality holds for a1 = as =--- =a, = 1.
O
1
P 3.16. Let ay,as,...,a, be nonnegative real numbers so that a;+as+---+a, <n. Ifk >1——,
n
then
1—ay 1—as 1—a,

> 0.
k;a%+a2+---+an+a1+k’a§+---+an+ +a1+a2+---+ka% -

(Vasile C., 2006)

Solution. Let

We have three cases to consider.

1
Case 1: s < —. The inequality is trivial because
n

a; <ar+a+---+a,=ns<1
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fori=1,2,...,n.

1
Case 2: — < s < 1. Without loss of generality, assume that
n

ar <---<a;<1<aj--<ap, je{1,2,...,n}.
Clearly, there are by, bo, ..., b, so that by + by + --- + b, = n and
ap <0 <1, ..., a; <b; <1, bjy1 =ajy1, ..., by =a,.
Write the desired inequality as

flar) + flag) + -+ -+ f(an) = 0,

where )
—u
f(u)—W_—qunsa u € [0, ns].
For u € [0, 1], we have
E[(1 —u)?> — 1] + (1 — ns)

(ku? — u + ns)?

f'(u) =
hence f is strictly decreasing on [0, 1] and

for) < flar), oo f(b) < flay), fbjnr) = flajia), -y f(bn) = flan).

<0,

Since
f(br) 4+ f(b2) + -+ f(bn) < flar) + fla2) + - + f(an),
>0

it suffices to show that f(by) + f(b2) + -+ f(bn) for by + by + - - - + b, = n. This inequality
is proved at Case 3.

Case 3: s = 1. Write the inequality as

flar) + flaz) + -+ flan) = nf(s), s= - =1,
where -
f(u):m, u € [0,n].
From

El(u—1)2—=1]—(n—1)

fu) = (ku? —u+n)?

it follows that f is decreasing on [0, so] and increasing on [sg, n], where

/ —1
So =1+ 1+nT>1:s, Sp < n.

We will show that f is convex on [1,sg]. We have

29(u)
(ku? —u+n)3’

)

f//(u) —
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where
gu) = —k*u® + 3k*u* + 3k(n — Du—kn—n+1,  ¢(u) = 3k(—ku® + 2ku +n — 1).
For u € [1, s¢], we have ¢’(u) > 0, g is increasing, therefore

g(u) > g(1) =2k + (2n —3)k —n+1
2(n—1) (2n—3)(n—1)
n? * n B
2 _ _
_ (n®*—=1)(n—2) >0,
n? -
f"(u) >0, f(u) is convex for u € [s, so]. By the RPCF-Theorem, it suffices to show that
1—=x +(n—1)(1—y)
kx? —x+n ky? —y+n

>

n+1

>0

for0 <z <1<yandz+ (n—1)y=n. Since (n —1)(1 —y) =2 — 1, we have

1—x (n—1)(1—vy) 1 1
ka—ernJr ky? —y+n :(x_l)(_kxz—a:+n+ky2—y+n)
_(@-D@ —y)(ke +ky - 1)
 (k2? —z +n)(ky? —y +n)
n(x —1)*(kz + ky — 1)

= >0
(n—1)(ka? =z +n)(ky? —y+n) —
because . 5
k(x+y) —1> - ($+y)—1:<n_—)x20.
n
1
The proof is completed. The equality holds for a; = as =---=a, = 1. If k =1 — —, then the
n
equality holds also for
a; =0, Qg = a3z =+ = Qp = z
n—1
(or any cyclic permutation).
Remark. For k = 1, we get the following statement:
e Ifay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, < n, then
1—a 1—as 1—a, >0

3 + 3 +oe 7 =
ai+ay+---+a, a+az+---+a, ay +ag+---+ay

with equality for ay =as =+ =a, = 1.

1
P 3.17. Let a1, ao, ..., a, be nonnegative real numbers so that a;+as+---+a, <n. Ifk >1——,
n

then
1—a 1—as 1—a,

T LI N
1—a1+ka%+1—a2+kag+ +1—an+k’a%_

(Vasile C., 2006)
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Solution. The proof is similar to the one of the preceding P 3.16. For the case 3, we need to
show that

ap +as + -+ a,

flar) + flag) + -+ flan) = nf(s), s= - =1,
where .
—u
fu) = T—usr U€ 0, 7).
From e 2)
by w(u —
F) = e

it follows that f is decreasing on [0, s¢] and increasing on [sg, n], where
Sop =2 > s.
We will show that f is convex on [1, sg|. For u € [1, s¢], we have

2kg(u)
(1 —u+ ku?)3’

f(u) = g(u) = —ku® + 3ku® — 1.

Since
g (u) = 3ku(2 —u) >0,
g is increasing, g(u) > g(1) = 2k—1 > 0, hence f”(u) > 0 for u € [1, so]. By the RPCF-Theorem,

it suffices to show that
1—x (n—1)(1—vy)

1—x+k;a:2+ 1—y+ ky?
for0 <z <1<yandz+ (n—1)y=n. Since (n —1)(1 —y) =z — 1, we have

1 -2 (n—l)(l—y):(l_x)( 1 )

1—x+kx2+ 1 —y+ky? 1l—x+kx? 1—y+ ky?
_ (I —a)(y —=)(kz 4+ ky — 1)
(=24 k(1 —y + ky?)
n(x —1)%*(kx + ky — 1)

(n— D=2+ ka?)(1— g+ hy?)

>0

Since
k(x+y)—1> n_l(x+y)—1:@ >0,
the conclusion follows. The equality holds for a; = ay =+ =a, =1. If k=1 — l, then the
equality holds also for "
a; =0, Qo =QA3 = -+ = Qp = "
n—1

(or any cyclic permutation).
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n
P 3.18. Let ay,as,. .., a, be positive real numbers so that a;+as+---+a, =n. If0 < k < —
n —

then
a'f/al —i—a;/az + o alflm <,
(Vasile C., 2006)

Solution. According to the power mean inequality, we have

a a a 1/ a a a 1/
<a€/1+a§/2+---+aﬁ/"> p> <a3/1+a3/2+---+a?f"> !

n n

for all p > ¢ > 0. Thus, it suffices to prove the desired inequality for

k=" 1<k<2
n—1

Rewrite the desired inequality as

flar) + flag) + -+ flan) Z nf(s), s= =1,

where
flu) = —uf"  wel=(0,n).

We have .
f'(u) = kuv?*(Inu — 1),

F(w) = kus Y u+ (1= Inw)(2u — k + kInu)].
For n =2, when k =2 and I = (0,2), f is convex on [1,2) because

l—Inu>0, 2u—k+klnu=2u—24+2Inu>2u—22>0.

Therefore, we may apply the RHCF-Theorem. Consider now that n > 3. From the expression
of f’, it follows that f is decreasing on (0, so] and increasing on [sg,n), where

so=e>1=s.
In addition, we claim that f is convex on [1, sq]. Indeed, since
1—-Inu>0, 2u—k+klnu>2-k>0,

we have f” > 0 for u € [1,s¢]. Therefore, by the RHCF-Theorem (for n = 2) and the RPCF-
Theorem (for n > 3), we only need to show that

" (n— 1M <n

for
0<zx<1<y, z+(n-1y=n

We have

SHE

>k>1.
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Also, from

I

I

Il

JH
< |

I

IN
SRR

IN

0o

we get

k
O<—-—-1<1.
Y

Therefore, by Bernoulli’s inequality, we have

1
2T 4 (n = Dyt —n = . k/x—i-(n—l)y-yk/y’l—n
< ! +(n—1)y |1+ i 1) (y—1)
—— +(n— - — — -n

IR )Y
L
T2kt k ’ ’
 —z(z— 1)?[(k - 1)z + k(2 — k)] <0
N 22 —kx+k -

The proof is completed. The equality holds for a; =ay =--- =a, = 1.

P 3.19. Ifa,b,c,d, e are nonzero real numbers so that a +b+c+d+e =25, then

2 2 2 2 2
N Y ) Y (1) e
a b c d e
(Vasile C., 2012)

Solution. Write the inequality as

a+b+c+d+e

fla)+ f(0) + f(c) + f(d) + f(e) = 5f(s), s= . =1,
where )
Flu) = (7—%) . uel=R\{0}.
From
iy = 2T

it follows that f is increasing on (—o0, 0) U [sp, 00) and decreasing on (0, sq], where

5
80:?<1:S.

Since

lim f(u) =49

U——00



Partially Convex Function Method 249

and f(sg) = 0, we have
min f(u) = f(so)-

u€el

Also, f is convex on [sg, s| = [5/7,1] because

10(15 — 14u)
4

I (u) = > 0.

u

According to the LPCF-Theorem and Note 4, we only need to show that

fl@)+4f(y) = 5f(1)

for all nonzero real x,y so that x + 4y = 5. Using Note 1, it suffices to prove that h(z,y) > 0,
where (@) )
g\r)—gly
h(z,y) = =————= =t -~
T —y u—1
We have

5(5x + 5y — 9xy)  5(6y — 5)?

In accordance with Note 3, the equality holds for a = b= c¢=d =e =1, and also for
a=—, b:c:d:e:§
6

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

n
e Letay,as,...,a, be nonzero real numbers so that a1 +as+---+a, =n. Ifk = ———,
1.2 1+az = =T
then ) , )
k k k
(D O A S
aq as Qp
with equality for ay = ay = --- =a, =1, and also for

n

n:n—1+\/n—1

g = a3 = - = Q

n
= ——,
YTl r V=1

(or any cyclic permutation).

P 3.20. If ai,as,...,ar are real numbers so that a1 +as + -+ a7 =7, then
(a? +2)(a2+2)--- (a2 +2) > 3".

(Vasile C., 2007)
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Solution. Write the inequality as
ap+as+---+ay

flar) + flaz) + -+ flar) > 7f(s), s= - =1,
where
flu)=In(u*+2), uweR
From 5
, . u
Fw) = .

it follows that f is decreasing on (—oo, so] and increasing on [sg, 00|, where

So — 0.
From 22 2)
1" o —U
f (U) - (U,2 i 2)2 )

it follows that f”(u) > 0 for u € [0, 1], therefore f is convex on [sg, s]. By the LPCF-Theorem,
it suffices to prove that

f@)+6f(y) =7f(1)
for x,y € R so that z + 6y = 7. The inequality can be written as g(y) > 0, where

g(y) = [(7—6y)*+2]+6In(y*+2)—7In3, ycR.

From
, Woy—7) | 1%y
g (y) = 2 2
12y* =28y + 17  y* + 2
_28(6y° — 13y* + 9y — 2)
- (12y% — 28y + 17)(y* + 2)
_ 282y -1)By—2)(y—1)
(12y% — 28y + 17)(y> + 2)’
. . . 1 2 . . 12
it follows that ¢ is decreasing on (—oo, 5} U [g, 1} and increasing on [5, g} U1, 00); therefore,

g9 = min{g(1/2),g(1)}.

Since g(1) = 0, we only need to show that g(1/2) > 0; that is, to show that x = 4 and y = 1/2
involve

(22 +2)(y* +2)° > 3.
Indeed, we have

(2 +2)(y* +2)° - 3" =37 <——1

The equality holds for a1 = ay =--- =a; = 1.
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2

P 3.21. Let aq,as, ..., a, be real numbers so that a1 +as +---+a, =n. If k> 4(n—1>
n_

, then

(a2 4+ k)(a3+ k) (a2 +k)> (14 k)™
(Vasile C., 2007)

Solution. Write the inequality as

flan) + flaz) + o+ flan) 2 nf(s), 5= — =1
where
f(w)=In(u®*+k), uveR
From 5
u
/ _
fw) u? +k’
it follows that f is decreasing on (—oo, so] and increasing on [sg, 0o, where
So = 0.
From 20 2)
—u
" o
f (U) - (u2+k)27

it follows that f”(u) > 0 for u € [0,1], therefore f is convex on [sg, s]. By the LPCF-Theorem
and Note 2, it suffices to prove that H(x,y) > 0 for x,y € R so that z + (n — 1)y = n, where

oy = LD T W)
T —y
We have
1 B k —xy
210 = o e+ m
- n? —4(n — 1)y
“An—1)(22+ k) (v + k)’
_ [z 4+ (n—1)y]* —4(n — 1)y
dn —1)(x2+ k) (y> + k)
= (n=1yP
CA(n = D22+ k) (y2 + k) = 0.
The equality holds for a; = as =---=a, = 1.

P 3.22. Let ay,as, ..., a, be real numbers such that a; + as + - -+ a, = n. If n < 10, then
(a3 —ay +1)(a5 —ag+ 1)+ (a2 —a, +1) > 1.

(Vasile C., 2007)
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Solution. Write the inequality as

air+as+---+an

flar) + flag) + -+ f(an) > nf(s), s= - =1
where
f(u) = In(v* —u+1), u € R.
From ) .
/ o U —
F=a—

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

1
Sp = 5 <1l=s.
In addition, from
1+ 2u(l —u)
" o
filu) = (u2 —u+1)%’

it follows that f”(u) > 0 for u € [sg, 1], hence f is convex on [sg, s]. According to LPCF-Theorem,
we only need to show that

f@)+(n=1)f(y) =2 nf1)
for all real x,y so that x 4+ (n — 1)y = n. Write this inequality as g(x) > 0, where

n—x
g(z) =l —z+ 1)+ (- Dy’ —y+1),  y=——F
o, ~1
Since y/(z) = e have
20 — 1 2y — 1 20 — 1 2y — 1
/ — _1 / — _
g (@) a:2—:1c—|—1+(n )ny—y—I—l 22—z+1 yP—y+1

-y +z+y—22y) (r—1)22°—(n+2)z+2n—1]
(@2 =2+ —y+1) m—-12@2-c+1)2-y+1)

Because 222 — (n+2)z+2n—1 > 0 for n < 10, we have ¢'(x) < 0 for z € (—o0,1] and ¢'(z) > 0

for x € [1,00). Therefore, since g(x) is decreasing on (—oo, 1] and increasing on [1, 00), we have

g(x) = g(1) = 0.
The equality occurs for ay =ay =--- =a, = 1.

Remark 1. The inequality holds also for n = 11, n = 12 and n = 13, when the equation
20" —(n+2)x+2n—1=0

has two positive roots, namely

n+2—y/n?2—12(n—1)
— . 7

n+2+/n?2—12(n—1)
— . :

X1 X2
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satisfying 1 < z1 < xy. Thus, g(z) is decreasing on (—oo, 1] U [z1, 23] and increasing on [1, z] U

[29,00). Therefore, it suffices to show that

min{g(1), g(z2)} = 0.
We have ¢g(1) = 0. For n = 13, we have
C1B—my 2

To = 57 Yo 12 37

hence

13

7
glxs) =In(ad — 2o+ 1)+(n—1Dn(ys —yo+1) =21 +12-In- = In — > 0.

9
For n = 14, the inequality does not hold.

Remark 2. By replacing ay, as, ..., a, respectively with 1 —ay,1 — ao, ...

following statement:

323

,1 —a,, we get the

e Letay,as,...,a, be real numbers such that a; + as + ---+a, = 0. If n < 13, then

(1—ai+a))(1—ay+ad)---(1—a,+ad)>1,

with equality for ay =ay =--- =a, = 0.

P 3.23. Let ay,ao,...,a, be real numbers such that a; + as + - - - + a,, = n.

(a%—a1+2)(a%—a2+2)---(ai—an+2)22”.

Solution. Write the inequality as

If n < 26, then

(Vasile C., 2007)

flar) + fla2) + -+ flan) = nf(s), s=

where
flw)=In(w*—u+2), uekR
From 5 1
/ o U —
f(U)— ug_u+27

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

In addition, from
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it follows that f”(u) > 0 for u € [sg, 1], hence f is convex on [sg, s]. According to LPCF-Theorem,
we only need to show that

f@)+ (n—=1)f(y) 2nf(1)
for all real x,y so that x 4+ (n — 1)y = n. Write this inequality as g(z) > 0, where

n—ax
g() =n(@* —z+2)+(n-Dhn(y’ —y+2), y=_—.
Since y/(z) = _—1, we have
n_
20 — 1 2y — 1 20 — 1 2y — 1
g'(m):2——i—(n—1)y' 2 - 3 )
T4 — x4+ 2 y—-—y+2 xf—z+2 yr—y+2

(- y)B+z+y—2zy) (r—-1)[22°— (n+2)z+4n — 3]

(@ H2)(yP -y +2) (-1 ot D -y 1)

Because 22? — (n+2)x +4n —3 > 0 for n < 26, we have ¢/(x) < 0 for z € (—o0,1] and ¢'(x) > 0
for z € [1,00). Therefore, since g(x) is decreasing on (—oo, 1] and increasing on [1,00), we have

g9(x) = g(1) = 0.
The equality occurs for ay =as =--- =a, = 1.

Remark 1. The inequality holds also for 27 < n < 38, when the equation
202 — (n+2)x +4n —3 =0

has two positive roots, namely

n+2—y/n*—28(n—1) n+2+/n?—28(n—1)
) To = ’
4 4

T —

satisfying 1 < z1 < my. Thus, g(z) is decreasing on (—oo, 1] U [21, 23] and increasing on [1, ;] U
[29,00). Therefore, it suffices to show that

min{g(1),g(x2)} = 0.

We have ¢g(1) = 0 and g(z3) > 0 for 27 < n < 38. For n = 39, the inequality does not hold.

Remark 2. By replacing aq,as,...,a, respectively with 1 —a;,1 —as,...,1 — a,, we get the
following statement:

e Letay,as, ..., a, be real numbers such that a; +as +---+a, = 0. If n < 38, then
2—ai+a})2—ay+a3) - (2—a, +a)>2",

with equality for ay = ay =+ =a, = 0.
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P 3.24. If a,b,c are nonnegative real numbers so that a + b+ c =3, then
(1—a+a’)(1—=b+bH(1 —c+ch)>1.

Solution. Write the inequality as

Fla) + F0)+ Q) 2 3(s), s ="Tg 0=,
where
fw)=In(l —u+u'), welo,3].
From w1
/ . us -
Flu)=1——

it follows that f is decreasing on [0, so] and increasing on [sg, 3], where

1
50 =—=<1=s.
R
Also, f is convex on [sg, 1] because
F(u) = —4ub — dud 4+ 12u% — 1 > —4u? — du? 4+ 12u% — 1 _ 4u? —1 -0
(1 —u+u*)? (1 —u+ut)? (1 —u+ut)?

According to the LPCF-Theorem, we only need to show that

f@)+2f(y) = 3f(1)

for all x,y > 0 so that x 4+ 2y = 3. Using Note 2, it suffices to prove that H(z,y) > 0, where

f'(x) — f'(y)
H(z,y) =12 "W
(2,9) pr—
We have
Hiz,y) = EF9@ = y)’ —1+4(2* +y* + 2y) — 2ay(z +y) — 42y’
’ (1—x+2Y)(1 —y+yt)
o T1HAE + Yt +ay) — 2wy(e +y) — Ay
- (I—z+a)(1—-y+y*)
_ h(z,y)
(I—z+a2Y)(1—-y+y*)
where

h(z,y) = =1+ 2(z + y)[2(x + y) — 2y] — 4oy — 42°y>.
From 3 =z + 2y > 24/2zy and (1 — z)(1 —y) < 0, we get

ry< -, x+y>1+uaxy.

0| ©
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Therefore,

h(z,y) > —1+2(1 4+ 2y)[2(1 + zy) — 2y] — 4oy — 427y
= 3+ 2uy + 22%y° — 42%y® > 3+ 2wy + 22%y? — 5a’y?
=34 2zy — 32%y* > 3 + 22y — day = 3 — 22y > 0.

The proof is completed. The equality holds for a =b=c=1.

P 3.25. Ifa,b,c,d are nonnegative real numbers so that a + b+ ¢+ d = 4, then
1—a+a®)(1-b+)1—c+)(1—d+d®) > 1.

(Vasile C., 2012)

Solution. Write the inequality as

a+b+c+d
Fla) + F(B) + £0) + f(d) 2 af(s), = TIECRD_y
where
f) = —u+a?), wel0,4]
From )
3u® —1
I _
Jiu) = 1—u+u?
it follows that f is decreasing on [0, so] and increasing on [sg, 4], where
1
So=—F7=<1=s.
VG
In addition, f is convex on [sg, 1] because
f//(u):—3u4+6u—1>—3u+6u—1: 3u—1 - 0.

l—u+u?)? — 1—ut+u?)? (1—u+u??
According to the LPCF-Theorem, we only need to show that
f(@)+3f(y) =2 4f(1)

for all x,y > 0 so that x 4+ 3y = 4. Using Note 2, it suffices to prove that H(z,y) > 0, where

H(z,y) = f/(wa): : 5(3/)

We have

r—y)?+3(x+y)—1— 3xy? - 3(x+y) — 1 — 3z%y?
(—ar)(i—y+9) = (-ar) 0=y + )

H(:L‘,y) = (
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From 4 = z + 3y > 24/3zy and (1 —z)(1 —y) <0, we get

W

xy < 3 r+y=>1l+uwy.
Therefore,

3(x+y)—1-32%y* >3(1 +ay) — 1 — 32%y°
>3(1+azy) —1—4day=2—2xy >0,

hence H(z,y) > 0. The equality holds fora =b=c=d = 1.

P 3.26. Ifa,b,c,d, e are nonzero real numbers so that a +b+c+d+e =25, then

1 1 1 1 1 11 1 1 1
5l=d -ttt = ) rd5>U( -+,
<a2+b2+02+d2+62)+ - (a+b+c+d+e)

(Vasile C., 2013)

Solution. Write the desired inequality as

Fla) + F(8) + F(0) 4 J(d) + 1) 2 57(s), 5= TIEEEAEE
where . 14
From o7 .
iy =220

it follows that f is increasing on (—o0,0) U [sp, 00) and decreasing on (0, sq], where

5
So = ? <1=s.
Since
lim f(u)=9
U—>—00

and f(sg) < f(1) =0, we have
min f(u) = f(so)-

u€el

fFrom 2(15 — 14u)
— 14u

1!

f(u) = A

it follows that f is convex on [sg, 1]. By the LPCF-Theorem, Note 4 and Note 1, it suffices to

show that h(z,y) > 0 for all z,y € I which satisfy z + 4y = 5, where

g~ ) o) fw) = f)

T —y u—1

Y
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Indeed, we have

9 5)
S5z + 5y — 9ry  (6y — 5)?

In accordance with Note 3, the equality holds for a =b=c=d =¢e =1, and also for

3 6

(or any cyclic permutation).

P 3.27. If a,b, c are positive real numbers so that abc = 1, then

7—6a+7—6b+7—6c
2+a2 2402 242

> 1.

(Vasile C., 2008)

Solution. Using the substitution

we need to show that

where
_rty+z 0
— 3 —
and 7 _ e
— be
From 23 2)( 3)
et + et —
f(u) =

2+e2

it follows that f is decreasing on (—oo, so] and increasing on [sg, 00), where
So=1n3 > s.

We have

2 - h(t) )
f//(U) = m, h(t) = —3t4 + 14t3 + 36t2 — 28t - ]_27 t=-e".

We will show that h(t) > 0 for ¢ € [1, 3], hence f is convex on [0, so]. We have

h(t) = 3(t2 — 1)(9 — ¢%) + 14> + 6t — 28t + 15
> 1443 + 6t — 28t + 15
= 1482(t — 1) + 14(t — 1)° + 662 + 1 > 0.
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By the RPCF-Theorem, we only need to prove that

f(x) +2f(y) = 3/(0)

for all real x,y so that x + 2y = 0. That is, to show that the original inequality holds for b = ¢

and a = 1/c%. Write this inequality as

A(7c* —6)  2(7—6¢) o1
2¢ +1 242 —

Y

(c—1)?*(c —2)*(5¢* + 6¢ + 3) > 0.
By Note 3, the equality holds for a = b = ¢ = 1, and also for

a= b=c=2

1
4’

(or any cyclic permutation).

P 3.28. If a,b, c are positive real numbers so that abc = 1, then

1 n 1 . 1 <1
a+5bc b+5ca c+bab 2

Solution. Write the inequality as

a L b n c
a?+5 b2+ 5 c2+5

1
< —.
-2
Using the substitution

we need to show that

where
Tt y+z 0
— 3 —
and Y
—e
f(U) = m, u € ]R
From ( ) )
N il CCataeth)
f(U) - (€2u+5)2 )

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

Inb
80:T>0:S.

(Vasile C., 2008)
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Also, from
e"(—e™ 4 30e?" — 25)

(62u + 5)3 )

it follows that f is convex on [s, s¢], because u € [0, so] involves e* € [1,1/5 | and e?* € [1,5],
hence

" (u) =

—et + 30e* — 25 = (5 — ™) + 25(e* — 1) > 0.

By the RPCF-Theorem, we only need to prove the original inequality for b = ¢ and a = 1/c?.

Write this inequality as
c? 2c 1

< —
bet+1 +c2—|—5 -2
(c — 1)?(5¢* — 10¢* — 2¢* + 6¢ + 5) > 0,
(c—1)*[5(c — 1)* + 2¢(5c* — 16¢ + 13)] > 0.

The equality holds for a =b=c=1.

P 3.29. If a,b,c are positive real numbers so that abc = 1, then

1 1 1
4—3a—|—4a2+4—3b+4b2+4—3c+4c2

3
< -.
)

(Vasile Cirtoaje, 2008)

Solution. Let

We need to show that

where

Tt y+z 0

= 3 =
and )

= — R.
J(w) 4 — 3ev + 4e2u’ ue
From (8 3)
e (8e% —
f(u) =

(4 — 3ev + 4e2u)2’

it follows that f is decreasing on (—oo, so] and increasing on [sg, 00), where

80=1H§<0:S.

We claim that f is convex on [sg,0]. Since

(—6463u + 36e%* + 55e — 12)
(4 — 3et + 4e2u)3 ’

f//(u) — eu
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we need to show that
—64t> + 36t% + 55t — 12 > 0,

3
t=e"e |=,1]|.
e 3]

—64t% + 3612 + 55t — 12 > —72t3 + 36t% + 48t — 12
=12(1 —t)(6t* + 3t — 1) > 0.

where

Indeed, we have

By the LPCF-Theorem, we only need to prove the original inequality for b = ¢ and a = 1/c%.
Write this inequality as follows:
ct N 2
4et —3c2+4  4—3c+4c

3
<_7
-5

28¢% — 21¢® — 48¢* + 27¢® + 42¢* — 36¢c + 8 > 0,
(c —1)*(28¢* + 35¢® — 6¢* — 20c + 8) > 0.
It suffices to show that
7(4c* + 52 — > =3¢ +1) > 0.
Indeed,
4 45— =3¢ +1=c22c— 1) +9 —2¢% =3¢+ 1

and

9c* —2¢* —3c+1=c(3c—1)*+ (2c— 1) > 0.
The equality holds for a =b=c=1.

Remark. Since

1 1 1

>
4—3a+4a*> " 4-3a+4a*+ (1 —a)? 501 —a+a?)’

we get the following known inequality

1 . 1 n 1
l—a+a? 1—-0+02 1—cH+c?

<3.

P 3.30. If a,b, c are positive real numbers so that abc = 1, then

1 1 1
(3a+1)(3a® — ba + 3) i (3b+ 1)(3b% — 5b + 3) * (3¢ +1)(3¢® — be + 3)

w

< -
4
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Solution. Let

We need to show that

where
_z +y+z _0
3
and )
JW) = Gasnea —setay “R
From

, B (36“ — 2)(96“ — 2)
i) = (et 4 1)2(3e2+ — Hev + 3)2’

it follows that f is increasing on (—o0, s1] U [sg, 00) and decreasing on [sy, so|, where

s1=In2—-1n9, sp=In2—-1In3, s <s<0=s.

Since 1
im0 = Fls) = 5
we get

min f(u) = f(so).

u€eR

We claim that f is convex on [sg, 0]. We have

£ h(t)

P = Grree —sir 9

where )
t=¢e"¢ {3, 1} , h(t) = —T729¢° + 1188t* — 648t 4 387t* — 160t + 12.

For t € [2/3, 1], we have h(t) > 0, hence f is convex on [s¢,0]. Indeed,
h(t) > —729¢t° 4+ 1188t* — 648t + 387t* — 160t — 12 = (3t — 2)hy(¢),

hi(t) = —234t* + 234t% — 60t + 89t + 6 > t(—243t* + 234t* — 60t + 89)
> 3t(—81¢ + 7817 — 20t + 23) = 3t(1 — t)(23 + 3t + 81¢*) > 0.
By the LPCF-Theorem, we only need to prove the original inequality for b = ¢ < 1 and a = 1/c%.
Write this inequality as follows:
o n 2
(c24+3)(3c* =524+ 3)  (3c+1)(3¢% — be+ 3)

3
< —.
!
Since

A+3>2(c+1)

and
3c* — 5¢7 4+ 3 > ¢(3¢ — 5c + 3),
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it suffices to prove that

c? 2

2(c+1)(3¢% — 5¢ + 3) * (3c+1)(3¢?2 —5e+3)

3
< —.
— 4
This is equivalent to the obvious inequality

(1 —¢)?(1 4+ 15¢ 4 5c* — 14c¢® — 6¢*) > 0.

The equality holds for a =b=c=1.

P 3.31. Let ay,as,...,a, (n > 3) be positive real numbers so that ajas---a, = 1. If p,q >0 so
that p+4qg > n — 1, then

]_—Cll 1—CL2 1_an
s+ s+ ———— >0.
L+ pay +qay 1+ pax + qa; 1 + pa,, + qa?

(Vasile C., 2008)

Solution. For ¢ = 0, we get a known inequality (see Remark 2 from the proof of P 1.63).
Consider further that ¢ > 0. Using the substitutions a; = e for ¢« = 1,2, ..., n, we need to show
that

fQxy) + f(w2) + -+ flan) = nf(s),

where
T+ To+ -+ Ty
s = =0

n

and 1 "

—e

= c R.
f(w) 1+ pev + ge2v’ Y

From

e%(ge® — 2qe* —p — 1)
(1 + pe* 4 qe?+)?

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

f'(w) =

pti
=

so=Inrg>0=s, rg=144/1+

Also, we have
t-h(t)

(14 pt + qt2)3’

f(u) =
where
ht)=—*t* +qlp+4q)t + 3q(p + 2)* + (p—4dg +p )t —p—1, t=c¢"
We will show that h(t) > 0 for ¢ € [1,70], hence f is convex on [0, sg]. We have

R (t) = —4¢*> + 3q(p + 49)t> + 6¢(p + 2)t + p — 4q + p°,
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h'(t) = 6g[-2qt* + (p + 4q)t + p + 2.
Since
R'(t) = 6q[2(—qt* + 2qt +p + 1) + p(t — 1)] > 12q(—qt* +2qt +p + 1) > 0,

h'(t) is increasing,
R(t) > KW (1) =p*+9pq+8¢> +p+8q¢ >0,

h is increasing, hence

h(t) > h(1)=p* +4pg+3¢° +2¢— 1= (p+2¢)* — (¢ —1)°
=(@+q+1)(p+3q—1).

Since

4 9
p+3g—1>p+3g— 2" f:pz 4,
n_

f"(u) > 0 for u € [0, sol, therefore f is convex on [s, so]. By the RPCF-Theorem, we only need
to prove the original inequality for

=+ =ay, =1, ay = 1/t" 1 t>1.

Write this inequality as

(et — 1) (n—1)(1—1) -
=2 ptnt 4 q 14 pt+qt?
or
pA+g¢B > C,

where

A=t""1t" —nt+n—1),
B=t" """ —(n—1)(t - 1),
C=t""n—-Dt"+1-nt"1.

Since p+4qg > n— 1 and C > 0 (by the AM-GM inequality applied to n positive numbers), it

suffices to show that
(p+4q)C

pA+qB >
n—1

)

which is equivalent to
pl(n—1)A—=Cl+g¢[(n-1)B —4C] > 0.

This is true if
m—1)A-C2>0

and
(n—1)B—-4C >0

for t > 1. By the AM-GM inequality, we have

(n—1DA-C=nt"""t" +n—-2—(n—1)t]>0.
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For n = 3, we have
B=(t—1)*t"+2t> +2t* + 2t + 2),

C =t t—1)>22t+1),
B —2C = (t —1)*(t" — 2t> + 2t + 2)
= (t—1P[(t— DA — 1) +3] > 0.

Consider further that
n > 4.

Since
t—1<t" Nt —1),

we have

B>t — " — (n— 1)t" (¢t — 1)
="M 2 — (n— Dt +n—1].

Thus, the inequality (n — 1)B —4C > 0 is true if
(n—DE"" -2 —(n—1)t+n—1]—4(n—1)t" —4 —4nt"' >0,
which is equivalent to g(t) > 0, where

g(t) = (n = D" —d(n — D" +4nt" " — (n — 1)t* — (n — 1)t +n® — 2n — 3.

We have
gdt)=(n—1Dagt), ¢i(t)=n+Dt" —4nt" ' +4nt"? — 2t —n + 1,
gi(t) =n(n+Dt" ' —dn(n — 1)t" 2 +4n(n — 2)t" > — 2.
Since
n(n + D" +4n(n — 2)t" 3 > dn/(n + 1)(n — 2)t" 2,
we get

91(t) > 4n [\/(n+1)(n—2) —n+ 1] =2 _ 9

> 4n [\/(n+1)(n—2)—n+1] -2

B 4n(n — 3) B
i+ D) —-2)+n—1
4n(n — 3) B
(n+1)+n—1_2_2<n_4>20'

Therefore, ¢;(t) is increasing for t > 1, ¢1(¢) > ¢1(1) = 0, g(t) is increasing for ¢ > 1, hence

g(t) = 9(1) = 0.

The equality holds for a1 = ay =--- =a, = 1.
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Remark. For p =0 and ¢ = 1, we get the inequality (Vasile C., 2006)

1—a+1—b+1—c+1—d+1—e>0
1+a2 146 142 14d2 14 7

where a, b, ¢, d, e are positive real numbers so that abede = 1. Replacing a, b, ¢,d,e by 1/a,1/b,1/c,1/d,1/e,
we get

1+a n 145 n 1+c n 14+d n 1+e <k
14+a? 140 1+c¢ 14d> 1+e 77
where a, b, ¢, d, e are positive real numbers so that abcde = 1.
Notice that the inequality

1-@1 ]_—CLQ 1-@3 1-@4 1—CL5 1—(16

>0
1+a?2 1+a3 1+a2 1+4a2 1+4a2 1+d2

is not true for all positive numbers aq, as, as, ay, as, ag satisfying ayasazasasag = 1. Indeed, for
as = az = a4 = ay = ag = 2, the inequality becomes

1—
N _1>0
1+ ay

Y

which is false for a; > 0.

P 3.32. If a,b,c are positive real numbers so that abc = 1, then

1—a n /) N 1—c¢ >0
17 +4a +6a2 174+ 4b+6b2 17 +4c+ 6¢%2 —

(Vasile C., 2008)

Solution. Using the substitution

we need to show that

where
_rtyt+z 0
— 3 —
and . .
—e
- b G R?
f(w) 1 + pet + ge?v B
with
4 6
b= AT

As we have shown in the proof of the preceding P 3.31, f is decreasing on (—o0, so] and increasing

on [sg, 00), where
/ 1 9
so=Inrg>0=s, rg=1+ 1+Zi:1+ 5
q
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5
In addition, since p+ 3¢ — 1 = T > 0 (see the proof of P 3.31), f is convex on [0, so]. By the

RPCF-Theorem, we only need to prove the original inequality for b = ¢ > 1 and a = 1/c¢. Write
this inequality as follows:

A(*—-1) 2(1 —¢) -0
A+p+q l4+pe+qer =7
pA+qB = C,

where

A=cc—1)>2(c+2),
B = (c—1)2(c*+2c +2¢% +2¢ + 2),
C=c*c—1)>*2c+1).

Indeed, we have
3(c—1)*(c —2)*(2¢* + 2¢+ 1)
17

In accordance with Note 3, the equality holds for a = b = ¢ = 1, and also for

pA+qB—-C = > 0.

1
a= c
(or any cyclic permutation).
m
P 3.33. If ai,as,...,as are positive real numbers so that ajas---ag =1, then
1-— ay 1-— as 1-— as
+ +oi >0
(1+a1)2 (1+a2)2 (1+a8)2 -

(Vasile C., 2006)

Solution. Using the substitutions a; = e* for i = 1,2,...,8, we need to show that

fxzr) + fze) + -+ + flxs) > 8f(s),

where
.T1—|—SL’2+"'+$8
s = =0
8
and . .
—e
= R.
From ( 3)
, et(et —
t) = ————=

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

so=In3>1=s.
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We have
et (8e" — 2 — 3)

(1+ew)t

f(u) =
For u € [0,1n 3], that is e* € [1, 3], we have
8e" — e — 3> 8e" —3e" — 7= (e — 1)(7 —e") > 0;

therefore, f is convex on [s,sg]. By the RPCF-Theorem, we only need to prove the original
inequality for as = --- =ag:=t and a; = 1/t7, where ¢ > 1. For the nontrivial case ¢t > 1, write
this inequality as follows:

t7(t7—1)>7(t—1)
(tT+1)2 — (t+1)2°
T(+7T _ 2
T —1)(t+1) >
(t—1)(t"+1)%2 —
t7(t6+t5+t4+t3+t2+t+1)>7
(-t +t*—t3+2—t+1)2 =

Since
O+t Bt 1=t —t+ 1) - - D+ 1) <t (-t + 1),

it suffices to show that
P+t 3+ +t+1

> 7
t2—t+1)? =0
which is equivalent to the obvious inequality
(t—1)°>0.
Thus, the proof is completed. The equality holds for a; = ay, =--- =ag = 1.
Remark. The inequality
1—a 1—as 1 —ag
(1+a1)2 (1—|—a2)2 (1+CL9)2 -
is not true for all positive numbers aq, as, . .., ag satisfying ajas - - - a9 = 1. Indeed, for as = a3z =
.-+ = ag = 3, the inequality becomes
1-— aq
———12>0,
(T+a)> —
which is false for a; > 0.
]
. —-13 13
P 3.34. Let a,b,c be positive real numbers so that abc = 1. If k € |——=, ——=|, then
3v3'3V3

a+k N b+ k N c+k <3(1+k:)
a?2+1 b2+1 c2+1— 2

(Vasile C., 2012)
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Solution. The inequality is equivalent to
1 3 1 a
k —— < _—
(Cati5) <X wh)
(@ —1)2 2
>k -3 *
POl DD ks *)

13
Thus, it suffices to prove it for |[k| = ——=. On the other hand, replacing a,b,c by 1/a,1/b,1/c,

3v/3
(a—1)2 2 e
2 a®+1 Zk(?’_za?H)' )

Based on (x) and (%), we only need to prove the desired inequality for

13
k=—".
3v3

the inequality becomes

Using the substitution

we need to show that

where
_rtyt+z 0
— 3 —
and . L
_e R
= — R.
flu)=—; T u€
From ) ol .
, et + 2ke" —
t) =

it follows that f is decreasing on (—oo, so] and increasing on [sg, 00), where

1
so=Ilnrg<0=s, 1r9=—-k+Vk®+ :—3\/5.

Also, we have
" o l- h<t>
f <u> - (1 +t2)37
where
h(t) = —t* —4kt® + 6t> + 4kt — 1, t=¢"
We will show that h(t) > 0 for ¢t € [rg, 1], hence f is convex on [s, s]. Indeed, since

aht = 22 S22
3v3 T 27T

we have

h(t) = —t* + 61> — 1+ 4kt(1 — %) > —t* + 61> — 14+ (1 — t*) = t*(5 — t*) > 0.
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By the LPCF-Theorem, we only need to prove the original inequality for b = ¢ := t and a = 1/t?,
where t > 0. Write this inequality as

2(kt*+1)  2(t+k) < 3(1+ k)
tt+1 2+1 — 2 7

36 — 4 4+t 12 — 4t + 3 — k(1 —2)° >0,
(t—1D2B+ k)t +2(1 + k)t* + 26 +2(1 — k)t +3 — k] > 0,

(t—1)? <t —24 \/5)2 [(27 +13V3)E 4+ 24(2 + V3)t + 33 + 17V3| > 0.

13
The equality holds for a =b=c=1. If k = ——, then the equality holds also for

3v/3
a:7+4\/§, b=c=2-+3

(or any cyclic permutation). If k = ——. then the equality holds also for

3v3
a:7—4\/§, b=c=2+3

(or any cyclic permutation).

P 3.35. If a,b, ¢ are positive real numbers and 0 < k < 2+ 2v/2, then

a’ b3 c? a+b+c
+ + > .
ka? +bc  kb24+ca ke +ab k+1

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that abc = 1. On this hypothesis, we write the
inequality as follows:
a’ b b a b c

ka3+1+kb3+1+kb3+1—k+1+k+1+k+1’

a4—a+b4—b+c4—c>0
ka3 +1 kP +1  ke3+1 7

Using the substitution

we need to show that

where

and
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From
keb* + 2(k + 2)e* — 1

I =Gz

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

so=Inrg <0, 1ry=

s =k —2+/(k+1)(k+4)
V ’ € (0,1).

Also, we have
t- h(t)

I =G

where
h(t) = K0 — k(4k + 1)t5 + (13k + 16)t> — 1, ¢ = €.

If h(t) > 0 for t € [re, 1], then f is convex on [sq, 0]. We will prove this only for & = 24-2+/2, when
ro ~ 0.415 and h(t) > 0 for t € [t1,ts], where ¢; =~ 0.2345 and ¢y ~ 1.02. Since [ro, 1] C [t1,t2],
the conclusion follows. By the LPCF-Theorem, we only need to prove the original inequality for
b = c. Due to homogeneity, we may consider that b = ¢ = 1. Thus, we need to show that

a® 2 a+2
+ > ,
ka? + 1 a+k k+1

which is equivalent to the obvious inequality
(a —1)?[a® — (k —2)a+2] > 0.
For k = 2 + 24/2, this inequality has the form
(a—1)%(a—Vv2)2>0.
The equality holds for @ = b = ¢. If k = 2 + 24/2, then the equality holds also for

—=b=c

V2

(or any cyclic permutation).

P 3.36. Ifa,b,c,d, e are positive real numbers so that abcde = 1, then

2 1+1+ +1 >3 1+1+ +1
a+1 b+1 e+1) — a+2 b+2 e+2)°

(Vasile C., 2012)
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Solution. Write the inequality as

1—a L 1-b n 1—c¢ L 1—-d n 1—e >0
(a+1)(a+2) OGb+1)b+2) (c+1)(c+2) ([d+1)(d+2) (e+1)(e+2) ~

Using the substitution

we need to show that

f@) 4+ fy) + f(2) + f(1) + f(w) = 5 (s),

where
r+y+z+t+w
s = =0
5
and . .
—e
u) = , ueR.
) = e et

From

;o et(e? —2e" —5)
f (U) - (6”—}-1)2(61‘—}-2)2’

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

so=In(1+V6) <2, s< s

Also, we have
t-h(t)

f"(u) = (t+1)3(t+ 2

t=e",

where
h(t) = —t* 4+ 73 + 21#% + 7t — 10.

We will show that h(t) > 0 for ¢ € [1,2], hence f is convex on [0, so]. We have
h(t) > =2t + Tt 4 214> + 7t — 10 = 5t° 4 214> + 7t — 10 > 0.
By the RPCF-Theorem, we only need to prove the original inequality for
b=c=d=e:=t, a=1/t" t>1.
Write this inequality as

t(tt —1) S 4(t —1)
H+DRA+1) T (E+1)(E+2)

which is true if
A+ DE+2)(E + 2+t 4+ 1) > 40+ 1)(2t" + 1).

Since
-+ 12t +1) =254+ 3t" + 1 < 2t (¢ + 2),

it suffices to show that

E+D)E+2)E +2+t+1) > 8(t +2).
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This inequality is equivalent to
5 — 4t + 6t% + 6t% + 5t — 14 > 0,

tt — D+ 10(¢> = 1) + 4(t — 1) > 0.
The equality holds fora =b=c=d=e=1.

P 3.37. If ay,as,...,a14 are positive real numbers so that ayas - - - a1y = 1, then

1 1 1 1 1 1
3 e —— ) >29 _
(2a1+1+2a2+1+ +2a14+1>— <a1+1+a2+1+ +a14+1>
(Vasile C., 2012)

Solution. Write the inequality as

1—&1 1—&2 1—(114

Gt D)o+ D miDCnt+D) T i D2t 1) =

Using the substitutions a; = e* for i = 1,2,...,14, we need to show that

(o) + fzo) + -+ f(x14) > 14f(s),

where
¢ — T1+To+ -+ Ty —0
14
and .
flu) = S
From

oo 2et(e* — 2et — 2)
FW) = e e

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

so=In(1+v3) <2, s<s.

Also, we have
2t - h(t)

f//(u) = (t n 1)3(2t n 1)3, t=e",

where
h(t) = —2t" + 113 4+ 15¢> + 2t — 2.

We will show that h(t) > 0 for ¢ € [1,2], hence f is convex on [0, so]. We have
h(t) > —4t® + 1143 + 158> 42t — 2 = T3 + 152 + 2t — 2 > 0.
By the RPCF-Theorem, we only need to prove the original inequality for

a2:a3:"':a1422t, a1:1/t13, tZl
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Write this inequality as
t13<t13 _ 1)

(15 + 1)(15 + 2)

13(t — 1)
t+1)2t+1)

>

Since

it suffices to show that
-1 13(t—1)

B +5 7 (t+1)(2t+1)

which is equivalent to
(2 — 5t +7) — % — 34t + 32 > 0.

Substituting
t=1+2x, x>0,

the inequality becomes
(1+2)¥(2* -3z +3) —2* — 362 —3 > 0.

Since
(14 2)? > 14 132 + 7827,

it suffices to show that
(782% 4+ 13z + 1)(2* — 3z + 3) — 2® — 362 — 3 > 0.

This inequality, equivalent to
2% (782 — 221z + 196) > 0,

is true since
78x% — 221z + 196 > 642” — 2242 + 196 = 4(dx — 7)* > 0.

The equality holds for a1 =as =--- = a4 = 1.

P 3.38. Let aq,ao, ..., ag be positive real numbers so that aias---ag = 1. If k > 1, then

(k:+1)1+1++1>21+1++1
ka1+1 ka2+1 kCLg"i‘l - CL1+1 CL2+1 CL8+1.

(Vasile C., 2012)

Solution. Write the inequality as

1— aq 4 1— (05} i i 1— as >0
(a1 + 1)(/6@;[ + 1) (CLQ + 1)(1{3&2 + 1) (ag + 1)(1{:&8 + 1) -

Using the substitutions a; = e® for : = 1,2,...,8, we need to show that

flx1) + f(xa) + -+ f(w) > 8f(s),
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where
_ T1+ X2+ -+ T8 _0
8
and | — o
W= G pme sy "R
From

o et(ke* — 2ke" — k —2)
F) = = e s 17

it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where

/ 2
30:1n<1+ 2+E><2’ s < Sg.

t- h(t)
(t+1)3(kt +1)3’

Also, we have

f"(u) =

where
h(t) = —k*t* + k(5k + 1)t* + 3k(k + 3)t* + (k> — k + 2)t — k — 2.

We will show that h(t) > 0 for ¢ € [1,2], hence f is convex on [0, so]. We have

h(t) > —2k*t* + k(5k + 1)t* + 3k(k + 3)t* + (k* — k +2)t — k — 2
=k(Bk+ D) +3k(k+3)* + (K> —k+ 2Dt —k—2
>3k(k+3)+ (kK —k+2) —k—2>0.

By the RPCF-Theorem, we only need to prove the original inequality for
agzagz"':agl:t, &1:1/t7, tZl

Write this inequality as

(" —1) S 7(t—1)
T+ D"+ k) T @+ 1) (kt+1)
Since
T+ +Ek) =t + (k+ Dt + k& <t"(t" +2k+ 1),

it suffices to show that
t"—1 - 7(t—1)

T+2k+1 7 (t+1)(kt+1)

which is equivalent to
k(t—1)P(t) + Q(t) = 0,

where
Pt)=tt+ 1)+ +t"+ £ + 2+t +1) — 14,

Q)=+t —1) =7t —1)(t" +1).
Since (t — 1)P(t) > 0 for ¢ > 1, it suffices to consider the case k = 1. So, we need to show that
t"—1 - 7(t—1)
tT+3 7 (t+1)%
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which is equivalent to
t"(t* — 5t + 8) — t* — 23t +20 > 0.

Substituting
t=14+=z, x>0,

the inequality becomes
(1+2z) (2> -3z +4) —2° — 250 —4 > 0.

Since
(14+2)" > 1+ 70+ 212%,

it suffices to show that
(212° 4+ 7z + 1)(2® — 32 +4) — 2° — 252 — 4 > 0.

This inequality, equivalent to
2*(212* — 562 + 63) > 0.

is true since
212% — 562 + 63 > 1622 — 562 + 49 = (4o — 7)? > 0.

The equality holds for a; = as =--- =ag = 1.

P 3.39. Ifaj,as, ..., a9 are positive real numbers so that ajas---ag =1, then

1 1 1 1 1 1
2G1+1+2CL2+1+ +2a9—|—1_a1—|—2+a2+2+ +a9+2

(Vasile C., 2012)

Solution. Write the inequality as

1— aq i 1-— (05} + i 1-— Qg >0
(2&1 + 1)((11 —|— 2) (2@2 + ]_)(CLQ —|— 2) (2&9 + 1)(a9 —|— 2) -
Using the substitutions a; = e for i = 1,2,...,9, we need to show that

flx1) + fza) + -+ flzg) 2 9f(s),

where
LL’1—|—JI2+"'+LL’9
s = =0
9
and . .
—e
u) = , u€eR.
f(u) (2% 4 1)(e* + 2)

From

e (2e* — 4e* —7)
(2ev + 1)2(ev + 2)2’

f'(w) =
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it follows that f is decreasing on (—oo, so] and increasing on [sg, 00), where

3vV2
so:1n<1+—\/_><2, s < 8.

2

Also, we have
t-h(t)

(2t +1)3(t +2)%’

f//(u) —

t=ce",

where
h(t) = —4t* 4 26> + 54t + 19t — 14.

We will show that h(t) > 0 for ¢ € [1,2], hence f is convex on [0, so]. We have
h(t) > —8t3 + 26t + 54t* + 19t — 14 = 18> + 54> + 19t — 14 > 0.
By the RPCF-Theorem, we only need to prove the original inequality for
gy = a3 =-++=ag :=t, ay = 1/1%, t>1.

Write this inequality as
B3(t8 — 1)
(t8 +2)(2t8 + 1)

8(t—1)
(2t+1)(t+2)

>

Since
(t°+2)(2t% + 1) = 2610 + 5% + 2 < t3(21° + 7),

it suffices to show that
5 —1 8(t—1)

28+7 7 (2t +1)(t+2)’

which is equivalent to
t5(2% — 11t + 18) — 2t* — 61t + 54 > 0.

Substituting
t=1+2z2, x>0,

the inequality becomes
(14 2)%(22* — T2 +9) — 22° — 652 — 9 > 0.

Since
(14+2)® > 1+ 8z + 2827,

it suffices to show that
(2827 + 8z + 1)(22° — Tz + 9) — 22> — 652 — 9 > 0.

This inequality, equivalent to
2?(562° — 180z + 196) > 0.

is true since
5627 — 180z + 196 > 492% — 196z + 196 = 49(x — 2)* > 0.

The equality holds for a1 = ay = --- = a9 = 1.
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P 3.40. If ay,as,...,a, are real numbers so that
a1,0g,...,0p <7, G Fay+ -+ a, =,
then -
cosay +cosag + -+ 4+ cosa, < ncos—.
n

(Vasile C., 2000

Solution. Write the inequality as

fl) + fla) 4o+ fla) 2nf(s), 5= FRTE 0T
where
fu)=—cosu, wel=[—(n—2)m, 7]
Let

so =0 < s.
We see that f is increasing on [sg, 7] = >4, and f(u) > f(so) = —1 for u € I. In addition, f is
convex on [sg, s]. Thus, by the LPCF-Theorem, we only need to prove that g(z) < 0, where

g(x) =cosx+ (n—1)cosy —ncoss, x+(n—1y=m, T>x>s>y>0.

-1
Since ' = ——, we get
n—1

. . . - +
g (z) = —sinz +siny = —2sin = 5 Y cos = 5 Y

We have ¢'(x) < 0 because

rty _a+n-ly
0< < = —
2~ 2 2
and
r—y T
0< < —.
-2 2
From ¢’ <0, it follows that g is decreasing, hence g(z) < g(s) = 0.
T
The equality holds for a; = as = -+ = a, = —. If n = 2, then the inequality is an identity.
n
Remark. In the same manner, we can prove the following generalization:
e Ifay,as,...,a, are real numbers so that
1,00, ...,0, < T, a1+a2+”'+a”:37 ()<3§E7
n 4
then
cosay +cosag + -+ cosa, < ncoss,
with equality for a1 = ay = -+ = a, = s.
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P 3.41. If ay,aq9,...,a, (n > 3) are real numbers so that

al,ag,...,anz s a1+a2+~~~—|—an:n,
n—2
then ) ) )
a a a
2 . 2 - +"'"i_2—n§n'
ai—a;+1 a5—axy+1 az —a, +1

(Vasile Cirtoage, 2012)

Solution. Write the inequality as

flar) + flag) + -+ flan) = nf(s), s= - =1,
where . . ) .
—u -1 n*—n-—
f(u):u2—u—|—1’ uel= n—2" n-—2

Let s = 2. We have s < sy and

min f(u) = f(so0)

because . . ( 2)?
f(U)—f(Q):uQ_—WJrg:mZO.
From ( 2)
flu) = W2 —ut 12
g 20w —u?—1) 202 —u)+2(u - 1)
flu) = (w2 —u+1)3 (u?2 —u+1)>3 ’

it follows that f is convex on [1, so]. However, we can’t apply the RPCF-Theorem in its original
form because f is not decreasing on I<,,. According to Theorem 1, we may replace this condition
with ns — (n — 1)sy < inf L. Indeed, we have

ns—(n—1sg=n—-2n—-1)=-n+2<

= infI.
n—2

So, it suffices to show that f(z) + (n — 1)f(y) > nf(1) for all z,y € I so that
z+(n—1y=n.

According to Note 1, we only need to show that h(x,y) > 0, where

_ Sw) = f(1) _9(@) —g(y)
glu) == —1—" hlz.y) = Ty
We have 4
g(u) = w1

- vty —1 B (n—2)x+1
M) = )y ) T e D@ e+ Dy D)
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The equality holds for ay = ay = --- =a, = 1, and also for
—1 n—1
&1—n_27 a2=a3="'=&n=n_2
(or any cyclic permutation).
m
P 3.42. If ay,aq,...,a, (n > 3) are nonzero real numbers so that
-n
a17a27"'7an2 ; a1+a2+"'+an:n7
n—2
then
1 1 1 1 1 1
St St > —F— e —
ai  aj az ~ a;  ap G,

(Vasile Cirtoaje, 2012)

Solution. According to P 2.25-(a) in Volume 1, the inequality is true for n = 3. Assume further
that n > 4 and write the inequality as

ap + ax+ -+ ay

fla) + fla) +--- + fla) 2 nf(s), 5= . -1,
where . . @ 3)
fu)=——— uwel=|—= =2\ {0},
Let
So =2, §<8g.
from 1 1 2)2
f) 5@ = e r= U2y

it follows that

while from 5
fl) =57 ') =

u3

2(3 —u)

Y

it follows that f is convex on [s, so]. However, we can’t apply the RPCF-Theorem because f is
not decreasing on I . According to Theorem 1 and Note 6, we may replace this condition with
ns —(n—1)sy < infl. For n > 4, we have

ns—(n—1)sg=n—-2n—-1)=-n+2< = inf L.

/rl/ JR—
So, according to Note 1, it suffices to show that h(x,y) > 0 for all z,y € Iso that x+(n—1)y = n.

We have
flw) = f@) -1

o) =" T



Partially Convex Function Method 281

g@)—gly) _x+y (n-2)z+n

h — — —
(z,9) r—y 1292 (n—Da2y? —
The proof is completed. By Note 3, the equality holds for a; = a; =--- = a, = 1, and also for
—n n
al—n_27 a2:a3:"':an:n_2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

o Letay, as,...,a, > so that ay +as+ -+ +a, =n. Ifn>3 and k > 0, then
n_
1—a1+1—a2+ +1—an
k+a? k+a2 k+a2 =7
with equality for a; = ay = -+ =a, =1, and also for
—n n
a] = g = Qg = *++ = Qp, =
1=y 2 3 w9

(or any cyclic permutation).

P 3.43. Ifay,as,...,a, > —1 so that a1y +as + - -+ + a, = n, then

(+1)1+1+ +1 > 2n + ( 1)1+1+ +1
n — — “ e — n n_ — — PR — .
a? a3 az) — a; G a,

(Vasile C., 2013)

Solution. Write the inequality as

flar) + flaz) + -+ flan) 2 nf(s), s= - =1,
where . )
Flu) = ”; -1 wel=[-120-1]\ {0}
Let
So = % el, 5 < Sg.
e [(n = u— 2(n + 1)
n — u — n
fu) = f(s0) = L+ 1) >0,

we have

min f(u) = f(s0)-
From

f’(u) _ (n_l)u_2(n+1)’ f”(u) _

u3
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it follows that f is convex on [1, sq]. Since f is not decreasing on I<,, according to Theorem 1
and Note 6, we may replace this condition in RPCF-Theorem with ns — (n — 1)sp < infI. We
have

ns—(n—1)sp=n—2(n+1)=-n—-2<—1=infl.

According to Note 1, we only need to show that h(z,y) > 0for -1 <z <1 <yandx+(n—1)y =

n. We have
fw) =) 2 n+l

gu) = u—1 u u?

e ()~ 9(v) (it D +y) _ (@) )

glx) —gly 20y + (n+ 1)(z+y z+1)(n°+n—2x

h(w,y) = - 2,2 - 2,2 > 0.
T -y 22y (n—1)z?y
According to Note 4, the equality holds for a; = as = --- = a,, = 1, and also for
n+1
a=-1, a=--=a,=

n—1

(or any cyclic permutation).

P 3.44. If ay,aq,...,a, (n > 3) are real numbers so that

—(3n —2)
1,02, . ..,0y 2 ——F—, ap+ag+---+a, =n,
n—2
then ) . )
— a — ay — Qp,
o >0,
(I4+a1)?  (1+a9)? (14+a,)? —

(Vasile C., 2014)

Solution. According to P 2.25-(b) in Volume 1, the inequality is true for n = 3. Assume further
that n > 4 and write the inequality as

flar) + flaz) 4o+ flan) 2 nf(s), 5= DRIy
where 1 (3 2) 4n% -7 2
—u —(3n — n—in+
Jt(u)z(l—i—u)27 wel= n—2 7 n-2 V=1
Let
So = 3, s < Sg.
From

1-u I (u—3)?
f(“)_f(3>—m+§—m207
it follows that

min f(u) = f(so).

u€el
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From
oy u—3 ,,u_2(5—u)

it follows that f is convex on [1,s]. We can’t apply the RPCF-Theorem in its original form
because f is not decreasing on I<,,. However, according to Theorem 1 and Note 6, we may
replace this condition with ns — (n — 1)sg < inf . Indeed, for n > 4, we have

(3n — 2)

ns—m—1)sg=n—3Mn-1)=—-2n+3< — = inf .

According to Note 1, it suffices to show that h(x,y) > 0 for all z,y € [ so that z <1 <y and
x+ (n—1)y = n. We have

sy~ L= 1) 1
u—1 (u+1)%
h(%y):g(x)—g(y): r+y+2 _ (n—2)z+3n—2 >
x—y (x+12(y+1)2 (m-—1D@+1)>2(y+1)?
In accordance with Note 3, the equality holds for a; = as =--- = a, = 1, and also for
—(3n —2) n+ 2
alg = —- Ao = :'--:an:
1 n—29 ) 2 3 n—29
(or any cyclic permutation).
m
P 3.45. Let ay,as,...,a, be nonnegative real numbers so that a; +as + -+ a, =n. Ifn >3
and k > 2 — —, then
n
1—a 1—as 1—a,
g >,
k)  O—ka)2 T U= ka)2 =

(Vasile C., 2012)

Solution. According to P 3.99 in Volume 1, the inequality is true for n = 3. Assume further
that n > 4 and write the inequality as

ay +as + -+ a,

flar) + flaz) + -+ flan) 2 nf(s), s= - =1,
where 1—u
f(u):(l_—ku)Qa uel=[0,n]\{1/k}.
Let
so=2—1/k, 1=s5<sp.
Since L " )
f(u) — f(s0) = lzuw 1 (ku =2k + 1) > 0,

(1—kup ' dk(k—1)  4k(k— (1 — ku)?
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we have
min f(u) = f(so)-
From k 2k +1 2k(—ku + 3k — 2)
/ o U — " o —RU B

it follows that f is convex on [1,s¢]. We can’t apply the RPCF-Theorem because f is not
decreasing on I<,,. According to Theorem 1 and Note 6, we may replace this condition with
ns — (n —1)sy < infl. Indeed, we have

3n—4 4 —

n
ns—(n—1)sy<n—(n-—1) 2= 1) 5 = 0 =infl

So, it suffices to show that f(z) + (n —1)f(y) > nf(1) for all z,y € I so that x < 1 < y and
x4+ (n — 1)y = n. According to Note 1, we only need to show that h(x,y) > 0, where

o = L0y, 902500
Since
-1 klk(z +y) — 2]

= — h —
g(u) e (2,9) 1= ko) (1 — )
we need to show that k(x 4+ y) — 2 > 0. Indeed, we have

k(z +y) (n—1)(z+y) (n—1D+y) z+Mm-1y (n—2)

-2
>

—1= — = > 0.
2 - n n n n -
2
The equality holds for ay = ay =--- =a, = 1. If K =2 — —, then the equality also holds for
n
aw=0, a=ag=-=a,=—
n—1

(or any cyclic permutation).

P 3.46. If a,b,c are positive real numbers such that abc = 1, then

a b c 3
@t )a+25)  GrD)6+25)  (cxr et 25) =5

(Vasile C., 2022)

Solution. Using the substitution

we need to show that
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where Y
—e
)= g v 25 "
From )
(u) = e'(e** — 25)
(e2v + 26ev + 25)%’
it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where
So = Inb.
Also, we have
v - h(v)

f"(u) =

(e2v + 26ev + 25)3’
where
h(v) = —v* +260° + 15007 + 6500 — 625, v = €™

For v € [1, 5], we have
h(v) = v*(26 — v) + 1500% 4 25v + 625(v — 1) > 0,

hence f(u) is convex on [s,sg]. By the RPCF-Theorem, we only need to prove the original

inequality for
b=c:=t, a=1/t* >0,

that is,

t2 2t 3
+ < —.
25t 4+ 2612 + 1 12 + 26t +25 ~ 52
Since
25t 4+ 26t% + 1 = 24t* + (¢' + 1) + 26t* > 24t* + 28t = 4£>(6t* + 7),

it suffices to show that
1 2t 3

< —
4(6t247) * 2 + 26t + 25 — 52’

which is equivalent to
2t - 9t2 + 4
12+ 26t +25 — 26(62+7)’
ot — 783 + 229t* — 260t + 100 > 0,
(t — 1)%(3t — 10)* > 0.
The equality holds for a =b=c=1.

P 3.47. Let ay,aq,...,a, (n > 3) be nonnegative real numbers so that

ar+as+---+a, =n.

—2(n—1
If p< (n—2) and q¢>qo=(p+1) (ZH'LI); then
n_

1 1 1 n
5 + — et < :
aj +pay +q a3+ paz +q a; +pa,+q ~ 1+p+gq

(Vasile C., 2023)
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Solution. Write the inequality as

fla) + flaz) + -+ flan) Z nf(s),  s= n =1,
where 1
f(u)_u2+pu+q7 u € [0,n].
Let so = —p/2, s9 > s = 1. We have
fu) = (u? iupZiq)Z - (uffp_ui?)q)y
2A(u)

A(u) = q¢ —p* — 3pu — 3u’.

1
u) = ,
JHw) (u?2 +pu+q)3
From the expression of f’(u), it follows that f is decreasing for u < sy and increasing for u > sy,

hence f(u) > f(so) for all real u. On the other hand, since A(u) is concave, A(u) has the
maximum value for u = sg and

(n—2)p—2n+3 S 2n—1)-2n+3 1

A1) = g—p*—3p—3 > qo—p*—3p—3 = — > 0,

n—1 n—1 n—1

we have A(u) > 0 for all u € [1,s0], hence f is convex on [s,sg]. If s9 > n, we may apply
RHCF-Theorem from chapter 1 (because f is convex on [s,n]) , and if sg < n, we may apply
RPCF-Theorem (because f(u) is decreasing on [0, so] and f(u) > f(so) for all u € [0,n]). In
both cases, it suffices to show that h(x,y) > 0 for 0 < x < 1 < y such that  + (n — 1)y = n.

We have
P (O [ TS T S
u—1 (1+p+q)(u?+pu+q)
W) = 9@)—gy) _ q—plp+1)—(p+1)(x+y) —ay
T =y 1+p+q)(a®+pr+q)(y° +py+4q)
Go—pp+1)—+DE+y) —ry _ zle —p(n —2) = 2(n = 1)] >0
T4t tpr+ WP +py+q (=D +p+o(@?+pr+q) (P +py+q)
The equality occurs for a; = as = --- = a, = 1. In addition, if ¢ = ¢, then the equality also
occurs for a; =0 and ay = a3 =---=a, = —3 (or any cyclic permutation).
" O
P 3.48. Let ay,as,...,a, (n > 3) be nonnegative real numbers so that

a;+ag+---+a, =n.

n’p® +4(n* —n+ 1)(p+1)
4(n—1)

, then

n—2 n—

pre |2 )2

2
and > =
2} na q = qo

1 1 1 n
. + — ot < :
ai +pa; +q a3+ pas+q a; + pa, +q 14+p+q

(Vasile C., 2023)
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Solution. Write the inequality as

ay+ao + -+ a,

flar) + flaz) + -+ flan) = nf(s), s = p —1,
where X
u) = _—, u € |0, n|.
f0) = o we o
We have
F(u) = 2u + p _ 2(u — s9) ’
(u*+putq)* (v +putq)
2A(u)
"(u) = , A(u) = q — p* — 3pu — 3>
f"(w) (@ 1 pu £ g)° (u) =q—p~—3p
Let s = —p/2. From f'(u), it follows that f is decreasing for u < sy and increasing for u > sy,

hence f(u) > f(so) for all real u. On the other hand, since A(u) is concave, A(u) has the
maximum value for u = sy and

(n—2)°(p +2)°
4(n—1)

A(l) > go — p* — 3pu — 3u” = >0,

we have A(u) > 0 for all u between 1 and s, hence f is convex on the interval between s = 1
and sg.

Case 1: p € —2,—2]. Since sy < s, f is convex on [sg,s]. If s < 0, we may apply
n —

LHCF-Theorem from chapter 1 (because f i convex on [0, s]), and if sq > 0, we may apply LPCF-
Theorem (because f is convex on [sg, s|, f(u) is increasing on [sg,n| and f(u) > f(so) for all u €
[0,n]). In both cases, it suffices to show that h(z,y) > 0 for z > 1 > y such that x+(n—1)y = n.
As shown in the preceding P 3.47, we need to show that g —p(p+1) — (p+ 1)(x +y) — 2y > 0,
which is equivalent to

[(n—2p—2]

(n—1)y* +[(n—2)p - 2y + o) 2

[2(n — 1)y + (n —2)p —2]* > 0.

The equality occurs for a; = as = --- = a, = 1. In addition, if ¢ = ¢y, then the equality
-2 2—(n—2
also occurs for a; = n — 1+ u and ays = a3 = --- = a, = M (or any cyclic
2 2(n—1)
permutation).
—2(n—1) . : o .
Case 2: p € —2,—2 . Since s < sg, f is convex on [s,sg]. In addition, f(u) is
n R

decreasing on [0, so] and f(u) > f(so) for all u € [0,n]. So, we may apply RPCF-Theorem. By
Note 1, it suffices to show that h(z,y) > 0 for x <1 <y such that 2 + (n — 1)y = n. As shown
in the preceding P 3.47, we need to show that ¢o —p(p+ 1) — (p + 1)(z +y) — 2y > 0, which is
equivalent to

2(n — Dy + (n—2)p—2)*> > 0.
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The equality holds for a1 = ay = --- = a, = 1. In addition, if ¢ = ¢p, then the equality
-2 2—(n—2
also occurs for a; = n — 1+ (RT)p and ap = a3 = - = a, = H (or any cyclic
n J—

permutation).

[]



Chapter 4

Partially Convex Function Method for
Ordered Variables

4.1 Theoretical Basis

The following statement is known as Right Partially Convex Function Theorem for Ordered
Variables (RPCF-OV Theorem).

RPCF-OV Theorem (Vasile Cirtoaje, 2014). Let f be a real function defined on an interval
I and conver on [s,so|, where s,so € 1, s < sog. In addition, f is decreasing on l<s, and
f(u) > f(so) for uw € I. The inequality

f(a1)+f(a2)+"'+f(an)an(a1+a2+"'+an>

n
holds for all ay,as,...,a, €I satisfying
ap+ag+---+a, =ns

and
ap<ay<--<a,<s, me{l,2...,n—1},

if and only if

f@)+n—-—m)f(y) =2 (L+n—m)f(s)
forall z,y €l so that x < s <y and z+ (n—m)y = (1 +n—m)s.
Proof. For

=2, Q=" "=y =25, (Qni1=" "=, =71,
the inequality
flar) + fla2) + -+ f(an) = nf(s)

becomes

f@)+(n—m)f(y) = (1+n—m)f(s);
therefore, the necessity is obvious. By Lemma from Chapter 3, to prove the sufficiency, it suffices
to consider that aq,as, ..., a, € J, where

J=1I<,,.

289
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Because f is convex on J>, the desired inequality follows from HCF-OV Theorem applied to the
interval J.

Similarly, we can prove Left Partially Convex Function Theorem for Ordered Variables (LPCF-
OV Theorem).

LPCF-OV Theorem. Let f be a real function defined on an interval I and convex on [so, s],
where so, s € 1, s9 < s. In addition, f is increasing on Iss, and f(u) > f(so) for uw € 1. The
imequality

n

f(a1)+f(a2)—|-...+f(an)an(a1+a2+...+an>

holds for all aq,as, ..., a, €1 satisfying
ar+ay+---+a, =ns

and
ap > ag > >a,>s, me{l,2... ,n—1},

if and only if
@)+ m=m)f(y) = (1 +n—m)f(s)
forallx,y €l so thatx > s>y andx+ (n—m)y = (1 +n —m)s.

The RPCF-OV Theorem and the LPCF-OV Theorems are respectively generalizations of the
RPCF Theorem and LPCF Theorem, because the last theorems can be obtained from the first
theorems for m = 1.

Note 1. Let us denote

_ o) = 92) = 9(y)
glu) == —==, Naz,y) Pa——

We may replace the hypothesis condition in the RPCF-OV Theorem and the LPCF-OV Theorem,
namely

f@)+mfy) = (1 +m)f(s),
by the condition

hz,y) >0 forall x,y €l sothat z+my = (1+m)s.
Note 2. Assume that f is differentiable on I, and let

/') = 1)

H(z,y) = pr—

The desired inequality of Jensen’s type in the RPCF-OV Theorem and the LPCF-OV Theorem
holds true by replacing the hypothesis

flx)+mf(y) > (14+m)f(s)

with the more restrictive condition

H(x,y) >0 forall x,y €1 so that x+ my = (1+m)s.
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Note 3. The desired inequalities in the RPCF-OV Theorem and the LPCF-OV Theorem become
equalities for
a; = Qg = = Qp = S.

In addition, if there exist x,y € I so that
r+(n—mly=>0+n-—m)s, flz)+n-m)fly)=A+n-—m)f(s), =#y,
then the equality holds also for
Ay =2, Gy="‘+"=0Qp =25, (Upil1=" ""=0,=1Y
(or any cyclic permutation). Notice that these equality conditions are equivalent to
r+(n—m)y=(1+n-m)s, h(zr,y)=0
(x < y for RHCF-OV Theorem, and = > y for LHCF-OV Theorem).

Note 4. The RPCF-OV Theorem is also valid in the case where f is defined on I\ {ug}, where
ug is an interior point of I so that ug > s0. Similarly, LPCF Theorem is also valid in the case in
which f is defined on I\ {ug}, where ug is an interior point of I so that uy < s0.

Note 5. The RPCF-Theorem holds true by replacing the condition
f is decreasing on I,
with
ns —(n—1)sy < infl.
More precisely, the following theorem holds:
Theorem 1. Let f be a function defined on a real interval I, convex on [s, so] and satisfying

min f(u) = f(so),

UEHZS

where
s,so€l, s<sg, (1+n—m)s—(n—m)sy<infl

The inequality

n

f(a1)+f(a2)+...+f(an>an(a1+a2+...+&n)

holds for all aq,as, ..., a, €1 satisfying
ay+ax+---+a, =ns
and
ap<ay<--<a,<s, me{l,2...,n—1},

if and only if
f@)+(n—m)f(y) = (L+n—m)f(s)

forallz,y €l so thatx <s<yandz+ (n—m)y=(14+n—m)s.

The proof of this theorem is similar to the one of Theorem 1 from chapter 3.
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Similarly, the LPCF-Theorem holds true by replacing the condition
f is increasing on I,
with
ns — (n—1)sy > supl.
More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval I, convex on [so, s| and satisfying

min f(u) = f(so),

UEHSS

where
s,s0€l, s>s9, (1+n—m)s—(n—m)sy>supl

The inequality

f(a1)+f(a2)+...+f(an)an(a1+a2—|—..._|_an)

n
holds for all ai,as,...,a, €1 satisfying
a+ag+---+a, =ns

and
ag > ay > >a, >s, me{l,2...,n—1},

if and only if
f@)+ (n=m)fly) = (1 +n—m)f(s)
for all z,y €1 so that x > s>y and x + (n —m)y = (1 +n —m)s.

Note 6. Theorem 1 is also valid in the case in which f is defined on I\ {ug}, where vy is an
interior point of I so that ug ¢ [s, so]. Similarly, Theorem 2 is also valid in the case in which f
is defined on I'\ {ug}, where v is an interior point of I so that ug & [so, s].

Note 7. We can extend weighted Jensen’s inequality to right and left partially convex functions
with ordered variables establishing the WRPCF-OV Theorem and the WLPCF-OV Theorem
(Vasile Cirtoage, 2014).

WRPCF-OV Theorem. Let pq,ps,...,p, be positive real numbers so that
ptp2t-o+pn =1,

and let f be a real function defined on an interval I and convex on [s, so|, where s, sy € int(l),
s < so. In addition, f is decreasing on l<s, and f(u) > f(so) for u € 1. The inequality

prf(xy) + pof(ze) + -+ puf(zn) > f(pro1 4 povo + -+ + py)
holds for all x1,xs,...,x, €1 so that p1x1 + poxs + - + ppx, = s and
xleQS"'ana meS, m6{1727"'7n_1}7

if and only iof
f(@) +kfly) = (L+k)f(s)
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for all x,y € 1 satisfying

where
_ Pm+1 +pm+2 + - +pn

41

k

WLPCF-OV Theorem. Let py,ps,...,p, be positive real numbers so that
prtpat-dpa =1,

and let f be a real function defined on an interval I and convez on [sy, s|, where sg,s € I, s < s.
In addition, f is increasing on s, and f(u) > f(so) for u € I. The inequality

pif(1) +paf(ze) + -+ puf(zn) = f(p171 + P2 + - + pun)
holds for all x1,xs,...,x, €1 so that pyx1 + poxs + -+ + ppr, = s and
T > T > >y, Ty s, me{l,2,...,n—1},
if and only if

f@)+kf(y) = (1+k)f(s)

for all x,y € 1 satisfying
r>s>y, z+ky=(1+k)s,

where
_ Pm+1 +pm+2 +--- +pn

b1

k

For the most commonly used case

?

1
Pr=pP2=''"=pDPn=—
n

the WRPCF-OV Theorem and the WLPCF-OV Theorem yield the RPCF-OV Theorem and the
LPCF-OV Theorem, respectively.



294 Vasile Cirtoaje




PCF Method for Ordered Variables 295

4.2 Applications

4.1. If a,b, ¢, d are real numbers so that
a<1<b<c<d, a+b+c+d=4,

then
a b c d

<1
3a2+1+362+1+3c2+1+3d2+1_

4.2. If a,b, ¢, d are real numbers so that
a>b>1>c>d, a+b+c+d=4,

then

16a—5 16b—5 16c—5 16d—5 _ 4
+ + + < -
3202 +1 ' 3202 +1 322 +1 32d2+1 ~ 3

4.3. If a,b, c,d, e are real numbers so that
a>b>1>c>d>e, a+b+c+d+e=05,

then
18a — 5 18b -5 18 -5 184 — 5 18¢ — 5

<5.
12a2+1+12b2+1+1202+1+12d2+1+1262+1 -
4.4. If a,b, c,d, e are real numbers so that
a>b>1>c>d>e, a+b+c+d+e=05,
then
ala—1) bb-—1) ¢clc—1) dd-1) e(e—1) >0
3a2+4  32+4  32+4  3dP+4  3e2+4 T
4.5. Let aq,as, ..., as, # —k be real numbers so that
ap > 2ay, 21> ap41 2+ > azm, @ tay+--+ag, =2n.
1
k> """ then
2y/n
al(al—l) @2(@2—1) &2n<a2n—1) >0

(a1 + k)2 " (aa+ k)2 (agm+ k)2 T
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4.6. Let ay,as, ..., a2, # —k be real numbers so that

a2 20 212 a1 20 2 a2, a1+ az -+ ag, =20

n+1

fk>1+ NG , then
2 2 2
- R e Il |}
(CLl + k?)2 (CLQ + k')2 (Clgn + ]{3)2 -
4.7. If aq, a9, . .., a, are positive real numbers so that

ap>1>ay> - > ay, at+ay+---+a,=n,

then
ai’/m +ag/a2 4. _I_ai/an <n.
4.8. If a1, a9, ...,aq1; are real numbers so that
ap > ay > 1>a3>-- > a, ay+ax+---+ap =11,
then
(1-ar+ai)(l—as+a3) - (1—an+afy) > L.
4.9. If aq, a9, ..., ag are nonzero real numbers so that
ap >ay>az>ay>1>as>ag>ar>ag, ap+ay+---+ag=38,

then

1 1 1 1 1 1
5lg+—g+ ) +T2>14( —+— 4+ — ).
ay  aj asg

4.10. If a, b, ¢, d are positive real numbers so that

a<b<1<c<d, abed = 1,

then
7—6a+7—6b+7—60+7—6d>4
24+a® 240 242 2+d> T3
4.11. If a, b, ¢ are positive real numbers so that
a<b<1<e¢  abc=1,
then
T—4a T—4b T7—4c
> 3.

2+ a? +2+b2 +2+02



PCF Method for Ordered Variables

297

4.12. If a, b, c are positive real numbers so that

a>1>b>c¢, abc =1,
then
23—8a+23—8b 23 — 8¢
3+2a%> 3+202 3+22
4.13. Let aq,as, ..., a, be positive real numbers so that

alé"'gan—lglganv

If p,q > 0 so that p+ 3¢ > 1, then

1—CL1 1-&2
2_'_ 2
14+ pay +qgay 1+ pas + qas

4.14. If a, b, c,d, e are real numbers so that
—2<a<b<1<c<d<e,

then
1 1 1 1 1

4>
a2 b2 2 42 e2 T g

aias - - - a, = 1.

N 1—a,
1+ pa, + qa2 —

a+b+c+d+e=05,

11 1 1 1
e
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4.3 Solutions

P 4.1. Ifa,b,c,d are real numbers so that

a<1<b<c<d, a+btct+d=4,

then
L4 b 4 d <1
3a2+1  3024+1 3c2+1 3d?+1~
Solution. Write the inequality as
a+b+c+d
f(a) + f(b) + f(c) + f(d) > 4f(s), s= — =1
where
—u
= — R.
fu) 3241 <
From 1
, o dut — 1
f (U) - (3U2 + 1)27

it follows that f is increasing on (—o0, —so]U[sq, 00) and decreasing on [—sq, 5], where 5o = 1/v/3.
Since
lim f(u)=0
U—r—00

and f(sg) < 0, it follows that
min f(u) = f(so).

u€eR

From 8 (1 2)
” ~ 18u(l —w
Jiu) = (Bu2 +1)3 7

it follows that f is convex on [0, 1], hence on [sg, 1]. Therefore, we may apply the LPCF-OV
Theorem for n = 4 and m = 1. We only need to show that f(z)+ f(y) > 2f(1) for all real z,y
so that x + y = 2. Using Note 1, it suffices to prove that h(x,y) > 0, where

Mgy~ LB Z0W) S = (),

T —y u—1
Indeed, we have
() 3u—1
U) = ————
g A3+ 1)’
31+z+y—3zy 9(1 —xy
ey~ ) 9(i-ay)

4322+ 1)(3y2 +1) 4322+ 1)(3y2+1) — 7
since
4(1 —ay) = (z+y)? —day = (x —y)* > 0.

Thus, the proof is completed. The equality holds fora=b=c=d = 1.



300 Vasile Cirtoaje

Remark. Similarly, we can prove the following generalization:

e I[fay,as,...,a, are real numbers so that
m<l<a<---<a, atat---+a,=n,
then
4 + 42 4o+ An <E
3a2+1  3a+1 3a2 41~ 4’
with equality for a1 = ay =--- =a, = 1.

P 4.2. Ifa,b,c,d are real numbers so that
a>b>1>c>d, a+b+c+d=4,
then

16a—5 16b—5 16c—5 16d—5 _ 4
+ + + <
3222 +1 3202 +1 322 +1 3282 +1

g.
(Vasile C., 2012)
Solution. Write the inequality as
+btc+d
fla)+ f(b) + f(e) + f(d) = 4f(s), s= % —1,
where -
— 16u
= R.
flu) = oo e

As shown in the proof of P 3.1, f is convex on [sg, 1], increasing for u > sq and

min f(u) = f(so),

u€R

where
5+ /33
16
Therefore, we may apply the LPCF-OV Theorem for n = 4 and m = 2. We only need to show
that f(z)+ 2f(y) > 3f(1) for all real x,y so that x + 2y = 3. Using Note 1, it suffices to prove
that h(x,y) > 0, where

~ 0.6715.

So —

r—y u—1
Indeed, we have
~32(2u—1)
900 = 33947 1 1)
_ 64(1 + 16z + 16y — 32zy) 64(4z — 5)?

b _ -
(z,y) 3(3222 + 1)(32y%2 + 1) 3(3222 +1)(32y2 + 1) —
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From x + 2y = 3 and h(z,y) = 0, we get © = 5/4 and y = 7/8. Therefore, in accordance with
Note 3, the equality holds for a = b= ¢ =d =1, and also for

a =

5) 7
b -1 —d=—.
, b , c=d g

Remark. Similarly, we can prove the following generalization:
e Ifay,as,...,a, (n>3) are real numbers so that

ap 22 0p2 212 a,1 2 ap, ap+az+---+a, =mn,

then
16a; — 5 16as — 5 16a, —5 n
+ e <
3203 +1  32a3+1 32a2+1 7 3
with equality for a; = ay = -+ =a, =1, and also for
5 1 7
a; = — g =+ =@y o =1, p_1 = Qp = —.
1= 2 2 1 3

P 4.3. Ifa,b,c,d, e are real numbers so that
a>b>1>c>d>e, a+b+c+d+e=05,

then

18a — 5 n 18b —5 n 18¢ -5 n 18d — 5 n 18e — 5 <5
122 4+1 1202 +1  12¢2+1 1242 +1 122 +1 ~
(Vasile C., 2012)

Solution. Write the inequality as

Fla) + F0) + 1)+ F(@) + f(e) 2 5f(s), 5=y
where T
f(u) = m, u € R.

As shown in the proof of P 3.2, f is convex on [sg, 1], increasing for u > sy and

min f(u) = f(s0),

u€R

where

5+ /52
_ %— ~ 0.678.

S0

Therefore, applying the LPCF-OV Theorem for n = 5 and m = 3, we only need to show that
f(z)+3f(y) > 4f(1) for all real z,y so that x + 3y = 4. Using Note 1, it suffices to prove that

h(z,y) > 0, where
_9(z) —g(y) _ f(w) — /(1)
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Indeed, we have

6(2u — 1)
g(u) - 12u2+ 1 )
_ 12(14 624 6y — 12zy) 12(2x — 3)?

M) = e a2 1 1) (2 D2 E D)

From = + 3y = 4 and h(z,y) = 0, we get = 3/2 and y = 5/6. Therefore, in accordance with
Note 3, the equality holds for a = b=c=d =e =1, and also for

3

a=—,
2

b=1, c:d:ezé
6

Remark. Similarly, we can prove the following generalization:

e Ifay,as,...,a, (n>4) are real numbers so that

ay > > Ap3 > 12> ay-2 2> ay_1 > ay, ay +as + - +a, =mn,

then
18@1 -5 180,2 -5 18an -5
+ oo - S n’
12¢3+1 1243 +1 12a2 +1

with equality for a; = ay = -+ =a, =1, and also for

a; = § ag = =ay_3=1 Ap—9 = Qp_1 = Gy = §

1_27 2 — — Un-3 — 4 n—2 — nfl_n_6-

O
P 4.4. Ifa,b,c,d, e are real numbers so that
a>b>1>c>d>e, a+b+c+d+e=05,

then

ala—1) bb-—1) ¢lc—1) dd-1) e(e—1) >0

3a2+4 32 +4  324+4  3d?2+4  3e2+4 T

(Vasile C., 2012)
Solution. Write the inequality as
a+b+c+d+e
fla)+ f(0) + f(c) + f(d) + fe) 2 5f(s), s= = =1,
where ,
ut —u
= — R.
fu) 3214 <

As shown in the proof of P 3.5, f is convex on [sg, 1], increasing for u > sy and

min f(u) = f(so),

u€R
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where

=4+ 2VT
3
Therefore, we may apply the LPCF-OV Theorem for n = 5 and m = 2. We only need to show
that f(x) +3f(y) > 4f(1) for all real x,y so that x + 3y = 4. Using Note 1, it suffices to prove
that h(z,y) > 0. Indeed, we have

S0 ~ 0.43.

fu) — f(1) u
9w == =T T 3@
_glx) —gly) 4 — 3y _ (z —2)?
Mey)==—— = B E DB 14 (2t DzE+1) =

From x+ 3y = 4 and h(x,y) =0, we get x = 2 and y = 2/3. Therefore, in accordance with Note
3, the equality holds for

and also for

Remark. Similarly, we can prove the following generalizations:

e Ifay,as,...,a, (n>4) are real numbers so that

ay > - 2 ap3 =12 0a,902>ap_1 = ay, ay+az+---+a, =n,

then
aj(a; — 1)  as(ag —1) ey an(a, — 1)
3a? +4 3a3 +4 3a2 +4 ’
with equality for ay = ay = --- =a, =1, and also for
2
a; = 2, g =+ =ap_3 =1, an72:an71:an:§~
o Ifay,as,...,a, (n>3) are real numbers so that
mzaz>l>a3>-2an, artat---+a,=n,
then
ai(a; — 1 as(as — 1 apla, —1
1(21 ) _+ 2<22 ) et <2 ) 5 >0,
4dn—2)ai+(n—1)2  4(n—2)as5+ (n—1) 4(n—2)a2 + (n—1)
with equality for a; = ay = -+ =a, =1, and also for
n—1 1 n—1
a; = ag = ag=+=a, = ——.
1 9 9 2 ) 3 2(77/—2)
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P 4.5. Let ay,as, ..., as, # —k be real numbers so that

ay > > ap > 12> app1 >0+ > agy, ay + ag + -+ ag, = 2n.

n-+1
Ifk>——. th
2 2\/n’ n

aj(ay —1)  ag(ag —1) agy(ag, — 1)
@+8? o T e 2

(Vasile C., 2012)

Solution. Write the inequality as

a1+a2+~~-+a2n

flar) + f(a2) +- -+ flazn) > 2nf(s), s= o =1,

where
u(u —1)

(u+ k)2’

As shown in the proof of P 3.8, f is convex on [sg, 1], increasing for u > sy and

flu) = wel=R\{—k.

min f(u) = f(s0),

u€l
where
k
2k+1
Having in view Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and m = n.

We only need to show that f(z)+nf(y) > (n+1)f(1) for x,y € [ so that x +ny = n+ 1. Using
Note 1, it suffices to prove that h(z,y) > 0. We have

< 1.

So =

u) — f(1 U
(O (N
u—1 (u+ k)
9(z) —g(y) k* —xy
h(xz,y) = = >0,
R R Ea
because ) , ,
1 _
PR Gl MR Gk ) O Gk )
4dn 4n 4n
: n+1 .
The equality holds for a; =as =---=a, =1. lf k= 7, then the equality holds also for
n
- n+1 B =1 B B ~n+1
a; = 2 ) ag = =an = 1, an+1 = = Q2p = om .
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P 4.6. Let ay,as,. .., as, # —k be real numbers so that
ap 22 ap 212 ap01 20 2> agy, ai+az + -+ az, = 2n.

n+1

Ifk>1
f_+ﬁ

, then

a? — 1 N a3 — 1 T a3, — 1 -0
(a1+k)2 (a2+k)2 (d2n+k)2_ '

(Vasile C., 2012)

Solution. Write the inequality as
ay +ag+ -+ agy

flar) + flaz) + -+ flag,) = 2nf(s), s= o =1,
where 24
f(u):m, wel=R\{-k}

As shown in the proof of P 3.9, f is convex on [sg, 1], increasing for u > sy and

min f(u) = f(s0),

u€el

where
-1
Sp = 7 (—1,0)

According to Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and m = n.
Thus, we only need to show that f(z) +nf(y) > (n+1)f(1) for z,y € I so that x +ny =n+ 1.
Using Note 1, it suffices to prove that h(z,y) > 0. We have

flw) = f(1) _ utl

- k—12—1—2—y—
h(gj’y):g(w) gly) _ (k—-1) Ty
vy (o + B2y 1 F)?
because
12 _12
(/{;—1)2—1—m—y—xy2(n+ ) —1—x—y—xyzwz().
n n
: n+1 .
The equality holds for ay =ay=---=a, =1. If k = 1—1—7, then the equality holds also for
n
1
a; =nmn, g =+ =ap =1, ap41 = " = dop = —.
n
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P 4.7. If ay,as,...,a, are positive real numbers so that
az>l>a>--2>a,, @ta+t+--+a,=n,

then
a?/a‘l + ag/a2 + “ e + ai/a’ﬂ S n.
(Vasile C., 2012)

Solution. Rewrite the desired inequality as

flar) + flag) + -+ flan) =2 nf(s), s= =1,

where

f(u) =—u¥*  wel=(0,n).

We have ,
f'(u) = 3us?(Inu — 1),

() =3ugt),  gt) =u+ (1 —Inu)(2u—3+3w).

From the expression of f, it follows that f is decreasing on (0, so] and increasing on [sg, n), where
S0 = e.
In addition, we claim that f”(u) > for u € [1,e]. If u € [3/2, €], then
g(t) > (1 —Inwu)(2u—3) > 0.

Also,for u € [1,3/2], we have
g(t)=3u—1)+ (6 —2u—3nu)lnu > (6 —2u —3Inu)lnu >3 (1 —lng) Inu > 0.

Since f is convex on [1,sg|, we may apply the RPCF-OV Theorem for m = n — 1. We only
need to show that f(x) + f(y) > 2f(1) for all z,y > 0 so that z + y = 2. The inequality
f(z) + f(y) > 2f(1) is equivalent to

-T3/x + yS/y < 27

which is just the inequality in P 3.32 from Volume 2. The equality holds for

ap=a=---=a, = 1.
m
P 4.8. If ai,as,...,a11 are real numbers so that
ap > ay>1>a32>--- > ay, a;+az+ -+ +app =11,

then
(1—a;+a})(1—ay+a3)---(1—ay +aj) > 1.

(Vasile C., 2012)
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Solution. Rewrite the desired inequality as

ay +ag+---+an

flar) + flag) + -+ + flann) > 11f(s), s= - _ 1,
where
flu)=In(l —u+u?), ueck
From ) '
' _ U —
f(u)_ 1_u+u27
it follows that f is decreasing on (—o0, so] and increasing on [sg, 00), where
Sp — 1/2
Also, from
1+ 2u(l —u)
" _
f (u)_ (1—u—|—u2)2’

it follows that f”(u) > 0 for u € [so, 1], hence f is convex on [sg, 1]. Therefore, applying the
LPCF-OV Theorem for n = 11 and m = 2, we only need to show that f(z) 4+ 9f(y) > 9f(1) for
all real z,y so that  + 9y = 10. Using Note 2, it suffices to prove that H(z,y) > 0, where

f'(@) = ['(y) l+z+y— 2y
H(z,y) = = 5 5
T —y (1—x+22)(1—y+y?)
Since
l+a+y—220y =18y —8y+1=2y>+ (4y — 1)* > 0,
the conclusion follows. The equality holds for a; = as = --- = a;; = 1.
Remark. By replacing aq,as, ..., aq; respectively with 1 — a;,1 — as,...,1 — ay;, we get the

following statement.

o Ifay,as,..., a1 are real numbers so that

a <a<0<a3<---<a, ay +az+---+ay =0,

then
(1—ai+a))(1—ay+ad)--- (1 —ay +a3) >1,
with equality for ay =as =+ =a, = 0.
O
P 4.9. If ay,as, ..., as are nonzero real numbers so that
ay > ax > a3 > ay > 1> a5 > ag = ay > ag, ap+az+---+ag =38,
then

1 1 1 1 1 1
5 S+t =+t +72>14(—4+——+---4+—].
aj

as ag aq a9 as

(Vasile C., 2012)
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Solution. Write the desired inequality as

flar) + flaz) + -+ + flas) = 8f(s), S =1,
where 5 ”

As shown in the proof of P 3.25, f is convex on [sg, 1], increasing for u > sy and

min f(u) = f(so),

u€l

where
5

So — =.

7
Taking into account Note 4, we may apply the LPCF-OV Theorem for n = 8 and m = 4. We
only need to show that f(z) +4f(y) > 5f(1) for z,y € I so that  + 4y = 5. Using Note 1, it
suffices to prove that h(x,y) > 0. Indeed, we have

flw) =M _9 5

u—1 u  u?’

g(u) =

g(x) —gly)  5(x+y)—9zy

h = =
_(@rdy)(rty) -2y _ (z—-2) _
- x2y2 o x2y2 =
In accordance with Note 3, the equality holds for a; = ay = --- = ag = 1, and also for
5 ) 5
a; = = s = a3 = Ay = a5 = ag = a7 = ag = —.
1 37 2 3 4 ) 5 6 7 8 6

P 4.10. If a,b,c,d are positive real numbers so that
a<b<1<c<d, abed = 1,

then
7—6a+7—66+7—60+7—6d>§
24a2 2402 242 24d2 T 3

(Vasile C., 2012)

Solution. Using the substitution

we need to show that
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where e
r<y<0<z<uw, SZW:O’
7 — 6e"
f(U):m, u € R.

As shown in the proof of P 3.26, f is convex on [0, s¢], is decreasing on (—o0, 5| and increasing
on [sg,00), where

So = In 3.
Therefore, we may apply the RPCF-OV Theorem for n = 4 and m = 2. We only need to show
that f(z) + 2f(y) > 3f(0) for all real z,y so that = + 2y = 0; that is, to prove that

7—6a 27— 6d)
2+ a? 24+d?> —

for a,d > 0 so that ad®> = 1. This is equivalent to
(d—1)%(d — 2)*(5d* + 6d + 3) > 0,

which is clearly true. In accordance with Note 3, the equality holds fora =b=c=d =1, and
also for

a= b=1, c=d=2.

1
4’

P 4.11. If a,b,c are positive real numbers so that
a<b<1<c, abc =1,

then
7T—4a T7—4b T7—4c

> 3.
2 + a? +2+b2 +2+02 -

(Vasile C., 2012)

Solution. Using the substitution

we need to show that

where s
r<y<0<z 2 g ZIO,
7 — 4e"
= € R.
f(u) 2+ e2u’
From

_ 2e*(2e" 4 1)(e" — 4)
B (24 e2u)? ’
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it follows that f is decreasing on (—oo, so] and increasing on [sg, 00), where
So — In4.

Also, we have
4t - h(t)
1 — t — U
where
h(t) = —t* + 7t3 + 12¢* — 14t — 4.

We will show that h(t) > 0 for ¢ € [1,4], hence f is convex on [0, s¢]. Indeed,
h(t) = (t — D)[t*(—t +6) + 18t + 4] > 0.

Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only need to show
that f(z) + f(y) > 2f(0) for all real z,y so that z +y = 0. That is, to prove that

7—4a+7—4b>2
24+a%2 24062

for all a,b > 0 so that ab = 1. This is equivalent to
(a—1)*>0.

The equality holds for a =b=c=1.

P 4.12. If a,b, c are positive real numbers so that
a>1>b>c, abc =1,

then
23—8a 23—8b 23 -—8¢c

3+ 2a? +3+2b2 +3+202 -

(Vasile C., 2012)

Solution. Using the substitution

we need to show that

where s
r>1>y >z, _— g Z:0,
23 — 8e"
= R
From
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it follows that f is decreasing on (—o0, sg| and increasing on [sp, c0), where sp = In6. Also, we

have
8t - h(t)

') = Gaey

where
h(t) = —4t* + 46> 4 36t — 69t — 9.

We will show that h(t) > 0 for ¢ € [1,6], hence f is convex on [0, s¢]. Indeed,
h(t) = (t — 1)(2t + 3)[2t(—t + 12) + 3] > 0.

Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only need to show
that f(z) + f(y) > 2f(0) for all real z,y so that z +y = 0. That is, to prove that

23—8a+23—8b>6
34202 34202 —

for all a,b > 0 so that ab = 1. This is equivalent to

(a—1)*>0.
The equality holds for a =b=c=1.
O
P 4.13. Let ay,ao,...,a, be positive real numbers so that
ap < - <ap1 <1< ay, ajag - - ap, = 1.
If p,q >0 so that p+ 3q > 1, then
1—a 1—a 1—a,
! 5 2 s+t ——F—> 2>0.
1+ pay +qai 1+ pags + qa; 1 + pa, + qaz

(Vasile C., 2012)

Solution. For ¢ = 0, we need to show that p > 1 involves

].—CL1 ]_—CLQ 1_an
+oe > 0.
1 4 paq 1+pa2 1+pan

This is just the inequality from P 2.25. Consider next that ¢ > 0. Using the substitutions
a; = e for i =1,2,...,n, we need to show that

flan) + fl2) + -+ flan) Z nf(s),

where P n
x x e Tn
xlg"'gxnflSOana s = ! 2 :07
n
1—e"
f(u) ueR.

- 1+ pev + ge?v’
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As shown in the proof of P 3.30, if p4+ 3¢ — 1 > 0, then f is convex on [0, s¢], where

/ 1
So=1Inrg >0, ro=1+ 1—{—]%.

In addition, f is decreasing on (—o0, s¢] and increasing on [sg, 00). Therefore, we may apply the
RPCF-OV Theorem for m = n — 1. We only need to show that f(z) + f(y) > 2f(0) for all real
x,1y so that z + y = 0; that is, to prove that

l—a n 1-0
1+ pa+qga? 1+ pb+qb* —

for a,b > 0 so that ab = 1. This is equivalent to
(a=1)*[(p — Da+q(a® +a+1)] >0,
which is true because
(p—1Da+qa®*+a+1)>(p—1)a+qBa)=(p+3q—1)a>0.

The equality holds for a; = as =---=a, = 1.

P 4.14. Ifa,b,c,d, e are real numbers so that
—2<a<b<1<c<d<e, a+b+c+d+e=05,

then
1+1+1+1+1>1+1+1+1+1
a2 b2 2 d2 e2~"a b ¢ d e

Solution. Write the inequality as

Fl@)+ 1)+ F(0) + (d) + F(e) 2 5f(s), 5= TTPTEEIRE

where ) .

flw)=——— wel=[-27\{0}
Let

So =2, s§<§8g.
From , L1 2)2
u—
fl) = F@) = 5 -+ = >0

it follows that

while from
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it follows that f is convex on [s, so]. We can’t apply the the RPCF-OV Theorem because f is
not decreasing on I . According to Theorem 1 (applied for n = 5 and m = 2) and Note 6, we
may replace this condition with (1 +n —m)s — (n —m)se < infI. Indeed, we have

(14n—m)s—(n—m)sp=4—6=—2=infl.

So, according to Note 1, it suffices to show that h(x,y) > 0 for all z,y € I so that = + 3y = 4.

We have ) — £(1) .
glu) = == —= = —
_9@)—gly) _r+y _2(x+2)
hz,y) = r—y - x2y2 - 3x2y2 =0

The proof is completed. By Note 3, the equality holds for a = b =c=d = e =1, and also for
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Chapter 5

EV Method for Nonnegative Variables

5.1 Theoretical Basis

The Equal Variables Method is an effective tool for solving some difficult symmetric inequalities.

EV-Theorem (Vasile Cirtoaje, 2005). Let x1,xa,...,z, (n > 3) be nonnegative real numbers
such that ©7 < x9 < --- < x,, and let f be a real-valued function, continuous on [0,00) and
differentiable on (0,00), so that the joined function

glw) = ' (277

is strictly conver on (0,00). For fized x1 4+ x2 + -+ + x, and x¥ + ak + -+ + 2% where k # 1
(k = 0 means that the product xixy---x, is fived), the sum

Sn = f(x1) + f(z2) + -+ + f(zn)
has the mazimum value only for
T =Tp="=Tp1 STy
and the minimum value only for x1 =0 or 0 <z < Ty =2x3="---=1a,.
To prove the EV-Theorem, we need the EV-Lemma and the EV-Proposition below.

EV-Lemma. Let x,y, z be nonnegative real numbers such that x <y < z. For fivred x + y + z
and z* 4+ y* + 2%, where k # 1 (k = 0 means that the product wyz is fived), the range of y is an
interval [m, M|; in addition,

(1) y=m if and only if v =y < z;

(2) y=M ifandonlyif t=0o0r0<zx<y=z.

Proof. We may consider that z and z are functions of y. From

z + S = -1, :Ek_lx/ + Zk_lz/ _ _yk—l’
we get
k—1 k-1 k—1 k—1
y -z y -z
= Gm S0 = <0 ()
2Rt — gh— Th—h — 2k
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Let us define the nonnegative functions

L) =y—z), foly)=20)-y.  fily) =2@).

Since
fily) =1-2(y) >0,  foly) =2 (y) —1<0,  fi(y) =2'(y) <0,

these functions are strictly increasing, decreasing and decreasing, respectively. Thus, the inequal-
ity fi(y) > 0 (with f; increasing) involves y > m, where m is a root of the equation x(y) = v,
and the inequality fao(y) > 0 (with fy decreasing) involves involves y < yo, where y, is a root
of the equation z(y) = y. If x(y2) > 0, then ys is the maximum value M of y. Otherwise, the
maximum value of y is given by the inequality f3(y) > 0 (with f3 decreasing), which involves
y < M, where M is a root of the equation z(y) = 0. Therefore, y € [m, M], with y = m for
x =1y, and y = M for either y = z or x = 0.

EV-Proposition. Let x,y,z be nonnegative real numbers such that x < y < z, and let f be a
real-valued function, continuous on [0,00) and differentiable on (0,00), so that the joined function

glw) = ' (277

is strictly convez on (0,00). For fived x + 1y + z and x* +y* + 2%, where k # 1 (k = 0 means that
the product xyz is fized), the sum

Ss = f(z) + f(y) + f(2)

has the maximum value only when x =y < z, and the minimum value only when x = 0 or
O<zx<y==z.

Proof. We may consider x and z as functions of y. Thus, we have

Sz = f(x(y)) + fy) + f(2(y)) == F(y).

According to the EV-Lemma, it suffices to show that F'is maximum for y = m and is minimum
for y = M. Using (*), we have

Fly)=a'f'(x) + f'ly) + £ f'(2)
Pl g k=1 _ k-1
=t [ R R G}

which, for x < y < z, is equivalent to

F'(y) _ g(="")
(ykfl _ xkfl)(ykfl _ Zkfl) (xkfl _ ykfl)(xkfl _ Zkfl)

k—l) k—l)

gy g(z
(yk—l _ Zk—l)(yk—l _ ZL‘k_l) (Zk—l _ xk—l)(zk—l _ yk—l) :

Since g is strictly convex, the right hand side is positive. Moreover, since

+

(ykz—l _ xk_l)(yk_l _ Zk:—l) < 0,
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we have F'(y) < 0 for y € (m, M) (see the EV-Lemma), hence F is strictly decreasing on [m, M].
Therefore, F' is maximum for y = m (when z =y < 2) and is minimum for y = M (when z =0
or 0<z<y=2).

Proof of the EV-Theorem. Since X = {x1,2s,...,,} is defined as a compact set in R, S,
attains its minimum and maximum. For n = 3, the EV-Theorem follows immediately from the
EV-Proposition. To prove the theorem for n > 4, we use the contradiction method.

(a) For the sake of contradiction, assume that the sum S, has the maximum value when
1 < Tp—1. According to the EV-Proposition, the sum f(z1) + f(zn,-1) + f(z,) increases by
replacing the set (z1,x,_1,x,) with the set (y1,yn_1,yn) such that y; = y,_1 < y,, and

Y1+ Yn1+Yn =21+ Tp_1 + Ty, ?/% + yi—l + yi = «75% + xi—l + xia

which is a contradiction.
(b) Similarly, we can prove that S, is minimum for n > 4 when either x; = 0 or

O<oy <29 ="--- =124,

Corollary 1. Let zy,xs,...,x, (n > 3) be nonnegative real numbers such that r1 < xe < -+ <
T, and let f be a real-valued function, continuous on [0,00) and differentiable on (0, 00), so that
the joined function

g9(x) = f'(x)
is strictly convex on (0,00). For fized vy + x9 + -+ -+, and x% + 23 + - -+ + 22, the sum

Sp= f(x1) + fza) + - + flwn)

has the mazimum value only when

T =Ty =""=Tp 1 STy,
and the minimum value only when x1 =0 or 0<xy <y =23="--=12, .
Corollary 2. Let zy,xs,...,2, (n > 3) be positive real numbers such that x1 < g < -+ < x,,

and let f be a real-valued function, continuous and differentiable on (0,00), so that the joined
function

1 1 1
is strictly convex on (0,00). For fized vy + xo+ -+ + x, and — + — +--- + —, the sum
I ) Tn

Sn = f(@1) + faz) + - + f(zn)
has the mazimum value only when
Ty =Ty == Tpo1 S Ty
and the minimum value only when

T <Xy =T3=---=2q, .
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Corollary 3. Let x1,xs,...,x, (n > 3) be nonnegative real numbers such that xq7 < x9 < --- <
Ty, and let f be a real-valued function, continuous on [0,00) and differentiable on (0,00), so that
the joined function

g(z) = f'(1/x)
is strictly convex on (0,00). For fivzed x1 + x5+ -+ + x,, and x1x9 - - - x,, the sum

Sp= f(x1) + fza) + - + flwn)

has the mazimum value only when

Ty =Ty ="+ =Tp1 < Tp,
and the minimum value only when x1 =0 or 0 <x; <Xy =T3=":-=T,.
Corollary 4.Suppose that x1,za,...,x, (n > 3) are nonnegative real numbers such that r; <

1y <o <, and the sums xy +x9+ -+ +x, and 2¥ + 25+ + 2 are fized, where k is a real
number (k #1).

(1) For k <0, the product P, = x1x5 - - - x, has the mazimum value only when
O<zi <9 =23="+"+=12,,
and the minimum value only when
O<zi=20=""" =21 < Tp.
(2) For k >0, the product P, = x1x9 - - - x, has the mazimum value only when
Ty =Ty = = Tpog < T,
and the minimum value only when ;=0 or 0 <z < a9 =23="--+=1,.

Note 1. The EV-Theorem, Corollary 1 and Corollary 3 are also valid when zq,x5,...,2, >0, f
is continuous and differentiable on (0, 00), f(04) = foo and the sum S, has a global maximum
(minimum).

From the EV-Theorem and Note 1, we can obtain some interesting particular results, which
are useful in many applications.

Corollary 5. Suppose that x1,xs,...,x, are nonnegative real numbers such that r; < x9 <
o < 1, and the sums 11 + 19 + - + 1, and ¥ + 25 + -+ 28 are fized, where k is a real
number. Let us denote

Sp=2a"+a +---+a.

Case 1: k> 1.

(a) If m € (0,1) U (k,00), then S,, has the mazimum value only for

0< o =20="-- =251 < Ty,
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and the minimum value only for either 1 =0 or 0 <xy < x93 =23="+-+ = Tp.

(b) If m € (—00,0), then S, has the minimum value only for
O<zi1=20="-=12,_1 < 2,
and the mazimum value (if there is a global maximum) only for
O<r1<r9=23="-+-=20,.
(¢) If m € (1,k), then S,, has the minimum value only for

0<a =20="-=xp1 < Ty,

and the maximum value only for either 1 =0 or 0 <xy < x93 =T3="+-+=,.

Case2: 0<k<1 (k=0 means x1xy---x, = aas---ay, ).

(a) If m € (0,k) U (1,00), then S, has the mazimum value only for

0<z=20="-- =251 < Ty,

and the minimum value only for either 1 =0 or 0 <xy < a9 =T3="+-+=T,.

(b) If m € (—00,0), then S, has the minimum value only for
O<zi1=20="--=12,_1 < 2,
and the mazimum value (if there is a global maximum) only for
O<r1<T9=23="-+-=20,.
(¢) If m € (k,1), then S, has the minimum value only for

0<a =20="-=xp1 < Ty,

and the maximum value only for either 1 =0 or 0 <xy < x93 =T3="+-+=Tp,.

Case 3: k<O.

(a) If m € (k,0) U (1,00), then S,, has the mazimum value only for
O<z1=20="--=12p_1 < X,
and the minimum value only for
O<r1<T9=23="--=20,.
(b) If m € (—o0, k) U (0,1), then S,, has the minimum value only for

O<z1=00="-=12p_1 < T,
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and the maximum value only for

O<r1<r9=23="-+-=20,.

Proof. We apply the EV-Theorem and Note 1 to the function

fuw) =m(m —1)(m — k)u™.

We have
f'(w) = m?(m — 2)(m — k)u™!
and ) ) 12
m— - ]. - m— q
@) = m¥m = D(m — k)tE, g(a) = PO DI s
(k—1)?

Since ¢”(x) > 0 for x > 0, g is strictly convex on (0, 00).
Corollary 6. Suppose that w1,xs,...,2, (n > 3) are nonnegative real numbers such that
vy < xy <o <y, and the sums o +ab+ -+ 28 and x{ + 23+ + 22 are fived, where

p.qg€{1,2,3}, p#q

Sn = E , Liy LigLig

The symmetric sum

1<i1<i2<i3<n
has the mazimum value only for
O0<z1=22=""=Tp1 < Iy,
and the minimum value only for x1 =0 or 0 <x < Ty =o3=""=Tp.

Proof. Taking into account that

6 Z Ty TigTijy = (Z x1>3 -3 (Z x1> (Z x%) + QZx?,
1<ip<ig<iz<n
Corollary 6 is a consequence of Corollary 5. For p = 2 and ¢ = 3, according to this identity, the
sum Z Tiy Tiy Ty 18 maximum /minimum when Z x1 is maximum/minimum. Therefore,
1<i1 <ig<izg<n
we need to show that for fixed 27+ 23+ -+ 22 and 2} + 25 + -+ + 22, the sum ZZL“l has
the maximum value when

0<z1=22="- =21 < Ty,
and the minimum value when either 2y =0 or 0 < 27y < 29 = 3 = - -- = x,,. This result follows
by replacing z1, T, ..., x, with 22 22 ... 22 in Corollary 5, case k = 3/2 and m = 1/2.

Note 2. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(a) x1,29,...,2, > m >0, f is continuous on [m,o0) and differentiable on (m,o0), and
1
g(x) is strictly convex for x#1 > m; so, the sum

Sp = f(x1) + f(z2) + -+ f(2n)
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has the maximum value for ;1 = 2o = --- = z,_1 < x,, and the minimum value for either
T =morm<x, <Xy =2T3 =" = Ty;

(b) 0 < xy,x9,...,2, < M, fis continuous on [0, M] and differentiable on (0, M), and g(z)
is strictly convex for 2T < M ; S0, the sum

Sn = f(w1) + f(w2) + -+ f(an)

has the maximum value for either z,, = M or z; = 29 = -+ = z,_1 < x,, and the minimum
value for 1 < a9 =3 =+ = 1,;

Note 3. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(a) x1,29,...,x, > m > 0, f is continuous and differentiable on (m, o), f(m+) = +o0,
1
g(x) is strictly convex for z#71 > m and the sum S,, has a global maximum (minimum);

(b) 0 < xy,29,...,2, < M, fis continuous and differentiable on [0, M), f(M—) = +o0,
g(x) is strictly convex for 2%7 < M and the sum S, has a global maximum (minimum).

The following theorems are also true (see [25]).

Theorem 1. Let xi,x9,...,x, be nonnegative real numbers such that v, < xo < --- < x,, and
let m be a positive real number such that 1 <m < 3 forn =3, andn—2<m <n forn>4. If

n

1
Z (n—m)z; + m =1 and x1 +x2 + -+ + x,, 15 fized, then:
i=1 g

(1) the product P, = x1xs - - - x, has the maximum value only when x1 =129 ="+ =2, 1 <
Tn;

(2) the product P, = x1xs- -z, has the minimum value only when ;1 =0 or0 < z; <
X9 = T3 =+ "= Tp.

Theorem 2. Let x1,%s,...,x, be nonnegative real numbers such that x1 < xy < --- < x,, and
let m be a positive real number such that 0 < m < 1 forn =3, and 0 <m <1 forn > 4. If
= 1
Z =1 and x1 +x9+ -+ + x, s fived, then:
— (n—m)x; +m
(1) the product P,, = w15 - - - T, has the mazimum value only when x; < x9 = x3 = --+ = Tp;
(2) the product P, = x1x5 - - - x, has the minimum value only when 1 =x9 =+ =T, 1 <

Ty -
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5.2 Applications

5.1. If a, b, ¢, d are nonnegative real numbers so that
a+btctd=a®+0+S+d° =2,

then

7
1 <A+ +E+dE <.
5.2. If a1, as, ..., a9 are nonnegative real numbers so that
ay+ay+--+ag=aji+a;+---+a;=3,
then
3, .3 g _ 14

5.3. If a, b, ¢, d are nonnegative real numbers so that

27
a+b+c+d:a%HF+3+d%:73
then 5427 1377
7 <« 3 3 3 3 <=
1W2_a~+b+c—ﬂi_ 3

5.4. If a, b, ¢ are positive real numbers so that abc = 1, then

a® + b+ > /3(a” + b7 +cT).

5.5. If a, b, ¢, d are positive real numbers so that abcd = 1, then

a® + 024+ 3+ dP > \A(at 4 b+ et 4 dY).

5.6. If a, b, ¢, d are nonnegative real numbers so that a + b+ ¢ + d = 4, then

bed cda dab abe 4
+ + - <=
1la+16  11b+16 1le+16 11d+16 — 27

5.7. If a, b, c are real numbers, then

be i ca . ab
3a2+b2+c2 32+ c2+a? 32+ a?+ b2

3
< -.
)
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5.8. If a, b, ¢ are nonnegative real numbers so that a + b+ ¢ = 3, then

(a) bc n ca n ab < g
a?+2 vV+2 2+278
(b) be n ca N ab < 11@—45_
a?+3 +3 2+3~ 24 ’
(©) bc . ca . ab < §
a?+4 b¥+4 2+475

5.9. If a, b, ¢, d are nonnegative real numbers so that

(3a+1)(3b+ 1)(3c+ 1)(3d + 1) = 64,

then
abc + bed + cda + dab < 1.
5.10. If ay,as,...,a, and p, g are nonnegative real numbers so that
ar+ay+--Fa,=p+q, a+a+--+a,=p’+¢,
then

ai+as+--+al <p*+¢-.

5.11. If a, b, ¢ are nonnegative real numbers, then

ava? + 4b2 + 4c2 + bVb? + 4c2 + 4a? + eV + 4a? +4b2 > (a + b+ c)?

5.12. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then

1 1 1 3 a+b+c
+ + < :
a+b b+c c+a” 2a+b+c) 3

5.13. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then

1 1 1 3 a+b+c
+ + > + .
a+b b+c c+a a+b+c 6

5.14. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If
a®+ b+ c* =3,

then

1 N 1 N 1 +a+b+c> 11
a+b b+c c+a 9 ~2a+b+c)
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5.15. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If
a+b+c=4,
then

1 1 1 15
+ + > .
a+b b+c c+a " 8+ab+bc+ca

5.16. If a,b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 1 2
+ + > + :
a+b b+c c+a a+b+c +ab+be+ ca

5.17. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 3—v3 2 3
+ + > V3 V3 .
a+b b+c c+a " a+b+c  2vab+ bc+ ca

5.18. Let a, b, ¢ be nonnegative real numbers, no two of which are zero, so that
ab 4+ bc + ca = 3.

If
9+ 5v3

0<k<
- 6

~ 2.943,

then
2 2 2 9i+k

a+b+b+c c+a  a+b+c+3k

5.19. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 20
+ + > .
a+b b+c cH+a a+b+c+6Vab+bc+ca

5.20. If a, b, ¢ are positive real numbers so that
7(a® +b* + c*) = 11(ab + bc + ca),

then

51< a n b n c <9
287" b+c cH+a a+b
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5.21. If ay, as, ..., a, are nonnegative real numbers so that

ad+add+-+ad (a1+a2+-~-—|—an)2

n-+3 n+1
her i Den— o 30%(n 1 1)
n+ n—1 1 n“(n+1
< S T B i S "
5 < (a1 +ax+ +an)<a1+a2+ +an)_ 21 2)

5.22. If a,b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 3, then

1
abe 4 bed + eda + dab < 1 + g abcd.

5.23. If a, b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 3, then

3
a0’ + VA + Ad?a® + dPa? + Zabcd < 1.

5.24. If a,b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 3, then

4
a’b*c? + V*Ad? + Ad*a® + d*a®b? + g(abcd)3/2 <1.

5.25. If a,b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 4, then

a*b*? + b d? + Ad*a® + d2a*b? + 2(abed)®* < 6.

5.26. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

11(ab + be + ca) + 4(a*b* + b*c® + c*a?) < 45.

5.27. If a,b, ¢ are nonnegative real numbers so that a + b+ ¢ = 3, then

a’b? + b2 + Pa® + a®b® + b3 + Aa® > 6abe.

5.28. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

2(a2+b2+02)—|—5<\/5+\/l_)—|—\/5> > 21,
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5.29. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then
1+ 2a ¢1+2b 1+2c
> 3.
\/ 3 * 3 + 3

5.30. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If

0<k<15,

then

1 n 1 n 1 n k S 9+k
(a+b)? (b+¢)2 (c+a)? (a+b+c)2 = 4(ab+bc+ca)

5.31. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 N 1 N 1 N 24 - 8
(@a+0b)? (b+¢)*? (c+a)? (a+b+c¢)? ~ ab+bc+ca

5.32. If a, b, ¢ are nonnegative real numbers, no two of which are zero, so that
k(a® + b+ c*) + (2k +3)(ab+bc+ca) =9k +1), 0<k<6,
then

1 N 1 N 1 N 9%k
(a+0)2  (b+¢)? (c+a)? (a+b+c)?

5.33. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

2 2 2 8 1

> .
(&) a2+b2+b2+02+02+a2_a2+b2+c2+ab+bc+ca’
) 2 2 2 T 6
a2+ P4+ A+a? T @+ +E 0 (a+b+co)?

2 2 2 45

> .
a2—|—b2+b2—|—02+02+a2 T A(a?+ b2+ )+ ab+be+ ca

5.34. If a,b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 3 4
> .
a2+62+b2+02+02—|—a2+a2+b2+02 ~ ab+ bc+ ca
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5.35. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then
3 N 3 N 3 S 5 N 4 '
a?+ab+0> V2+bc+c2 E+cat+a? T ab+bet+ca a4+ b2+ 2
3 3 3 1 24
+ + > + ;
a?+ab+0>  VP+bc+c AH+ca+a® " ab+bct+ca  (a+b+c)?

(a)

(b)

1 1 1 21

> .
(c) a2+ab—|—b2+b2—|—bc+02+02—|—ca—|—a2 ~ 2(a? + b+ ?) + 5(ab + be + ca)

5.36. Let f be a real-valued function, continuous on [0, 00) and differentiable on (0, c0), so that
f"(u) >0 for u € (0,00). If a,b,¢ > 0, then

f(a® +2be) + f(b* + 2ca) + f(c® + 2ab) < f(a® +b* + ) + 2f(ab + bc + ca).

5.37. If a, b, c are the lengths of the side of a triangle, then

1 n 1 n 1 < 85
(a+0)?  (b+¢)? (c+a)*> = 36(ab+bc+ ca)

5.38. If a, b, ¢ are the lengths of the side of a triangle so that a + b+ ¢ = 3, then

1 N 1 N 1 <3(a2+b2+c2)
(a+0)? (b+c)? (c+a)? = 4(ab+bc+ca)

2
5.39. Let a,b,c > = so that a + b+ ¢ = 3. Then,

1 1 1
3+ 2(a? + b?) +3+262+c2) +3+2(02+a2)

3
< -
-7

5.40. If a, b, ¢ are nonnegative real numbers so that a + b+ ¢ = 3, then

2 N 2 N 2 < 99
24a24+0 2402+ 2+ +a® T 6B3+a?+0?+ 2

5.41. If a,b, ¢ are nonnegative real numbers so that a + b+ ¢ = 3, then

1 1 1 18
< .
3Y@ R 310+ 3424 @ S Tt@ P 1
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5.42. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

5 N 5 N 5 S 27
3+a2+0? 3+0+c2 3+E+a? T 6+al+ 02+

5.43. If a, b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 4, then

Z 3 < 296
3+2(a2+02+¢?) 218+ a2+ 02+ 2+ d?

5.44. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then

4 n 4 . 4 S 21
24a24+b2 2402+ 24c2+a? T d+a?+b2 42

5.45. If a, b, c are nonnegative real numbers so that a? + b? + ¢ = 3, then

1 1 1
10— (a4 10—(b+c?  10=(cta)?

1
< -
-2

5.46. If a, b, c are nonnegative real numbers, no two of which are zero, so that a* + bv* + ¢* = 3,

then
1 1 1 3

>
a5+b5+b5+c5+c5+a5_2

5.47. If ay,as, ..., a, are nonnegative real numbers so that a; + as + - - - + a,, = n, then

1
\/a%+1+\/a§+1+~~+\/a,%+12\/2(1—H> (@ +a2+--+a2)+2(n®>—n+1).

5.48. If a1, ao, ..., a, are nonnegative real numbers so that a; +as + --- + a,, = n, then

Z\/(Bn—él)a%—i—nz \/(3n—4)(a%+a§+---+a%)+n(4n2—7n+4).

5.49. If a,b, ¢ are nonnegative real numbers so that a + b+ ¢ = 3, then

8
Va2 +4+ Vb2 +4+V2+4 < \/g(a2+bz—l—02)+37.
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5.50. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then
V32a2 4+ 3 4+ V3202 + 3 + V32¢2 + 3 < /32(a2 + b2 + ¢2) + 219.
5.51. If a1, as,...,a, are positive real numbers so that a; +as + - -+ + a,, = n, then
1 1 1 2nyn — 1
4 > 2v/n — 1.
e A ;+ﬁ+@+ﬁu+ﬁ_ﬂu—vn
5.52. If a,b,c € [0, 1], then
(14 3a*)(1+3b*)(1 4 3¢*) > (1 + ab + be + ca)®.
5.53. If a, b, ¢ are nonnegative real numbers so that a 4+ b + ¢ = ab + bc + ca, then
1 n 1 N 1 S 1
44+5a2  4+5b2  4+52 73
5.54. If a, b, ¢, d are positive real numbers so that a + b + ¢ + d = 4abed, then
1 N 1 N 1 n 1 .
143a 143 1+43¢ 1+3d~
5.55. If a1, ao, ..., a, are positive real numbers so that
1 1 1
A tagt = — = —,
aq Q9 Qp,
then
! - ! +o ! > 1
1+(n—1)a; 14+ (n—1)ay 14+ (n—1)a, —
5.56. If a, b, c,d, e are nonnegative real numbers so that a* + b* 4 ¢* + d* + e* = 5, then
N+ +F+d*+e*) > (a+b+c+d+e)® + 10.
5.57. If aq, ao, ..., a, are nonnegative real numbers so that a; +as + --- + a,, = n, then

(] + a5+ +a

2
n

2 2
2>
) |

n(n—1)

(aj +ay+---+

4
a, —n

).
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5.58. If ay, as, . .., a, are nonnegative real numbers so that a? + a2 + - - + a?> = n, then

1
az{’+a§+---+a22\/nQ—n—l—lJr(l—ﬁ) (af 4 a§ +--- 4 af).

5.59. If a, b, ¢ are positive real numbers so that abc = 1, then

1 1 1 50
4{—-—+-4+-|+—F >27.
a b ¢ at+b+c

5.60. If a, b, c are positive real numbers so that abc = 1, then

1 1 1
a3—|—b3+c3+1526<—+—+—).
a b ¢

5.61. Let aq,ao,...,a, be positive numbers so that ajas---a, =1. If K > n — 1, then

11 1
af +a5+--+al + (2k—n)n > (2k —n + 1) <—+—+---+—).
aq (05} Qp,

5.62. Let aj,as,...,a, (n > 3) be nonnegative numbers so that a; + as + - -+ a, = n, and let
k be an integer satisfying 2 < k <n + 2. If

n k—1
= —1
(i)

ko k k
a; +as +---+a
! 2 L —1>m(l —aay---ay).

then

n

1 1
5.63. If a, b, ¢ are positive real numbers so that — + i + — = 3, then
a c

4(a* + b* + ¢*) + 9 > 2labe.

1
5.64. If aq,a.,...,a, are positive real numbers so that — + — 4+ --- + — = n, then,
ap  a Qn

ap +ag+---+a, —n < ey q(aag---a, — 1),

1 n—1
1=11 .
-t ( +n—1>

where
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5.65. If ay,as,...,a, are positive real numbers, then
ay +ay + - +ay 1 1 1
— +n(n—1)2(a1+a2+---+an)<—+——|—---+—).
ai1as - - - Gy a a2 Qp,
5.66. If aq,as,...,a, are nonnegative real numbers, then

(n—1)(a} +a +---+a?) +najas---a, > (ay +ay+ - +ay)(aV ' +ay - +ah).

5.67. If ay,as,...,a, are nonnegative real numbers, then

(n—D(a™t +ad™ +- -+ a"™) > (a1 +ag+ - +ap)(al +ay+ -+ a —aray - ay).

5.68. If aqy,as,...,a, are positive real numbers, then

1 1 1 1

(a1 +ar+--+ap,—n)|—+—+-+——n|+amay---a,+ —— > 2.

ay a9 Ay, aias - - - Ay

5.69. If aq,as,...,a, are positive real numbers so that aias---a, = 1, then
1 1
NPT — < 1.
ayrdaz T T a4, — 7N S S S S
a Tttt —n

5.70. If aq,as,...,a, are positive real numbers so that aias---a, = 1, then

n%(n — 2 1 1 1
ai ' a4 ar T (n=2) >n—1)(—+—+-+—].
ay +az + -+ an

5.71. If a,b, ¢ are nonnegative real numbers, then

abc — 1
b+c—3)?2>
(a+bte ) ~abc+1

(a® +b* + ¢ = 3).

5.72. If ay,as,...,a, are positive real numbers so that a; + as + --- + a,, = n, then

1
(mpag---a,)Vni(ad +a3+---+a2) <n.

n
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5.73.

5.74.

5.75.

then

5.76.

then

5.77.

5.78.

then

5.79.

If ay,as,...,a, are positive real numbers such that a; + as + --- + a, = n — 1, then
| on—1 - ad+a3+--+ad?
a1as - Qn n(n—1) '
If aj,as,...,a, are positive real numbers so that a + a3 + --- + a> = n, then

a;+ay+---+a, > n"Waay---ay,.

Let a, b, ¢ be nonnegative real numbers so that ab + bc + ca = 3. If

In4
k>2— — =~0.
> e 0.738,

n

ab + vk 4+ k>3

Let a, b, c be nonnegative real numbers so that a +b+ ¢ = 3. If

In9—-1n8
> ~02
k_1n3—1n2 0.29,

¥ + ¥ + & > ab+ be + ca.

If ay,as,...,a, (n>4)are nonnegative numbers so that a; + as + -+ + a, = n, then

1 1 1

+ TP
n+1l—asas---a, n+1—asas---ay n+1—aas---a,_1

<1

If a,b, ¢ are nonnegative real numbers so that

a+b+c>2, ab+ bc+ ca > 1,

Ya+Vb+ Je>2.

If a,b, c,d are positive real numbers so that abed = 1, then

(a+b+c+d)* >36V3 (a® + 0>+ &2 + d).
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5.80. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 1, then

V/33a2 + 16 4+ V/33b2 + 16 + V/33¢2 + 16 < 9(a + b+ c).

5.81. If a, b, ¢ are positive real numbers so that a + b+ ¢ = 3, then

3
2;2 | 72,2, 22
a“b” +b°c* +cta < .
v abc
5.82. If ay,aq,...,a, (n <81) are nonnegative real numbers so that
a%+a§+---+ai:a?+ag+---+ai,

then
aS4+aS+---+ab <n.

5.83. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

14+ V1+a3+ 03+ > /3(a®+ 02+ 2).

5.84. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

2
Va+b+Vb+ce+Ve+a< \/16+§(ab+bc+ca).

5.85. If a,b,c € [0,4] and ab + bc + ca = 4, then

Va+b+vVb+c++veta<3++5.

5.86. If a, b, c are positive real numbers so that abc = 1, then

(a) a+§+cz€/2+a2—262+02;

(b) ad+ b+ > /3(at + bt + ).

5.87. If a,b, ¢, d are nonnegative real numbers so that a + b+ ¢+ d = 4, then

(@ 4+ +E+d*—4)(a* + b0+ +d*+18) <10(a® +0° + & + d° — 4).
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5.88. If a, b, ¢, d are nonnegative real numbers such that
a+b+c+d=4,

then
(a* + 0+t +d)V > (AP +E+d?)(d® + 0+ +d).

5.89. If a, b, ¢, d are nonnegative real numbers such that
a+b+c+d=4,

then
13(a®> + b* + & + d*)? > 12(a* + b* + ¢* + d*) + 160.

5.90. If aq,as,...,ag are nonnegative real numbers, then

19(a? +a3 +---+a2)? > 12(a; +ay +--- +ag)(a’ + a3 +--- +ad).

5.91. If a, b, c are nonnegative real numbers so that

5(a®> +b* + c) = 17(ab + be + ca),

3_ [ a [ b [ ¢ 1+V7
- < < .
3\/7_ lH—c+ c+a+ a+b = 2

5.92. If a, b, ¢ are nonnegative real numbers so that

then

8(a® 4+ b* + c*) = 9(ab + be + ca),

then
19 a b c 141
< <

E_b+c+c—|—a+a+b_ 88

5.93. If a,b,c € (0,2] such that a + b+ ¢ = 3, then

\/2(()—1-0)_1+\/2(c—|—a)_14_\/2(a—|—b)_12 9 |
a b c Vab+be+ ca
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5.94. Let a,b,c and z,y, 2 be nonnegative real numbers such that
B2 =+ +E
Then,

(a+b+c)(x+y+2) > 3.
ab 4+ bc + ca + vy + yz + zx

5.95. If a,b, ¢, d are positive numbers such that

1 1 1 1
a+tbtctd=—+-+-+-,
a b ¢ d

then
ab + ac+ ad 4+ be + bd + cd + 3abed > 9.

5.96. If aq, as, as, ay, as are nonnegative real numbers, then
(@3 +a3+a3+al+ad)? _ 1
1, 4 4 4. 1 5 E :aiaj‘

v

5.97. If ay,as,...,a, > 0 such that
ay +az + -+ ap =M,

then

1
Vai +/as + -+ a, < 2n—1+2<1——)2aiaj.
n

i<j
5.98. If ay,as,...,a, > 0 such that
a1+a2+---+&n:2aiaj >0,
i<j

then . 2)

n—1)(n—

( )2( (a1+a2—|—-~—|—an)—|—z,/aiajZn(n—l).

i<j
5.99. Let
F(ai,as,...,a,) =n(a} +a5+---+a2) — (a1 +ay +---+a,)?,
where aq, as, ..., a, are positive real numbers such that a; = min{ay, as, ..., a,} and
a(a3+az;+---+a2)>n—1.

Then,

1 1 1
F(al,ag,...,an)2F(—,—,...,—>.
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5.100. Let
Flay,ag, ... ,an) = a1 +ay+ - +a, —nifaray - ay,
where a,ay, ..., a, are positive real numbers such that a; = min{ay, as,...,a,} and
aj(ag+az+---+ay,) >n—1.
Then,
1 1 1
F(ay,aq,...,a,) > F(—,—,...,—) )
ay’ as a,
5.101. Let
a2 a2 “e. a2 a a e Qp,
F(al,ag,...,an):\/1+ gt ta, artayt-o-+ 7
n n
where ay,ay, ..., a, are positive real numbers such that a; = min{ay, as,...,a,} and
a? Yag +as+---+ay,)>n—1
Then,
1 1 1
F(ay,as,...,a,) > F(—,—,...,—) )
a; Qo Qp,
5.102. If ay, as,...,a, (n > 4) are positive real numbers such that
a +as+ -+ a, =n, a, = max{ay,as,...,a,},
then
1 1 1 9 o 9
n{—+—+--+ >4(ay + a3+ - +a;)+n(n—2>5).
ay az An—1
5.103. If ay, as, . .., a, are positive real numbers such that
a+ag+---+a, =n,
then
11 n(n — 1)
—+ =+t —+n-22
a; Qs an Z a;a;
1<i<j<n
5.104. If ay, as, ..., a, are nonnegative real numbers such that
ay +az +---+a, =n,
then

n

1 n—2 n
> < +
—'n—a n—1
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5.105. If ay, as, ..., a, are nonnegative real numbers such that

ay +az + -+ ap =M,

then
_ 1 n
St
= T 2 a;a;
1<i<j<n
5.106. If ay,as, ..., a, are nonnegative real numbers such that
& 1
P P ek
— 2a; +n — 2
then
2 Z aa; > (n—1)(a1 +as+ -+ ay,).
1<i<j<n
5.107. If aq, a9, . .., a, are positive real numbers such that
! + ! ot ! =1
201 +n—2  2as+n—2 2, +n—2
then
1 1 1 n(n — 2)
—+ =+ +—+ >2(n—1).
aj a2 A, ai+as+---+a,
5.108. If aq,as, ..., a, are positive real numbers such that
1 1 1
+ fo———— =1,
ai+n—1 a+n—1 a, +n—1
then 1 1 1 3 4
n(3n —
— =t —+ ( ) > 4(n —1).
ay G ap  Qy+az+---+a,
5.109. If aq, as, ..., a, are nonnegative real numbers such that
SN |
DL
- a; +1
=1
then
- 2n? —dn + 1
i=1 2 Z a;a; n—1

1<i<j<n
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5.110. If ay, as, ..., a, are nonnegative real numbers such that
- 1
=1,
i1 a; +n— 1
then ,
-1
2 Z a;a; > n(n )
1<i<j<n ap+ag+---+ay,
5.111. If ay, as, ..., a, (n > 3) are nonnegative real numbers such that
& 1
B R
— a; +n —1
=1
then
n 2
—14+k|——— a;a; — 1| >0,
a+as+---+ay, n(n_l)g;gn J
where
 An—1)?
(n—2)(3n—4)
L n(n —1)
5.112. If aq, as, ..., a, are positive real numbers such that Z a;a; = — 5 then
1<i<j<n
1 1 1
nl—+—+-+—)+nn—-2)>2n—1)(ay +as+ -+ ay).
a; Qs an,
: n(n —1)
5.113. If ay, as, ..., a, are nonnegative real numbers such that Z a;a; = — 5 then
1<i<j<n
1 1 1
+ TR Sy n ~1) <o,
ar+1 ax+1 a,+1 2 ar+as+---+a,
where .
k= 5(77“ —1)y/n(n —2).
: n(n —1)
5.114. If ay, as, . .., a, are nonnegative real numbers such that Z a;a; = — 5 then
1<i<j<n
1 1 1
+ 4ot 2k n ~1) >0,
ar+1 ax+1 a,+1 2 ar+as+---+a,
where

b= 202D (a1,

2(n—1)2
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n(n—1
5.115. If aq, as, ..., a, are nonnegative real numbers such that Z a;a; = %, then
1<i<j<n
(2)(+++)>21+1++ +n(n —3)
n—2)(a+as+---+a,) > n(n — 3).
! 2 a; + 1 as + 1 ay + 1
5.116. If aq, as, ..., a, are positive real numbers such that
1 1 1
ap a2 an
then . ) ) .
1 n“(n —
2(n+1) + +-+ > ( ) + 2n.
ap+1 ax+1 a, +1 ay +ag + -+ +ay
5.117. If aq, as, . . ., a, are positive real numbers such that
1 1 1
a;  ag an,
then o2
n
ai+as+-+al+ > 3n.
a;+ags+---+ap
5.118. If ay, as, ..., a, are nonnegative real numbers such that ay + as + - -+ + a, = n, then

1 1
< .
Za2{+(n2—n+1)(a§+-~+ag) “n2—-2n+2

5.119. If a, b, ¢ are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1 1
< —.
(at 201202  (2a+5b120)°  (2a+2b150)° = 27

5.120. If a, b, ¢ are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1
(3a+b+c)2Jr (a+3b+c)2+(a+b—|—30)2

1
< -.
-8

5.121. If a, b, ¢ are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1 1
< —.
(a1 db140?  (datb140?  (datdbto? " 27
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5.122. If n>3, 1 <k <nand ay,as,...,a, are nonnegative real numbers,then

(n—D*1d + - +d) +np* — (n =1 YN(ar---an)"" > (a1 + ag + - + an)".

5.123. If aj, as,...,a, (n > 3) are nonnegative real numbers such that

n

1
2o Dar1 "

=1

then
ai+as+ - +a, >n"Fajag - ay,.
5.124. If ay, as,...,a, (n > 3) are nonnegative real numbers such that
& 1
> =
i1 (77/ — 1)&1 +1
then
a;+as+---+a, —n < k(aay---a, — 1),
(n . 1)111
where k = .
n—2
5.125. If aj, as,...,a, (n > 3) are nonnegative real numbers such that
& 1
> =
i1 (77/ — 1)&1 +1
then
(n—2)(a1 +ay+---+a,) +aay---a, > (n—1)>%
5.126. If aj,as,...,a, (n > 3) are nonnegative real numbers such that
s
— 2a; +n—2 o
then

ap+ax+---+a,—n = 2”71(&1CL2"'CL”—1).

—1
5.127. Let n > 3, and let ay > ay > --- > a, > 0 such that Z a;a; = % Then
1<i<j<n
1 1 1 4 Ay an,
(a) —2+—2+"'+—2—n2(3——)( 1+ —2);
ay  ag ay, n Qn Gy

1 1 1 4
(b) —2+—2+--~+—2—n2(3—ﬁ)(an1—an)2.

ar  ap anp
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5.3 Solutions

P 5.1. If a,b, c,d are nonnegative real numbers so that
a+btctd=a®+0>+S+d° =2,

then
<A+ +E+d?<2.

PN

(Vasile C., 2010)
Solution. The right inequality follows from the Cauchy-Schwarz inequality
@+ +E+d)? < (a+b+c+d)(d®+b+E+d°).

The equality holds for a = b =0 and ¢ = d =1 (or any permutation).

To prove the left inequality, assume that a < b < ¢ < d, then apply Corollary 5 for £k = 3 and
m=2:

e Ifa,b,c,d are nonnegative real numbers so that

a+btc+d=2, d+P+E+dP=2, a<b<c<d,

then
Sy=a’+b*+32+d?

has the minimum value for a =b = c.
So, we only need to prove that the equations

3a+d=3a*+d*=2, a,d>0,

imply

7

Z S 3(1,2 —I— d2.
Indeed, from 3a + d = 3a® + d® = 2, we get a = 1/4 and d = 5/4, when

7
3a* + d* = -
a” + 1

The left inequality is an equality for

(or any cyclic permutation).
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P 5.2. Ifay,as,...,a9 are nonnegative real numbers so that
ay+ay+---+ag=aj+a;+---+ag =3,
then
3<ad+ai+-+al < —.
(Vasile C., 2010)
Solution. The left inequality follows from the Cauchy-Schwarz inequality
(a1 +az+---+ag)(a + a5+ - +ag) > (af + a5+ -+ + a)”.

The equality holds for a; = ay =--- = ag = 0 and a; = ag = ag = 1 (or any permutation).
To prove the right inequality, assume that

a; < az < -+ < ayg,

then apply Corollary 5 for £ =2 and m = 3:
o Ifay, as,..., a9 are nonnegative real numbers so that

aitag+-tag=3, altai+--+ai=3, ay<as<-- < a,

then
Sg:a:;’—f—a%—f—..._}_ag
has the mazimum value for a; = as = -+ = ag < ag.
Thus, we only need to prove that the equations

8a+b=3, a2+ =3, a,b>0,

involve 14
8a® + 12 < —.
3
Indeed, from the equations above, we get a = 1/6 and b = 5/3, when
1 125 14
8 +0* = -+ — = —.
Y ER T T3
The equality holds for
1 5
(Il:az:"':aszgy a9:§
(or any cyclic permutation).
m
P 5.3. Ifa,b, c,d are nonnegative real numbers so that
2 g2, 2, 92 27
a+b+c+d=a"+b"+c"+d = -
then 5427 1377
—— <+ + P < =
B ¢ TV TeTE s

(Vasile C., 2014)
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Solution. Assume that a < b <¢ <d.

(a) To prove the right inequality, we apply Corollary 5 for k = 2 and m = 3:
e Ifa,b,c,d are nonnegative real numbers so that

27 27
a+b—|—c—|—d:7, a2+62+c2+d2:7, a<b<ec<d,

then
Si=a*+0+ S+ d
has the mazimum value fora=b=c <d

Thus, we only need to prove that the equations

2 2
3a—|—d:77, 3a2+d2:77, a,d >0,

involve 1377
3 +dP < ——.
R VE

Indeed, from the equations above, we get a = 6/7 and d = 9/7, when
6\°  [9\° 1377
3 3 g —_ —_ = —
3a” +d 3(7> +(7) 313

6 9
a C 7, 7

The equality holds for

(or any cyclic permutation).

(b) To prove the left inequality, we apply Corollary 5 for kK = 2 and m = 3:
e Ifa,b, c,d are nonnegative real numbers so that

27 27
a+b+c+d:7, a2+b2+c2+d2:7, a<b<c<d,

then
Si=a*+b+c+d°
has the minimum value for either a =0 ora < b= c=d.

The case a = 0 is not possible because from

2 2
b+c+d:77, b2+c2+d2:77,

we get

2 2
3(62+02+d2)—(b+c+d)2:77(3—;) <0,

which contradicts the known inequality

30°++d*) > b+c+d).
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For a < b = c = d, we need to prove that the equations

a+3d:2—7, a2+3d2:§, a,d >0,
7 7
involve 5497
3433 > 2.
e

Indeed, from the equations above, we get a = 9/14 and d = 15/14, when
9\° 15\ 5427
3 3 _ (2 o)
@S = (14) 3 (14> 1372

9 15
a—ﬁ, b—C—d—ﬂ

The equality holds for

(or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

o Let k be a positive real number (k > 2), and let ayi,as, ..., a, be nonnegative real numbers
so that

_ 2 2 2 _ (n—1)°
al—|—a2+---+an—a1+a2+---+an—m.

The sum
S,=a¥+a5+-- +ak

has the mazimum value for

(n—1)(n—2) (n—1)?
ap =+ = ap1 = ~— : n=
n*—3n+3 n*—3n+3
and the minimum value for
(n—1)%*(n—2) (n—1)(n* —2n +2)
a) = , Gg==ay =
n(n? — 3n + 3) n(n? — 3n + 3)

P 5.4. If a,b, c are positive real numbers so that abc = 1, then

a® + b+ > /3(a” + b7 +cT).

(Vasile C., 2014)

Solution. Substituting
a=z5 b=ys ¢= 5

we need to show that xyz = 1 involves

TH+y+z> \/3(;1:7/5 + 475+ 27/5).
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Assume that x <y < z, then apply Corollary 5 for k =0 and m = 7/5:
o I[fx <y<z>0 suchthat v+ y+ 2z is fivzed and xyz =1, then

Sy = 27/5 4 y7/5 4 L7/

has the mazimum value for x = y.

So, it suffices to prove the original inequality for @ = b. Write this inequality in the homoge-
neous form
(a® +0° + c)? > 3abe(a” + b + 7).
We only need to prove this inequality for a = b = 1; that is, to show that f(c¢) > 0, where
fle)=("+2%*=3c(c" +2), ¢>0.
We have
f'(c) = 10¢*(c® + 2) — 24¢" — 6,
f"(c) = 2c3g(t), g(t) = 45¢° — 84c® + 40.
By the AM-GM inequality, we get

g(t) = 15¢° + 15¢° + 15¢° + 20 + 20 — 84¢® > 5¢/(15¢5)3 - 202 — 84¢?

_ 716 (25 _ 14\718) A >0,

< 0 for ¢ < 1,

hence f”(¢) > 0, f'(c) is increasing. Since f'(0) = 1, it follows that f'(c)
1,00); consequently,

f'(¢) > 0 for ¢ > 1, therefore f is decreasing on (0,1] and increasing on [1,
f(e) > f(1) = 0. The equality occurs for a =b=c = 1.
[

P 5.5. Ifa,b, c,d are positive real numbers so that abcd = 1, then

A+ 0+ E 4 dP > Aar b A+ db).
(Vasile C., 2014)

Solution. Substituting
a=23 b=yf3 =3 g =3

we need to show that xyzt = 1 involves

r+y+z+t> \/4(1:4/3 + Y43 4 243 + t4/3),

Apply Corollary 5, case k =0 and m = 4/3:
o [fx>y>2z>t>0 such that x+y—+ z+tis fivxed and xyzt =1, then

S, = Y3 4 y4/3 L AB A3

has the mazimum value for x =y = z.
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Therefore, it suffices to prove the original inequality for a = b = c. Write the original inequality
in the homogeneous form

(@® + V> + & + d*)* > Wabed (a* + b+ * + dY).
We only need to prove this inequality for a = b = ¢ = 1; that is, to show that
(d® +3)% > 4Vd (d* + 3).
Putting u = v/d, we have

(d® +3)% — 4Vd (d" +3) = (u® + 3)* — du(u® + 3)
= (u* — 1) +4(u+2)(u—1)* > 0.

The equality holds fora =b=c=d = 1.

P 5.6. Ifa,b,c,d are nonnegative real numbers so that a + b+ ¢+ d = 4, then

bed cda dab abe 4
+ + + <=
1lla+16 116+16 1le+16 11d+16 — 27

(Vasile C., 2008)

Solution. For a = 0, the inequality becomes

64
bed < 2=
“=op

where b,¢,d > 0, b+ ¢+ d = 4. By the AM-GM inequality, we have

b+c+d\® 4\*® 64
< (22— (2) = 2=
i< (S5 < (5) =3

For abcd # 0, we write the inequality in the form

f(a)+f(b)+f(c)+f(d>+mzo,
where . 16
We have f(0+) = —oo and
N 2utk
f(u> - (Uz—f—ku)Q,
 kat 4227

g(x) = f'(1/x) = Tz 12

") = 22(k3x3 + 4k*2? + 6kx + 6)
g B (kx +1)*
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Since ¢"(xz) > 0 for x > 0, g is strictly convex on (0,00). By Corollary 3 and Note 1, if
0<a<b<c<dsuchthat a+b+c+d=4 and abcd is fized, then the sum

Si=fla) + f(b) + f(c) + f(d)
has the mazimum value for b= ¢ = d. Thus, we only need to prove that

b3 3ab? 4
+ <=
11a + 16 116+ 16 — 27

for a + 3b = 4. The inequality is equivalent to
4

b 36%(4 — 3b)
+ < —
3(20— 116) = 11b+16 — 21

(b—1)%(4 — 3b)(231b + 80) > 0,
(b—1)*a(231b + 80) > 0.
The equality holds for a = b =c=d =1, and also for

4
a , c 3

(or any cyclic permutation).

P 5.7. If a,b, c are real numbers, then

be n ca n ab <3
362 +02+c2 32+c2+a? 3c2+a?+b2 5

(Vasile Cirtoaje and Pham Kim Hung, 2005)

Solution. For a = 0, the inequality is true because

be 1 3
< e

—— < - <
b24+c¢2 2 5

Consider further that a, b, ¢ are different from zero. The inequality remains unchanged by replac-
ing a,b,c with —a, —b, —c, respectively. Thus, we only need to consider the case a < 0, b,¢c > 0,
and the case a,b,c > 0. In the first case, it suffices to show that
bc 3
= <Z
3a2+ b2+~ 5
Indeed, we have
be < be < 1 - 3
3a24+02+c2 b2 +c2 2 5
Consider now the case a,b,c > 0. Replacing a, b, ¢ with /a, Vb, /¢, the inequality becomes
1 1 1 3

JaBatbta Vb(3b+ ¢+ a) T VeBe+ atb) : 5vabe’
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Due to homogeneity, we may consider that a + b+ ¢ = 2. So, we need to show that

6

fla)+ f(o+ f(c) + T 20

where )
flu) = NiCESIk u > 0.
We have f(0+) = —oo and N
1oy u+
o) = ) = D,
v V/x(3x® 4 112% + ba 4 45)
g ($) - 8(:6‘+ 1)4 .

Since ¢"(z) > 0 for > 0, g is strictly convex on (0, 00). By Corollary 3 and Note 1, if
a+b+c=2, abc = fized, 0<a<b<ec,

then the sum
Sz = f(a)+ f(0) + f(c)

1s minimum for b = c. Thus, we only need to prove the original homogeneous inequality for

b = c =1; that is,
1 2a 3

< =
3a2+2+a2—|—4 -5

9a* — 30a® + 37a® — 20a + 4 > 0,
(a—1)*(3a —2)* > 0.

The equality holds for a = b = ¢, and also for
3a =2b=2c

(or any cyclic permutation).

P 5.8. If a,b, c are nonnegative real numbers so that a + b+ ¢ = 3, then

(o) be n ca N ab <9.
a2+2 V¥+2 2428
) be L ca . ab <11\/§—45‘
a?+3 b+3 2+3° 24 ’
(c) be n ca n ab <§
a?+4 ?+4 2+475

(Vasile C., 2008)
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Solution. For the nontrivial case abc # 0, we can write the desired inequalities in the form

fla)+ F(b) + f(e) + — >0,

abe
where .
= 2.3.4 )
f) = gy Re2B4) uso
We have f(0+) = —oo and
, 3u?+k
f (’LL) - Uz(UQ + k)27
kxS + 324
= ! 1 = —
ole) = F(1/0) = Gs s

_ 22?(kPa® + 4k 2" — 3ka? + 18)
B (kx? +1)*

9" (x)

Since
ka8 + 4k%a* — 3ka? 4+ 18 > 4k*x* — 3ka® + 18 > 0,

we have ¢"(z) > 0, hence g is strictly convex on (0, 00). According to Corollary 3 and Note 1, if
a+b+c=3, abc = fived, 0<a<b<ec,

then the sum
Sz = f(a) + f(b) + f(c)

1s manimum for b = c. Thus, we only need to prove the original inequalities for b = c.
(a) We only need to prove the homogeneous inequality

be N ca n ab
9a2 +2(a+b+c)?2 I2+2a+b+c)? 92 +2(a+b+c)?

for b =c =1, that is

1
< Z
-8

1 n 2a < 1
11a2 +8a+8  2a%2+8a+17 — 8’
2a < a(lla + 8)

202 + 8a + 17 — 8(11a? + 8a + 8)’
a(22a® — 72a* + 123a + 8) > 0.

Since
22a® — 72a* + 123a + 8 > 20a* — 80a” + 80a = 20a(a — 2)* > 0,

the conclusion follows. The equality holds for a = 0 and b = ¢ = 3/2 (or any cyclic permutation).

(b) Let

UV T oo r= YBTO pase.
72 4
We only need to prove the homogeneous inequality
bc ca ab

<
3a2+(a+b—|—c)2+362+(a+b+0)2+302+(a+b+c)2 =
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for b = ¢ = 1; that is, to show that f(a) < m, where

1 n 2a
4a®?+a+1) a?+4a+T

fla) =

We have

—8a® — 18a® + 15a* + 28a® + 18a* — 42a + 7
4(a®> +a+1)%(a®> +4a + 7)?
(1 —a)*(7+ Ta+ 4a*)(1 — 5a — 2a?)
4(a®> +a+1)%(a® +4a + 7)?

f'(a) =

Since f'(a) > 0 for a € [0,r], and f'(a) < 0 for a € [r,00), f is increasing on [0, r| and decreasing
on [r,00); therefore,

fla) > f(r) =m.

The equality holds for
a/r=b=c

(or any cyclic permutation).

(¢) We only need to prove the homogeneous inequality

be n ca n ab <1
924+ 4(a+b+¢)> I +4(a+b+c)? 92+4(a+b+c)? — 15

for b = c =1, that is
1 2a 1

+ < —,
13a2 4+ 16a 4+ 16 =~ 4a% + 16a +25 — 15
52a* — 118a® + 105a* — 64a + 25 > 0,

(a —1)*(52a® — 14a + 25) > 0.

Since
52a® — 14a + 25 > 7a®> — 14a + 7 =T(a — 1)* > 0,

the conclusion follows. The equality holds for a = b =c = 1.

P 5.9. Ifa,b, c,d are nonnegative real numbers so that
(Ba+1)(3b+1)(3c+ 1)(3d + 1) = 64,

then
abc + bed + cda + dab < 1.

(Vasile C., 2014)
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Solution. For d = 0, we need to show that
(Ba+1)(3b+1)(3c+1) =64

involves abc < 1. Indeed, by the AM-GM inequality, we have
64 = (3a+1)(3b+ 1)(3c + 1) > (4\/a_3> (4@) (4@) — 64¢/(abe)?,

hence abc < 1. Consider further that a,b,c,d > 0 and use the contradiction method. Assume
that
abc + bed + cda + dab > 1,

and prove that
(Ba+1)(3b+1)(3c+ 1) > 64.

It suffices to show that
abc + bed + cda + dab > 1

involves
(Ba+1)(3b+1)(3c+ 1) > 64.

Replacing a,b,¢,d by 1/a,1/b,1/c,1/d, we need to show that

a+b+c+d=abed

) () ) () o

fla) +f(b) + f(e) + f(d) < =61n2,

involves

which is equivalent to

where 5
f(u):—ln(a+1), u > 0.
We have f(0+) = —oo and

322 6

gle) = [(Ufe) =375 0@ = gy

>0,

hence g is strictly convex on (0,00). By Corollary 3 and Note 1, if a,b,c,d are positive real
numbers so that

a+b+c+d= fixed , abed = fized | a<b<ec<d,

then
Sy = f(a)+ f(b) + f(c) + f(d)
18 maximum for a =b = c.

Thus, we only need to prove that
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for 3a + d = a3d, that is

3 _
§:a 1, l1<a<d.
d a

Write this inequality as
(34 a)*(34d) > 64a’d,

(34 a)*(3+d) > 64a*d(3 + a),
4 <1+GT_1> (3+d) > d*d(3+a).

By Bernoulli’s inequality, we have

a—1\" a—1
1+—— ) >1+4- =q.
<+ 1 ) > 1+ 1 a

Thus, it suffices to show that
4(34d) > a*d(3 +a),

which is equivalent to

12
Eza3+3a2—4,

4(a® - 1)

a4—a3—4a+4§0,

> a® 4 3a® — 4,

(a—1)(a® —4) <0.

This is true if a® < 4. Indeed, we have

0<

3 3 3 a-1 4-a°
. .

The proof is completed. The original inequality is an equality for
a=b=c=1, d=20

(or any cyclic permutation).

P 5.10. Ifay,as,...,a, and p,q are nonnegative real numbers so that
a+aytota,=ptq, @l taytotay=pt 4

then
ai+ a3+ +a; <pP 44

(Vasile C., 2013)
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Solution. For n = 2, the inequality is an equality. Consider now that n > 3 and a1 < as <
-+ < a,. We will apply Corollary 5 for £k = 3 and m = 2:

e Ifay,as,...,a, are nonnegative real numbers so that ay < a, < --- < a, and
a+aytota,=ptq, @l taytotay=p 4

then

S,=aj}+as+---+a’

1s maximum for either a1 =0 or as = a3 = -+ = Q.
In the first case a; = 0, the conclusion follows by induction method. In the second case, for
a; = a, as =a3=-+-=a, = b,

we need to show that
a>+ (n— 1) <p*+¢°

for
a+(n—1b=p+q, "+ (-1 =p"+q.
Since 2(3 3)
p°+q
3+ =@p+q°+—,
0+ ) = o+ gt + 2

the inequality can be written as

2[a® + (n — 1)b?]
a+ (n—1)b

3a*> +3(n — B> < [a+ (n — 1)b)* +

Y

which is equivalent to
(n —1)(n — 2)b*[3a + (n — 3)b] > 0.

The equality holds when n — 2 of a4, as, ..., a, are equal to zero.

P 5.11. If a, b, c are nonnegative real numbers, then

ava? + 4b2 + 4c2 + bV + 4c2 + 4a? + eV + 4a? +4b2 > (a + b+ c)?

(Vasile C., 2010)

Solution. Due to homogeneity and symmetry, we may assume that
A+ +ct=3 0<a<b<c<V3

Under this assumption, we write the desired inequality as

1 2
f(@) + F0) + () + —(a+b+e)* <0,

where



356 Vasile Cirtoaje

We have )
o) = (o) = 2722,
48

9" (z) = (4 — 22)5/2
Since ¢’ (x) > 0 for = € (0,2), g is strictly convex on [0,v/3]. According to Corollary 1, if
a+b+c= firved , A+ +E=3, 0<a<b<ec,

then the sum
Sz = f(a) + f(b) + f(c)

1s maximum for a = b < c¢. Thus, we only need to prove the original inequality for a = b. Since
the inequality is an identity for @ = b = 0, we may consider a = b = 1 and ¢ > 1. We need to
prove that

2V4c2 + 5+ Ve + 8 > (c+2)°.

By squaring, the inequality becomes

e/ (4c2 +5)(c2 + 8) > 2¢* + 8¢ — 1.
This is true if
(4c® +5) (2 +8) > (2¢° + 8¢ — 1)?,

which is equivalent to
5¢ +4c® — 24¢* 4+ 16c — 1 > 0,

(c—1)*(5¢® + 14c — 1) > 0.

The equality holds for @ = b = ¢, and also for a = b = 0 (or any cyclic permutation).

P 5.12. If a,b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1 n 1 n 1 < 3 +a+b+c
a+b b+c c+a” 2a+b+c) 3

(Vasile C., 2010)
Solution. Write the inequality in the homogeneous form

1 1 1 3 a+b+c
+ + < .
a+b b4+c c+a” 2a+b+c) ab+bec+ca

Due to homogeneity and symmetry, we may assume that
a+b+c=1, 0<a<b<e, ab + be + ca > 0.

Under this assumption, we write the desired inequality as

1

3
F@) + JO) + () €5+ e
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where

1
Y

, 0<u<l.

f(u)
We will apply Corollary 1 to the function f, which satisfies f(1—) = oo and

N 1
o) = /') = =

" _ 6

Since ¢"(z) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note 3, if
a+b+c=1, ab+ bc + ca = fixed , 0<a<b<eg,

then the sum
Sz = f(a) + f(b) + f(c)

1s mazimum for a = b < c¢. Thus, we only need to prove the homogeneous inequality fora = b =1
and ¢ > 1; that is,
4 < 3 2(c+2)

1
+c—|—1_c+2 2c+1"7

which reduces to
(c—1)2>0.

The original inequality is an equality for a =b=c = 1.

P 5.13. If a,b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1 1 1 3 a+b+c
- + > - .
a+b b+c c+a a+b+c 6

(Vasile C., 2010)

Solution. Proceeding in the same manner as in the proof of the preceding P 5.12, we only need
to prove the homogeneous inequality

1 1 1 3 a+b+c
ot > +
a+b b+c c+a  a+b+c  2(ab+ be+ ca)

fora=0and fora<b=c=1.

Case 1: a = 0. The homogeneous inequality reduces to

1 2 b+c
c “b+c  2bc’

which is equivalent to
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Case 2: a < b= c=1. The homogeneous inequality becomes

1+ 2 S 3 n a—+ 2

2 a+1"a+2 22a+1)

1 a+2 S 3 2

2 22a+1) "a+2 a+1
a—1 S a—1

22a+1) = (a+1)(a+2)’
ala —1)* > 0.

The equality holds for a = b= ¢ =1, and also for

(or any cyclic permutation).

P 5.14. Let a,b, c be nonnegative real numbers, no two of which are zero. If
a®+ b+ c* =3,

then

1 4 1 . 1 +a+b—|—c> 11
a+b b+c c+a 9 “2(a+b+c)

(Vasile C., 2010)

Solution. Using the same method as in the proof of P 5.12, we only need to prove the homo-
geneous inequality

1 n 1 n 1 a+b+c 11
a+b b+c c+a 3@+b+c) " 2a+b+c)

fora=0and fora<b=c=1.

Case 1: a = 0. The homogeneous inequality reduces to

1_|_1_|_ 1 n b+c S 11

b ¢ b+c 32+ " 2b+c)
b+c+ b+c S 9

be 32+ c2) T 2(b+¢)’

1 1 9
b 2l >
(b+c) {bc * 3(bQ+02)} — 2
Using the substitution
v+

x x> 2

Y

be
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the inequality becomes
1 9
2 (1+—)>=
(z+ >( +3x) -2

62% — 13z +4 > 0,
r+2(z—2)3x—1)>0.

which is equivalent to

Case 2: a <1 =0b=c. The homogeneous inequality becomes

1 2 a+2 S 11

2+a+1+3(a2+2) ~ 2(a+2)’

a—+2 a? —4a—1
3(a? +2) * 2(a+1)(a+2) 20,
3a® — 10a® + 13a* — 8a +2 > 0,
(a—1)*(3a® — 4a +2) > 0,
(a—1)*[a*+2(a—1)%] > 0.
The equality holds for a =b=c=1.

P 5.15. Let a,b, c be nonnegative real numbers, no two of which are zero. If
a+b+c=4,
then

1 1 1 15
+ + > .
a+b b+c c+a 8+ab+bec+ca

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the homogeneous in-

equality
2 2 2 S 15(a+b+c)

a+b+b—|—c+c—|—a “(a+b+c)?+2(ab+ be + ca)

fora=0and fora<b=c=1.

Case 1: a = 0. The homogeneous inequality reduces to

2(b+ ¢) 2 15(b+¢)
be b+c — (b+c)?+2bc’

2 2
2(b+c) Lo 15(b + ¢) _
be (b+ ¢)? + 2bc
Using the substitution
b 2
T = (b+c) T >4,
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the inequality becomes
15z

x+2’

204+ 2 >

which is equivalent to
227 — 9z +4 >0,

(x —4)(2x — 1) > 0.
Case 2: a <1, b= c = 1. The homogeneous inequality becomes

4 15(a + 2)
a+17 (a+2)2+22a+1)

1+

a+5 S 15(a + 2)
a+1 7 a*?+8a+6’
ala —1)* > 0.

The equality holds for a = b= ¢ =4/3, and also for

(or any cyclic permutation).

P 5.16. If a,b,c are nonnegative real numbers, no two of which are zero, then

1 1 1 1 2
+ + > + .
a+b b+c c+a " a+b+c  ab+ be+ ca

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the desired homogeneous
inequality fora =0 and for0 <a <b=c=1.

Case 1: a = 0. The inequality reduces to the obvious form

+-2

Q-

S| =
(o)

Case 2: 0 < a <1 =>b=c. The inequality becomes

1 2 1 2
-+ > + )
2 a+1 " a+2 +2a+1
1 1 2 2

2_a+22\/m_a+1’
a >2(a—|—1—x/ﬁ)
2a+2) 7 (a+1)y2a+1

a 2a?

2(a+2) = (a+1)v2a+1(a+14++2a+1)
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Since

V2a+1(a+14++v2a+1)>vV2a+1(vV2a+1++v2a+1) =2(2a+ 1),

it suffices to show that )

a a
>
2a+2) 7 (a+1)(2a+ 1)’
which is equivalent to
a(l—a) > 0.
The equality holds for
a=0, b=c

(or any cyclic permutation).

P 5.17. If a,b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 3—43 2++3
+ + > V3 + V3 .
a+b b+c cH+a a+b+c  2vab+ bc+ ca

(Vasile C., 2010)

Solution. As shown in the proof of P 5.12, it suffices to consider the cases a =0 and a < b =
c=1.
Case 1: a = 0. The inequality reduces to

1 1>2—\/§ 2++3

+ .
b ¢~ b+ec 2v/be

It suffices to show that

1 1>2—\/§ 2++3

+ ;
b ¢~ 2Vbe 2v/be

which is equivalent to the obvious inequality

Q=

S
o

+-2

S =

Case 2: a <1 =0b=c. The inequality reduces to

1+ 2 >3—\/§ 2++3
2 a+17 a+2 2V2a+1

Using the substitution
V3
3 7

20+ 1 = 322, T >

the inequality becomes
1 4 6—2v3 2 3
-+ > V3 + i \/_,
2 322417 3(22+1) 23z
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1+ 4 2 1 S 1 2
2 32241 2241 2x 3z V3(2+1)
3x5—3$4—4x2+5x—1> 1 (1 2 )

20(22+ )32 +1) ~ B\z 2+1
(x —1)%(32® + 32 + 3z — 1) S (x —1)?
2(z? +1)(322 + 1) T V3a(z241)

This is true if
323 4+322+3x—1 _ V3

> Yo
20322 +1) = 3

which is equivalent to
92° 4+ 3(3 — 2v/3)a + 92 — 3 — 2v/3 > 0,

(32 — V3 )[322 + (3 — V3)z + 2+ /3] > 0.

The equality holds for a = b = ¢, and also for

(or any cyclic permutation).

P 5.18. Let a,b, c be nonnegative real numbers, no two of which are zero, so that

ab + be + ca = 3.

If
9+5v3

0<k<L
- 6

~ 2.943,

then
2 2 2 S 9(1+ k)

oH—bjL b—i—c+c+a “a+b+c+3k
(Vasile Cirtoaje and Lorian Saceanu, 2014)

Solution. From
(a+b+c)? > 3(ab+ be + ca),

we get

a+b+c>3.
Let 3

9+ 5v3

We claim that
1+m < 1+ k

a+b+c+3m ~ a+b+c+3k
Indeed, this inequality is equivalent to the obvious inequality

(m—Fk)a+b+c—3)>0.
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Thus, we only need to show that
2 2 2 9(1+m
+ + > ( ) )
a+b b+c c+a a+b+c+3m
which can be rewritten in the homogeneous form
2 N 2 n 2 > 9(1 4 m) '
atb btc cta” a+b+c+my/3(ab+be+ ca)

As shown in the proof of P 5.12, it suffices to prove this homogeneous inequality for a = 0 and
fora<b=c=1.
Case 1: a = 0. The inequality reduces to

2 2 2 9(1

2,2, 2 5 wm

b ¢ b+c b+c+mV3be

Substituting
b
T = + C, T > 2,
Vbe
the inequality becomes
2 9(1
20+ = > ﬂ’
Tz 4+my/3

20° + 2v3 mx? — (7 + 9Im)z + 2v/3 m > 0,
(z —2)[222 +2(V3 m + 2)x — /3 m] > 0.
Case 2: a <1 =0b=c. The inequality has the form

L+ 4 S 9(1+m)
a+17 a4+24+my/32a+1)
Using the substitution
3
2a + 1 = 322, ng,

the inequality becomes
32249 6(1+m)
3r2+1 ~ 22+ 2ma+1’
vt + 2ma® — 2(3m + )2 + 6ma + 1 — 2m > 0,

(x — 122> +2(m+ 1Dz +1-2m] >0,

which is true since

1 2 1
$2+2(m+1)x—|—1—2m2§—|—(m+)\/§+1—2m
2243 - (3—V3)m] Ly
— ] = 0.
9+5v/3

The equality holds fora=b=c=1. If k = , then the equality holds also for

a=0, b=c=+3

(or any cyclic permutation).
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P 5.19. If a,b,c are nonnegative real numbers, no two of which are zero, then

1 1 1 20
+ + > .
a+b b+c c+a T a+b+c+6vVab+ bec+ ca

(Vasile C., 2010)

Solution. The proof is similar to the one of P 5.12. Finally, we only need to prove the inequality
fora=0and fora<b=c=1.

Case 1: a = 0. The inequality reduces to

1 n 1 n 1 S 20
b ¢ bt+ecT bte+6Vbe
Substituting
b
T = + C, T > 2,
Vbe
the inequality becomes
1 20
T4 - >
r ~ x+6

23 4+ 62% — 192 4+ 6 > 0,
(x —2)(2* + 8z —3) > 0.
Case 2: a <1 =0b=c. We need to show that

1 2 20
-+ > .
2 a+17a+246y2a+1
Using the substitution
20+ 1 = 22, x> 1,
the inequality becomes
7249 40

2(x2 + 1) =2 + 12z + 3’
2t + 122° — 682° + 108z — 53 > 0,
(z — 1)(2® + 132 — 552 + 53) > 0.
It is true since

23 +132% — 552 + 53 = (v — 1)® + 162 — 58z + 54

20\? 23
—(z—1¥3+1 _ = Z2s0.
(x )+6(az 16>+16>0

The equality holds for

(or any cyclic permutation).
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P 5.20. If a,b,c are positive real numbers so that
7(a® 4+ b* + %) = 11(ab + be + ca),
then

51< a N b L c <9
28 " b+c c+a a+b

(Vasile C., 2008)

Solution. Due to homogeneity and symmetry, we may consider that
a+b+c=1, O<a<b<ex<l.

Thus, we need to show that

11
a+b+c=1, a2+b2+02:%, 0<a<b<e<1

involves

o1 a b c

< +

2870 1—a 1—-b 1-c¢
We apply Corollary 1 to the function

We have f(1—) = oo and

/ _; ,/];:L
g(r) = f'(z) = 1—a2)? 9" (x) (1—2)*

Since ¢"(z) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note 3, if

11
a+b+c=1, A+ 4+ ==

55 0<a<b<cec<l,

then the sum
Sz = f(a) + f(b) + f(c)
1s maximum for a = b < ¢, and is minimum for either a = 0 or 0 < a < b = c¢. Note that the
case a = 0 is not possible because it involves 7(b? + ¢?) = 11bc, which is false.
(1) To prove the right original inequality for a = b < ¢, let us denote

=S 1>1
a
The hypothesis 7(a? + b* + ¢?) = 11(ab + bc + ca) involves ¢t = 3, hence

a b c 2a c 2 t
+ - = +— +o=2
b+c c¢c+a a+b a+tc 2

20 1+t

c
The right inequality is an equality for a = b = 3 (or any cyclic permutation).
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(2) To prove the left original inequality for 0 < a < b = ¢, let us denote

a
t=—, 0<t<l.
) <

1
The hypothesis 7(a? + b* + ¢?) = 11(ab + bc + ca) involves ¢ = = hence

a b c a 2b t

b—i—c—i_c—i-ajLa—l—b:2b+

o1

a—l—b:2

N 2
t+1 28

The left inequality is an equality for 7a = b = ¢ (or any cyclic permutation).

P 5.21. If ay,as,...,a, are nonnegative real numbers so that

adt+add+-+ad (a1+a2—|—-~-—|—an)2

n+3 n+1
B DEn— 1) 11 1\ 3n2(n+1)
n —+ n — ns(n +
< S T T I S i S
5 < (ay +az + +a”<m*ﬂm+ «+%) 21 2)

(Vasile C., 2008)
Solution. For n = 2, both inequalities are identities. For n > 3, assume that
ay < ag < -0 < .
The case a; = 0 is not possible because the hypothesis involves

a3+ +a? n+3 1

= < ,
(aa+---+a,)? (n+1)2? n-1

which contradicts the Cauchy-Schwarz inequality

ai+---+ad? S 1
(ag+--+a,)? " n—1

Due to homogeneity and symmetry, we may consider that
ay +as+---+a, =n+1,

which implies
ai +a3+--+a=n+3.

Thus, we need to show that
ay+ay+---+a,=n+1, a?+a3+---+a:=n+3, 0<a;<ay<---<a,

involves
< 1 n 1 n n 1 < 3n?
~a;  as a, ~ 2(n+2)

2n—1
2
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We apply Corollary 5 for £ =2 and m = —1:

e Ifay,as,...,a, are positive real numbers so that 0 < a; < as < ---<a, and

at+ax+-+a,=n+1, al+a+--+a=n+3,

then
1 1 1
Sp=—+— -+t —
a Gz n
s mainimum for
O<ar=ay=""+=apn1 < ay,
and is mazimum for
a1 < ag =asz = = ay

(1) To prove the left original inequality, we only need to consider the case
ap =Gz =+ = p_1 < Ay,

The hypothesis

a$+a§+~-~+ai__(a1+a2+~~-+an)2

n-+3 n+1
implies
(n—1)ai +a; [(n—1)ai+a, 2
n+3 _{ n+1 } ’
(2a1 — ap)[2a1 — (n 4 2)a,] =0,
_an
a1—77
hence
(a1+a2+"'+an)(i“'l‘{’""l’i):[(n—l)a1+an] (n—1+i)
aq a9 Ay, a1 G,

:m—1V+L+m—U(§L+%)
_ (n+1)(2n —1)

The equality holds for

(or any cyclic permutation).
(2) To prove the right original inequality, we only need to consider the case
ar < ay=as3=---= Q.

The hypothesis involves
(a1 — 2a,)[(n + 2)a; — 2a,] =0,
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2a,
ay = )
n—+ 2
hence
1 1 1 n—1 1
(a1+a2+---+an)(—+—+---+—):[(n—l)a1+an]< +—)
aq Q9 Qp, aq [07%
aq Qp
=(n—-172%+1 -)l—=+=
n—1)"+1+(n )(an+al)
_ 3n*(n+1)
 2(n+2)
The equality holds for
2a,,
ar = Q :---:an_ =
! 2 Y42

(or any cyclic permutation).

P 5.22. Ifa,b,c,d are nonnegative real numbers so that a + b+ ¢+ d = 3, then
176
abc + bed + cda + dab < 1 + 5 abced.

(Vasile C., 2005)

Solution. Assume that
a<b<c<d.

For a = 0, we need to show that b + ¢ + d = 3 implies
bed < 1,

which follows immediately from the AM-GM inequality:

3
bed < (#) _ 1

For a > 0, rewrite the inequality in the form

11 1 1 176
bed | —+ -4+ -+-) <14+ — abed
ac<a+b+c+d>_ +81ac

and apply Corollary 5 for £ =0 and m = —1:

o If
a+b+c+d=3, abed = fized, 0<a<b<c<d,

then
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18 maximum for
a<b=c=d.

Thus, we only need to prove the homogeneous inequality
27(a + b+ ¢+ d)(abc + bed + cda + dab) < (a + b+ ¢+ d)* + 176abcd
for a < b= c=d = 1. The inequality becomes
27(a +3)(3a + 1) < (a + 3)* + 1764,
a* 4+ 12a® — 27a® 4 14a > 0,
ala —1)*(a+ 14) > 0.
The equality holds for a = b= c=d = 3/4, and also for
a=0, b=c=d=1

(or any cyclic permutation).

P 5.23. Ifa,b,c,d are nonnegative real numbers so that a + b+ ¢+ d = 3, then
3
a’b’? + V2P + Ad%a® + dPa’h? + Zabcd < 1.

(Gabriel Dospinescu and Vasile Cirtoaje, 2005)

Solution. Assume that
a<b<c¢c<d.

For a = 0, we need to show that
vid® <1,

which follows immediately from the AM-GM inequality:

3
bed < (W) _ 1.

For a > 0, rewrite the inequality in the form

1 1

1 1 3
272 2 12
abcd< +b2+ +d2)+1abcd§1,

and apply Corollary 5 for k =0 and m = —2:

o If
a+b+c+d=3, abed = fixed, 0<a<b<ec<d,

then
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1s maximum for a < b=c=d.

Thus, we only need to prove the homogeneous inequality

(a+b+c+d

6
1
3 ) > a’b’ + VA + PdPa® + dPaPh + Eabcd(a +b+c+d)?

for a < b= c=d = 1; that is, to show that 0 < a < 1 implies

6 1
<1+%> >1+3a® + —a(a+3)%

12
Since
a\3 . a>  ad . a?
1 —) - AN 7
(+3 —|—a—|—3+27 +a+3

it suffices to show that

2\ 2
1
<1+a+%> 21+3a2+ﬁa(a+3)2,

which is equivalent to the obvious inequality
4a* + 3a(1 — a)(15 — 7a) > 0.

The equality holds for

(or any cyclic permutation).

P 5.24. If a,b,c,d are nonnegative real numbers so that a + b+ c+ d = 3, then
4
a’b’c? + V*Pd® + Pd’a® + d*a’b? + g(abcd)?’/2 <1
(Vasile C., 2005)
Solution. The proof is similar to the one of the preceding P 5.23. We need to prove that
a\6 4
1 —> > 1+ 3a® + %>
( + 3) 2 + oa” + Sa

for 0 < a < 1. Since
2a%% < a® + a,

it suffices to show that

a\ 6 2 11
1 —):>1 Za+ —ad.
<—|—3 = +3a+3a
Since
A R @ @ o’
(‘f‘g) = +a+§+§_ +CL+§
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and

2\ 2
5) 2 1
(1+a—|—%) :1+2a+§a2+§a3+§a4

) 2
21—1—2a+§a2+§a3,

it suffices to show that
1+2a+§a2—|—ga3 > 1+2a~|—2a2
3 3 - 3 3
which is equivalent to the obvious inequality
a(l—a)(2—a)>0.

The equality holds for

(or any cyclic permutation).

P 5.25. If a,b,c,d are nonnegative real numbers so that a + b+ c+ d = 4, then
a*V* 4+ VP d? + AdPa® + d2aPb? + 2(abed)®? < 6.

(Vasile C., 2005)
Solution. The proof is similar to the one of P 5.23. We need to prove that

3 6
G(ai > > 1+ 3a® + 2%

for 0 < a < 1. Since
2a%% < a® + a,

3 6
6(‘” ) >1+a+4da?.

it suffices to show that

Using the substitution

1
0<z<-=
ST > 1
the inequality becomes
3(1 — )% > 3 — 18z + 3227,
2%(13 — 60z + 452° — 182° + 32*) > 0.

It 1s true since

2(13 — 60z + 452* — 182" + 32) > 25 — 120z + 902* — 402°
= 5(1 — 42)(5 — 4z + 22%) > 0.

The equality holds fora=b=c=d =1.
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P 5.26. If a,b,c are nonnegative real numbers so that a + b+ c =3, then

11(ab + be + ca) + 4(a®b* + b*c* + c*a?) < 45.

(Vasile C., 2005)

Solution. Assume that a < b < c¢. For a = 0, we need to show that b + ¢ = 3 involves

11be 4 4b%c? < 45.

We have )
b+c 9
be < = -
< (5 =%
hence 9 81
11bc + 4622 < TTT - 45.

For a > 0, rewrite the desired inequality in the form

1 1 1 9,9 9 ( 1 1 1
11abc<a+g+z)+4abc <§+ﬁ+§) < 45.

According to Corollary 5 (case k = 2 and m < 0), if

a+b+c=3, abc = fived, 0<a<b<ec,

1 1 1 1
then the sums — + — + — and—2+—+—2 are maximum for 0 < a < b= c.
c a c

a b b2
Therefore, we only need to prove that a 4+ 2b = 3 involves

11(2ab + b*) + 4(2a*b* + b*) < 45,

which is equivalent to
15 — 22b — 13b* + 32b° — 12b* > 0,

(3 —2b)(1 — b)*(5 + 6b) > 0,
a(l —b)*(5+6b) > 0.
The equality holds for a = b =c¢ =1, and also for

3
a , c 5

(or any cyclic permutation).
Remark. In the same manner, we can prove the following statement:

e Ifa,b,c,d are nonnegative real numbers so that a +b+ c+d =4, then
abe + bed + cda + dab + a*b*? + V2 Ad? + AdPa® + d?a®b? < 8,

with equality fora=b=c=d=1.
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P 5.27. If a,b, c are nonnegative real numbers so that a + b+ c =3, then
a’b? + v’ + 2 + &b + v + Aa® > 6abe.
(Vasile C., 2005)

Solution. Assume that a < b < ¢. For a = 0, the inequality is trivial. For a > 0, rewrite the
desired inequality in the form

1 1 1 1 1 1
abc( —l—b2+ >+a2b2c2( +b3+ )26.

According to Corollary 5 (case k = 0 and m < 0), if

a+b+c=3, abc = fized, O<a<b<eg,

1 1 1 1
thenthesums—+b2—|—— and—+b3+— are mazimum for 0 < a < b=c.

Thus, we only need to prove that
2a2b* + b* + 2a%0® + b° > 6ab?

for
a+ 2b =3, 1<b<3/2

The inequality is equivalent to
b*(14 — 33b + 24b* — 56%) > 0,
b*(1 — b)*(14 — 5b) > 0.
The equality holds for a = b = ¢ =1, and also for

(or any cyclic permutation).

P 5.28. If a,b, c are nonnegative real numbers so that a +b+ c = 3, then
2(a2+b2+c2)+5<\/5+\/5+\/5) > 21.

(Vasile C., 2008)

Solution. Apply Corollary 5 for £ =2 and m = 1/2:

o If
a+b+c=3, a> + bV + ¢ = fized, 0<a<b<ec,

then

=a+Vb+ e
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1s minimum for either a =0 or 0 <a < b=c.

Case 1: a = 0. We need to show that b + ¢ = 3 involves

M§+cﬂ+5<¢i+¢5>22L

51/ 3 + 2vbe > 3 + 4be.

which is equivalent to

Substituting

the inequality becomes

5vV/3 + 22 > 3 + 4a?,
25(3 + 2x) > (3 + 4a?).
This inequality is equivalent to f(x) > 0, where

66
f(z) = — +50 — 24z — 162°, 0<z<3/2.
X

Since f is decreasing, we have
flz) = f(3/2) =4>0.
Case 2: 0 < a <b=c. We need to show that

2(a® +20%) +5 (Va+2vh ) > 21

for

Write the inequality as
5V/3 — 2b + 10v/b > 3 + 24b — 127,

w:\/l_), 1§$<\/§,

5v/3 — 222 > 3 — 10z + 2422 — 1224,

12(z2 —1)2 > 5 (3 23— 2x2> ,

Substituting

the inequality becomes

30(x — 1)?
12(z —1)2 > ,
( ) T 3 =22+ V3 — 222
which is true if .
2(x + 1) > .
( ) T 3 -2z + V3 — 222

It suffices to show that




EV Method for Nonnegative Variables 375
which is equivalent to
1+ 8 — 222 — 423 >0,
7 4 —3x
—4 — > 0.
x(5 x)(4—|—:v>+ 1 >0
Since
r < \/g < é < il
2 4 3
the conclusion follows.
The equality holds for a =b=c=1.
O

P 5.29. If a,b, c are nonnegative real numbers so that ab+ bc + ca = 3, then
\/1+2a+\/1+2b+ L+2e
3 3 3 '

Solution. Write the hypothesis ab + bc + ca = 3 as

vV

(a+b+c)>=6+a®+ b+,

f(u)zy/ngU, u > 0.

1
V31 +2x)

" _ \/g
g'(z) = m

and apply Corollary 1 to

We have

Since ¢"(z) > 0 for z > 0, g is strictly convex on [0, 00). According to Corollary 1, if

a+b+c= fixed, a> + 0+ = fized, 0<a<b<ec,

then the sum
Sz = fla) + f(b) + f(c)
1s minimum for either a =0 or 0 <a < b=c.

Case 1: a = 0. We need to show that bc = 3 involves

V1+2b+V1+2c>3V3-1.

By squaring, the inequality becomes

b+c+/13+2(b+c) > 13— 33

(Vasile C., 2008)
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We have b+ ¢ > 2/be = 2\/3, hence

b+c+/13+2(b+¢)>2V3+1\/13+4V3=4V3+1> 13— 3V3.

Case 2: 0 < a <b=c. From ab+ bc+ ca = 3, it follows that

3 — b2
— 1< .
a % <b<+3

Thus, the inequality can be written as

3_
VL+—?—+2VL+2>3¢_
1+ 20 1+2v3 5
— = 1<t<y — <
3 = 3 VR

3 4 412 — 34
2(3t2 — 1)

Substituting

the inequality turns into
>3 —2t.
By squaring, we need to show that

7 — 8t — 141* + 24 — 9t* > 0,

which is equivalent to
(1 —1)*(7+ 6t — 9t*) > 0.

This is true since
15 S ¢
7T4+6t—92=8—(3t—1)*>8— (Z—l) = —>0.

The equality holds for a =b=c=1.
Remark. The following generalization holds:

e Let a,b,c be nonnegative real numbers such that ab+ bc + ca = 3. If

143 — 15
k> ko= ‘/;—4 ~ 0.38536,

[a+k b+k \/ ctk g
1+k 1+k 1+k =7
with equality fora="b=c=1. If k = ko, then the equality also occurs fora =0 andb=c=+/3
(or any cyclic permutation).

then

]
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P 5.30. Let a,b, c be nonnegative real numbers, no two of which are zero. If

0< k<15,

then

1 1 1 k S 9+ kK

+
(a+b)?
Solution. Due to homogeneity and symmetry, we may consider that

a+b+c=1, 0<a<b<ec

On this assumption, the inequality becomes

1 1 1 9+ k

A T G-0E a-or FZai-a—p

To prove it, we apply Corollary 1 to the function

We have f(1—) = oo and
2 24

g(z) = f'(z) = 1= §'(x) = (1—z)

_62)’

(b+ c)? i (c+a)? * (a+b+c)? ~ 4(ab+ bc+ ca)’

(Vasile C., 2007)

Since ¢”(x) > 0, g is strictly convex on [0,1). According to Corollary 1 and Note 3, if

a+b+c=1, a2+1)2+02:fixed, 0<a<b<eg,

then the sum
Sz = fla) + f(b) + f(c)
s minimum for either a =0 or 0 <a <b=rc.

Case 1: a = 0. For

the original inequality becomes

1+1+ 1+k >9—|—/€
2 2 (b+ce)?2 T dbe’

1+k _9+k
oy LR 9Tk

r+2 - 4
(x —2)(dx+7—k) > 0.

This is true since
de+7—k>15—-k>0.
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Case 2: 0 < a < b= c. The original inequality becomes

2 _‘_L_‘_ k S 9+k
(a+0b)2  4b%  (a+2b)2 ~ 4b(2a + b)’

a(a — b)? ka(4b — a) 0
26%(a+b)2(2a+b) * 4b(a+20)*(2a+0) T

The equality holds for
a=0, b=c

(or any cyclic permutation). If £ = 0 (Iran 1996 inequality), then the equality holds also for
a=b=c

O

P 5.31. If a,b,c are nonnegative real numbers, no two of which are zero, then

1 L 1 n 1 n 24 S 8
(a+0)2 (b+¢)? (c+a)? (a+b+c)? ~ ab+bc+ca

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.30, it suffices to prove the inequality for
a=0,andfor0<a<b=c.

Case 1: a = 0. For

b
r=-++ E, T > 2,
c
the original inequality becomes
1 n 1 n 25 S 8
v 2 (b+¢e)? T b
25
T+ ——7 28,
T+ 2
(x —3)*>0.

Case 2: 0 < a < b= c. Due to homogeneity, we only need to prove the homogeneous inequality
for 0 < a < b=c=1; that is,

24 8

1
(a+1)2+4_1

It suffices to show that
2 8 24

> _
(a+1)2 = 2a+1 (a+2)¥

which is equivalent to
1 - 4(1 — a)?

(1+a)?~ (2a+1)(a+2)%
a(2a* + 9a + 12) > 4a*(a* — 2).
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This is true since
a(2a® + 9a + 12) > 0 > 4a*(a® — 2).

The equality holds for

(or any cyclic permutation).
Remark. Actually, the following generalization holds:
e Let a,b,c be nonnegative real numbers, no two of which are zero. If k > 15, then

Lot 1k 2(VEFL -
(a+0)2 (b+c¢)? (c+a)? (a+b+c)?~ ab+bctca ’

with equality for
b
a =0, —+g:\/k—|— -2
c

(or any cyclic permutation).

P 5.32. If a, b, c are nonnegative real numbers, no two of which are zero, so that

k(a® + 0%+ c) + (2k + 3)(ab+bc +ca) =9k +1), 0< k<6,

then
1 L 1 N 1 " 9k S 3 Tk
(a+b)2 (b+¢)3? (c+a)* (a+b+c)? 4
(Vasile C., 2007)
Solution. Write the inequality in the homogeneous form
4 4 4 36k 9(k + 1)(4k + 3)

> .
@102 O+ (cra?  (@4bt R M@+ 0+ )+ 2k +3)(ab+ b+ ca)

As shown in the proof of P 5.30, it suffices to prove this inequality for a = 0, and for0 < a < b = c.

Case 1: a =0. Let

The homogeneous inequality becomes

S(LL L) 36k+4 Ok -+ 1)k +3)
2 2) T bR T k(b + ) + (2k + 3)be’

36k + 4 - 9(k+ 1)(4k + 3)
t+2 = kr+2k+3
4ka® + 4(4k + 3)2* — (43k + 3)x — 2(5k + 21) > 0,

dx +

’
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(z — 2)[4ka® + 4(6k + 3)x + 5k + 21] > 0.

Case 2: 0 < a <b=c. We only need to prove the homogeneous inequality for b = ¢ = 1. The
inequality becomes

8 36k 9(k +1)(4k + 3)
+1+ >
(a+1)2 (a+2)?2 = ka?+ (4k +6)a + 4k + 3’

ka® + (10k + 6)a” — (14k — 12)a" — (10k + 18)a® + (17k — 24)a® + (24 — 4k)a > 0,
a(a — 1)*[ka® + 6(2k + 1)a* + 3(3k + 8)a + 4(6 — k)] > 0.
Clearly, the last inequality is true for 0 < k£ < 6.
The equality holds for a = b = ¢, and also for

(or any cyclic permutation).

P 5.33. If a, b, c are nonnegative real numbers, no two of which are zero, then

(o) 2 . 2 N 2 S 8 " 1
a .
a2+ P+ A+a® T A+ +cE ab+be+ca’

2 2 2 7 6
b > )
) a2+b2+b2+02+02+a2_a2+b2+02+(a+b+0)2’

(c) 2 . 2 N 2 S 45

¢ .
a2+ 4+ A+a® T A+ +A)+ab+be+ca

(Vasile C., 2007)

Solution. (a) Due to homogeneity and symmetry, we may consider that
A+ +E =1, 0<a<b<e.

On this assumption, the inequality can be written as

2 n 2 N 2 > 8 2
l—a?2 1-02 1—-¢7~ (a+b+c)?—1

To prove it, we apply Corollary 1 to the function

1

=1 0<u<l
—u

f(u)

We have f(1—) = oo and

2 (14
g(l’)—f() (1—%2)27 g () (1—%2)4 ’
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Since ¢”(x) > 0 for € (0,1), g is strictly convex on [0,1). According to Corollary 1 and Note
3, if
a+b+c= fived, A+ +F =1, 0<a<b<ec,
then the sum
S3 = f(a) + f(b) + f(c)
1s manimum for either a =0 or 0 < a < b=c.

Case 1: a = 0. For

the original inequality becomes
2 2 S 6 1

22T 242 be

6
21’2—+1,
T

(x —2)(2z +3) > 0.

Case 2: 0 < a < b = c. Due to homogeneity, it suffices to prove the original inequality for
b= c = 1. Thus, we need to show that

4 S 8 n 1
a?4+1 " a2+2 2a+1’

1+

which is equivalent to
2a 4a?

>
2a+1 7 (a®>+1)(a®+2)
a(a* —a®> —2a+2) >0,
ala —1)*(a* +2a +2) > 0.

The equality holds for a = b = ¢, and also for a = 0,b = ¢ (or any cyclic permutation).

(b) The proof is similar to the one of the inequality in (a). For a = 0 and

b ¢
rT=-+4 -, x> 2,
c b
the original inequality becomes
2 . 2 S 5 . 6
22T+ (b+co)?
2r > E + 0 ,
r  x+2

(z —2)(22° + 8z +5) > 0.
For b = ¢ = 1, the original inequality is

4 7 6

1 >
+(12—|—1 _a2—|—2+(a—|—2)2’
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a(a® + 4a* — 2a® — 15a + 12) > 0,
a(a —1)*(a® + 6a® + 9a + 12) > 0.
The equality holds for a = b = ¢, and also for a = 0,b = ¢ (or any cyclic permutation).

(¢) The proof is also similar to the one of the inequality in (a). For a = 0 and

the original inequality becomes

5 1+1 N 2o 45
b2 b2+ 2 7 4(b% + ?) + be’

(z —2)(8z% + 187 — 1) > 0.
For b = ¢ = 1, the original inequality can be written as

4 45

1 >
+a2+1 ~ 4a2+2a+9’

a(2a® +a* — 8a +5) > 0,
ala —1)*(2a + 5) > 0.

The equality holds for a = b = ¢, and also for a = 0,b = ¢ (or any cyclic permutation).

P 5.34. If a,b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 3 4
> .
a2+b2+b2—|—c2+c2+a2+a2—|—b2+62 ~ ab+bc+ ca

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.33, it suffices to prove the inequality for
a=0,and for0<a<b=c.

Case 1: a = 0. For

the original inequality becomes
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Case 2: 0 < a < b = c. Due to homogeneity, it suffices to prove the original inequality for
0 <a<b=c=1. Thus, we need to show that
1 2 3 4
>

2+a2—1—1+a2+2_2a—|—1'

It suffices to show that
2 3 S 4 1

a+1+a—|—2_2a—|—1_2’

which is equivalent to
ba+ 7 S 7—2a

a?2+3a+2 " 4da+2’
a(2a* +19a + 21) > 0,

The equality holds for

(or any cyclic permutation).
Remark. Actually, the following generalization holds:

e Let a,b, c be nonnegative real numbers, no two of which are zero.
(a) If =4 < k < 3, then

2 2 2 2k k+5
+ + + > ,
a?+b b2+ 24+a? a?+b2+c2 7 ab+be+ca

with equality for

(or any cyclic permutation).
(b) If k > 3, then
1 1 1 k S 2vVk+1

a2+62+b2—|—02+02~|—a2+a2+b2+02 — ab+be+ ca’

with equality for
b
a =0, ——i—g:\/k—i—l
c

(or any cyclic permutation).

P 5.35. If a,b, c are nonnegative real numbers, no two of which are zero, then

3 3 3 5 4
+ + > + ;
a?4+ab+b> bV +bc+c2 2+ca+a?  ab+bctca a?+b24c2

3 3 3 1 24
> .
a2—|—ab—|—b2+62—|—bc+02+02—|—ca—|—a2 - ab+bc+ca+(a—|—b—|—c)2’

(a)

(b)

1 1 1 21
> .
a’?+ ab + b? +b2+bc+02 +62+ca—|—a2 = 2(a? + b2+ ) + 5(ab + be + ca)

(Vasile C., 2007)

(c)
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Solution. (a) Due to homogeneity and symmetry, we may consider that
a+b+c=1, 0<a<b<e.

Let

a0+

p 2

Since
1 1 1

2002 +bc+c?)  (a+b+c)2+a?+2+c2—2ala+b+c) 2(p—a)

the inequality can be written as

3 n 3 n 3 S 5} n 4
p—a p—b p—c 1—p 2p—1

To prove it, we apply Corollary 1 to the function

We have f(p—) = oo and

3 p B 18
poop W

Since ¢"(z) > 0, g is strictly convex on [0, p). According to Corollary 1 and Note 3, if

9(x) = f'(z) =

a+b+c=1, A+ b2+ =2p—1= fized, 0<a<b<ec,

then the sum
Sz = f(a) + f(b) + f(c)

1s manimum for either a =0 or 0 <a < b=c.
Case 1: a = 0. For .

> 9
py e

r=--+
c

the original inequality becomes

3 1+1 n 3 >5+ 4
b2 2 b2+bc+c2 ~ be b2+ c?

which is equivalent to

4

3
3 + >5+ —,
1 T

x
(z — 2)(32% 4 42 +2) > 0.

Case 2: 0 < a < b = c¢. Due to homogeneity, it suffices to prove the original inequality for
b = c = 1. Thus, we need to show that

> 4

_ 1>
a2+a—l—1+ _2a+1+a2+2’




EV Method for Nonnegative Variables 385

which is equivalent to
a(a* — a® + 3a* — Ta+4) > 0,

ala —1)?*(a®* +a+4) > 0.

The equality holds for a = b = ¢, and also for a = 0,b = ¢ (or any cyclic permutation).

(b) The proof is similar to the one of the inequality in (a). For a = 0, the original inequality
becomes

3 n 1 + 3 S 1 " 24
b2 2 bV +bc+c2 ~ be  (b+c)?

which is equivalent to

> 14 24 b+c
- T = — —
r+1 "~ x+2 c b

(z — 2)(32% + 14z + 10) > 0.

3r +

For b = ¢ = 1, the original inequality becomes

24
—_ + 1>
G2+a+1+ _2a—|—1+a2—i-27

which is equivalent to
a(a* +5a* —9a® —a +4) >0,

a(a —1)*(a® + Ta +4) > 0.

The equality holds for a = b = ¢, and also for a = 0,b = ¢ (or any cyclic permutation).

(¢) The proof is similar to the one of the inequality in (a). For a = 0, the original inequality

becomes
1 N 1 n 1 < 21
b2 2 P 4be+ 2 T 2(0%+ )+ bbe’

which is equivalent to
1 21 b
T+ Z ) r=-
z+1 7 22+5 c
0

For b = ¢ = 1, the original inequality becomes

21

2
+ 2a2 4+ 10a + 9’

1
4>
a?+a+1 3

which is equivalent to
a(a® 4+ 6a* — 15a + 8) > 0,
ala —1)*(a +8) > 0.

The equality holds for a = b = ¢, and also for a = 0,b = ¢ (or any cyclic permutation).
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P 5.36. Let [ be a real-valued function, continuous on [0,00) and differentiable on (0,00), so
that f"(u) >0 foru € (0,00). If a,b,c >0, then

f(a® +2be) + f(b* + 2ca) + f(c® + 2ab) < f(a® +b* + ) + 2f(ab + bc + ca).
Solution. Denoting
r=a’+2bc, y=0b"42ca, z=c*+ 2ab,
the inequality becomes
F@) + fy) + f(2) < f(a® + b + ¢*) + 2f (ab + be + ca).
Assume that
a+b+c= fived, a> + bV + ¢ = fized,

which involve
2(ab+bc+ca) = (a+b+c)? — (a* +b* + ) = fized.

We have
r+y+z=(a+b+c) = fived,

2 +y? 22 = (a® + b2+ )+ 2(ab + be + ca)? = fived.
According to the EV-Theorem (Corollary 1), since f”(u) > 0 for u € (0,00), the sum f(z) +
f(y) + f(z) is maximum for x =y < z, that is

a® + 2bc = b* + 2ca < ¢ + 2ab.

From a?+2bc = b?+2ca, we get a = bor a+b = 2¢c. If a+b = 2¢, the inequality b?+2ca < ¢®+2ab
is equivalent to (b—c)? < 0, which involves b = c. Thus it suffices to prove the required inequality
for two equal variables, when the inequality is an identity.

The equality holds for a = b or b= c or ¢ = a.

Remark 1. The inequality is also true for a real-valued function f, continuous on (0,00) and
differentiable on (0, 00), so that f”(u) > 0 for u € (0,00) and lim,_,q f(u) = £oo.

Remark 2. The following inequalities hold:

1 1 1 1 2
- + > - ,
a?4+2bc  b2+2ca  c2+2ab T a?+b24+c2 ab+bec+ca

Va2 + 2bc + Vb2 4 2ca + V2 + 2ab < Va? + b2 + 2 + 2v/ab + be + ca,
1 1 1 1 2

+ + > + ,

Va2 +2bc V2 +2ca V2 +2ab T Va2 + b2+ 2 Vab+bec+ ca

(a® + 2bc) (b* + 2ca)(c® + 2ab) < (a® +b* + ¢*)(ab + be + ca)?.
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P 5.37. If a,b,c are the lengths of the side of a triangle, then

1 n 1 n 1 < 85
(a+0b)?  (b+¢)?  (c+a)*> = 36(ab+bc+ ca)

(Vasile C., 2007)

Solution. Use the substitution
a=1y-+z, b=z+u, c=x+1y,

where z, y, z are nonnegative real numbers. Due to homogeneity and symmetry, we may consider
that
r+y+z=2, 0<x<y<z

We need to show that

1 n 1 n 1 < 85
(x+2)2  (y+2)2 (2+2)2 ~ 18(12 — 22 —y? — 22)’

which can be written as

F@) + 1) + 1)+ 5= 33?5_ ) =Y
where »
f(u):(u+2)2’ vz
We have ) 94
==y IO =g

Since ¢"(z) > 0 for z > 0, g is strictly convex on [0, 00). According to Corollary 1, if
TH+Y+z=2, 22+ + 22 = fived, 0<zx<y<yz,
then the sum
Sy = f(x)+ f(y) + f(2)
1s minimum for either x =0 or 0 < x <y = 2.

Case 1: x = 0. This implies a = b+ ¢. Since

1 1 5(b% + ¢?) + 8bc

@102 T cta? T 2+ 22+ 5bo)

and
ab+be+ca = a(b+c)+bec = (b+c)? + be = b? + ¢ + 3,

we need to show that

5(b% + ¢?) + 8bc N 1 < 85
(202 + 2¢2 4+ 5bc)?2 (b4 ¢)? ~ 36(b> + 2 + 3be)’
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For bc = 0, the inequality is true. For bec # 0, substituting

b ¢
t=—4-, t>2
c b

the inequality becomes
5t + 8 . 1 < 85
(2t+5)2  t+2 7 36(t+3)’
5t + 8 < 49t 4 62
(2t +5)2 = 36(t +2)(t+3)

It suffices to show that
5t + 8 48t 4+ 64

(2t +5)2 = 36(t+2)(t+3)’

which is equivalent to
ot + 8 < 12t 4 16

(2t 4+ 5)2 = 9(t +2)(t + 3)’
3t3 + 7t — 10t — 32 > 0,

(t —2)(3t* + 13t + 16) > 0.

Case 2: 0 < z <y = z. This involves b = c. Since the original inequality is homogeneous, we
may consider b=c=1and 0 < a < b+ ¢ = 2. Thus, we only need to show that

L, 2 &
4" (a+1)? = 36(2a+1)

which is equivalent to
(a—2)(9a® —2a+1) < 0.

The equality holds for a degenerated isosceles triangle with a = b+ ¢, b = ¢ (or any cyclic
permutation).
]

P 5.38. If a,b,c are the lengths of the side of a triangle so that a + b+ c = 3, then

1 N 1 N 1 <3@”+W+c%
(a+0)?2  (b+c¢)? (c+a)? ~ 4(ab+bc+ ca)

(Vasile C., 2007)
Solution. Write the inequality in the homogeneous form

1 N 1 N 1 27(a® + b* + ¢?)
(a+b)2  (b+c)? (c+a)? ™ 4(a+b+c)*(ab+bc+ca)

As shown in the proof of the preceding P 5.37, it suffices to prove this inequality for a = b+ ¢
and for b=c=1.
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Case 1: a = b+ c. Since
1 1 5(b* + ¢*) + 8bc

(@102 (cta)P (20 + 22+ 5bo)

and
27(a* + 0* + 2) o 27(0* + & + be)
4(a+b+c)2(ab+be+ca)  8(b+c)2(b? + ¢ + 3be)’
we need to show that
5(b + ¢*) + 8bc N L 27(0* + ¢* + be)
(20% +2¢2 4+ 5be)2 (b4 )2 ~ 8(b+ ¢)?(b> + ¢ + 3be)

For bc = 0, the inequality is true. For bec # 0, substituting

the inequality becomes

5t + 8 N 1L 27(t+1)

(2t +5)2 t+2~ 8(t+2)(t+3)
9t* + 38t + 41 L 27+ 1)
(2t+5)2  — 8(t+3)°

It suffices to show that

9% + 45t + 27 < 27(t + 1)
(2t+5)2  — 8(t+3)’

which is equivalent to
t* +5t+ 3

(2t +5)2
4% + (8t — 9)

< t+1)
~8(t+3)
3>0

3(
8(
_l’_

Y

Case 2: b=c=1, a < b+ c= 2. The homogeneous inequality becomes

2 1 27(a® + 2)
a11)? 1 12at+ Da+2?

<

Since
4(2a + 1)(a+2) < 9(a +1)?,

it suffices to show that )

(a+1)

3(a* +2)
(a+1)2(a+2)’

+ i
1<

which is equivalent to
(a—6)(a—1)*<0.

The equality holds for a an equilateral triangle.
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2
P 5.39. Let a,b,c > R so that a + b+ c=3. Then,

1 1 1 3
< —.
312+ 312013 3122 +ad) o7
(Vasile C., 2006)
Solution. For a < b < ¢, we have
2 11
—<a<b<ec< —.
5 5
Indeed,
2 2 11
=3 —-b<3—-——-=—
¢ CTUECTETE TS
Using the substitution
3 2 12, 2 2
m=g a7 m> -+ -(a+b+c) =2,
we have to show that 6
fla) + 1)+ £(0) < 2
for 3 2 11
a+b+c=3, a2+b2+62:m—§, ggagbgcgg,
1 2 11
= —<u< —.
fu) m — u?’ ==
From ( 2)
2x 24x(m + x
_ !/ - = " B S
g(I) - f (x) (m . x2)27 g (I‘) (m . I'2>4 )
it follows that ¢”(z) > 0, hence g is strictly convex. By Corollary 1 and Note 2, if
2 2 2 . 2 11
a+b+c=3, a” +b* + ¢ = fived, 5§a§b§c§g,

then the sum
Sz = f(a)+ f(b) + f(c)

is maximum for either ¢ = 11/5 or a = b < c¢. The case ¢ = 11/5 leads to a = b = 2/5, when the
inequality is an equality. In the second case, we need to prove that

1 " 2 <3
3+4a®  3+2a®+c%) 7

2
for 2a + ¢ = 3, R < a < c¢. Write the inequality as follows

1 2
3+ 4a? + 21 — 24a + 10a?

3
<_7
-7
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1 < 49 — 72a + 30a?
3+4a? ~ 7(21 — 24a + 10a?)’

ala —1)*(5a — 2) > 0.

The equality holds for a = b = ¢ =1, and also for

2 11
a:b:—’ C = —

5 5
(or any cyclic permutation).

Remark In the same manner, we can prove the following statement:

2
-1
e Letay,as,...,a, be nonnegative real numbers so that a;+as+---+a, =n. Ifk > 277/—1,
n?>—n —
then
1 n
Y —— < :
k+a3+---+a2 ~ k+n-—1
2
-1
with equality foray =ay=---=a,=1. If k= 271—1, then the equality holds also for
n?—n —
1 n—1
a]:---:ajniz—7 an:n_—
! Yo n—1 n>—n-—1
(or any cyclic permutation).
O

P 5.40. If a,b,c are nonnegative real numbers so that a + b+ c =3, then

2 n 2 n 2 < 99
24 a2+ 2402+ 2+F4a? T 63+a+ 02+

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality
for 0 < a =0 < ¢; that is, to show that 2a + ¢ = 3 involves

1 n 4 < 99
14+a?2 2+a2+c2 = 634202+ 2

Write this inequality as follows

1 n 4 < 33
a?+1 5a2—12a+11 = 2(a®? — 2a + 12)’

49¢* — 112a® + 78a* — 16a + 1 > 0,
(a—1)*(7Ta —1)*> > 0.

The equality holds for a = b = ¢ =1, and also for
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(or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

8
e Let a,b,c be nonnegative real numbers so that a +b+c = 3. If = <k <3, then

kv2 L kv2 o k¥2 0(3k2 + 11k + 10)
k+a?2+0? k+0+2  k+cE+a® ™~ 9(k%2+2k+6) + (5k — 8) (a2 + b2 + 2)’

with equality for a =b=c =1, and also for

3—k
a:b:T, c

2k +15
7

(or any cyclic permutation).

P 5.41. If a,b,c are nonnegative real numbers so that a + b+ c = 3, then

1 1 1 18
< .
3Y @+ 3+P+@ 3424 @ Tt @ P10

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality
for 0 < a = b < ¢. Therefore, we only need to show that 2a + ¢ = 3 involves

1 n 2 < 18
342a2 3+a2+c2 T 2T+2a2+ %

Write this inequality as follows
1 n 2 < 3
202 +3  5a2—12a+12 ~ a®—2a+6’
a*(a—1)*>0.

The equality holds for a = b = ¢ =1, and also for
a=b=0, c=3
(or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

n
o Letay,as,...,a, be nonnegative real numbers so that ay +as+---+a, =n. If k > —t
n _—

then

k+a3+---+a2 " nn?+kn+k?)+(kn—n—k)ai+a3+ - +a2)

with equality for ay = ay =--- =a, =1, and also for
ap =+ =ap—1 =0, ap ="n

(or any cyclic permutation).
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P 5.42. If a,b,c are nonnegative real numbers so that a + b+ c = 3, then

5 5 5 27
> .
3—|—a2+62+3+62+c2+3—|—02+a2 T 6+ a+ b2+ 2

(Vasile C., 2014)

Solution. Using the substitution
m=3+a+b+,

we have to show that

27
b >
Fla) + F6) + £l = 5 —
for
a+b+c=3, A+ +c=m-—3, 0<a<b<ec,
5
flu) = 5 0<u<+vm-—23.
m—u
From ( 2)
R 10z n, n 120x(m+x
g(l‘) —f(l') - (m_ZQ)Qa g (l’) - (m—:c2)4 )

it follows that ¢”(z) > 0 for 0 < x < +/m — 3, hence ¢ is strictly convex. By Corollary 1, if
a+b+c=3, a2+bz+c2:fixed, 0<a<b<eg,

then the sum
Sz = f(a) + f(b) + f(c)
1s minimum for either a =0 or 0 < a < b = c. Write the inequality in the homogeneous form

) 27
> .
Z(a+b+c)2+3(a2+b2) T 2a+b+c)?+3(a®+0?+c?)

Case 1: a = 0. The homogeneous inequality becomes

) ) ) 27
>
(b+ ¢)? + 3b? * (b+ ¢)? + 3¢? * (b4 )24+ 3(b2+c2) ~ 2(b+¢)2+3(b2+¢?)’

5[5(b% + ¢) + dbe] .\ 5 y 27
4(0% + )2 + 10bc(b? + ¢2) + 13022 4(b? + ¢2) 4+ 2bc — 5(b? + ¢2) + 4be’

For the nontrivial case be # 0, substituting

we may write the inequality as

5(5t + 4) 52
A2+ 106+ 13 ' 4t+2 ~ 5t +4’
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5(5t+4) _  83t+34
42 4106+ 13 = 202t + 1) (5t + 4)

Since
83t + 34 < 90t + 20,
it suffices to show that
5t + 4 S 9t + 2
42+ 10t + 13 = (2t + 1) (5t +4)’

which is equivalent to
14t 4+ 7¢* — 65t — 10 > 0,

(t —2)(14¢* + 35t + 5) > 0.

Case 2: 0 < a < b=c. We only need to prove the homogeneous inequality for b = ¢ = 1; that
is,

10 5 27
>
(@122 +3@+1)  (@a+2°+6~ 2(a+2°+3(a+2)
10 5 27

>
4a2—|—4a+7+a2+4a+10 ~ 5a® +8a+ 14
a(a® — 3a+2) >0,
ala —1)*(a+2) > 0.

The equality holds for a = b = ¢ =1, and also for
3
a , c 5

(or any cyclic permutation).
Remark 1. Similarly, we can prove the following generalization:

e Let a,b,c be nonnegative real numbers so that a+b+c=3. If k > 0, then

SR BN SR 9(4k + 15)
k+a2+b k+b2+c2 k+c2+a?— 3(4k? + 15k +9) + (8k + 21) (a2 + b2 + ¢2)

with equality for a =b=c =1, and also for

(or any cyclic permutation).

For k = 0, we get the inequality in P 1.171 from Volume 2:

1 1 1 45
> .
PP BrE Ftra S (atbt ol + a1+ D)

Remark 2. More general, the following statement holds:
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e Letay,as,...,a, be nonnegative real numbers so that a1 +as+---+a, =n. If k >0, then

1 p
Z 2 = 2 2 )
k+as+---+a2 " qg+ai+az+---+a2
where
n?(n — 12k +n3(n®> —n—1) n(n —1)2k* +n*(n®> —n— Dk +n3
p:

(n =13k +n(n®—2n2—n+1)’ 1=

with equality for ay = ay = --- =a, =1, and also for

(n—183k+n(n*—2n2—n+1) ’

a; =0, Qg =+ = 0ap =

(or any cyclic permutation).
For k£ = 0 and k = n, we get the inequalities
n*(n®*—n—1)
nd—2n?2 —n+1)(a?+ad+ - +a2)

Z gn —1 - n?(2n — 3)

+o+ay T =1+ (n—2)(af+ai+- - +ai)

1
>
Za%—l—---—l—a%_n?—i—(

P 5.43. If a,b,c,d are nonnegative real numbers so that a + b+ c+ d = 4, then

Z 3 < 296
34+2(@+0+¢%) 218+ a2+ 02+ 2+ d*

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality
for 0 < a=0b=c<d, that is to show that 3a + d = 4 involves

1 n 9 < 296
1+2a%  3+4a?+2d> ~ 218+ 3a® + d*
Write this inequality as follows

L 9 - 148
1+2a% ' 35— 48a + 22a% ~ 3(39 — 4a + 2a?)’

(a —1)*(14a — 1)* > 0.
The equality holds for a =b=c¢=d =1, and also for

a=b=c= ! _ 3
I V' 14
(or any cyclic permutation).
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P 5.44. If a,b,c are nonnegative real numbers so that ab + bc + ca = 3, then

4 N 4 N 4 S 21
2+a?+0* 2402+ 2+ +a? T A4+ a®+ 02+ 2

(Vasile C., 2014)
Solution. The proof is similar to the one of P 5.42. Thus, we only need to prove the inequality
fora=0and for 0 <a<b=c.
Case 1: a = 0. We need to show that bc = 3 involves

1 N 1 N 1 - 21
2402 24 2402+ T 44+ +32)

Denote
r=b+ x > 2bc = 6.

Since
1 I 440>+ x+4

2R 243 PR 2P+ A 14 2w+ 13

we only need to show that

r+4 1 21
+ > .
20 4+13  z+2  4(xz+4)

Since
r+4 1 2 + 8z + 21 7(2z + 3)

— >
w13 112 1Bt - e+ B)a+2)
it suffices to show that

2x +3 3
> .
2z +13)(z+2) — 4(z+4)

This inequality reduces to
(x —6)(2x +5) > 0.

Case 2: 0 <a<b=c. Let
q = ab + bc + ca.
We only need to prove the homogeneous inequality

4 4 4 21
>
2q + 3(a® + b?) N 2q + 3(b + ?) * 2q + 3(c® +a?) — 4q+ 3(a® + b + ?)

for b = ¢ = 1. Thus, we need to show that

8 4 21
>
220+ ) 43(@+1)  22a+1) 16~ 42a+ 1) +3@+2)

which is equivalent to

8 N 1 S 21
3a2+4a+5 a+2  3a2+8a+ 10’

2

a“+4a+7 S 7

(3a2+4a+5)(a+2) ~ 3a2+8a+ 10’
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a(3a® —a* —Ta +5) >0,
ala —1)*(3a +5) > 0.
The equality holds for a = b= ¢ =1, and also for

(or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:
e Let a,b, c be nonnegative real numbers so that ab + bc+ ca = 3. If k > 0, then

1 N 1 N 1 S 9(k+5)
k+a?+b0  k+0+c2 k+2+a®>  3(k2+5k+2)+2(k+4)(a®>+ 0+ 2)

with equality for a =b=c =1, and also for
a=0, b=c=+3
(or any cyclic permutation).
For k = 0, we get the inequality in P 1.171 from Volume 2:

1 1 1 45
> .
a® + b? +62+02+02+a2 ~ 2(ab + bc + ca) + 8(a? + b2 + 2)

P 5.45. If a,b, c are nonnegative real numbers so that a® + b* + c? = 3, then

1 1 1 1
< —.
10— (at0)? 10-(btc? 10— (ctaZ 2
(Vasile C., 2006)
Solution. Let
s=a+b+c, s < 3.

We need to show that
1 . 1 . 1 < 1
10—(s—a)? 10—(s—5b)? 10— (s—c)? ~ 2

for a + b+ c = s and a®> + b* + ¢ = 3. Apply Corollary 1 to the function

—1

f(u):m>

0<u<s <3

We have
2(s — x)

(10 — (s — x)?]?’

gla) = f'(x) =
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v 24(s —x)[10 4 (s — 2)?]
A T oy P 1

Since ¢"(x) > 0 for x € [0, s), g is strictly convex on [0, s]. According to the Corollary 1, if

a+b+c=s, A+ + 7 =3, 0<a<b<ec,
then
Sy = fa) + f(b) + f(c)

1s minimum for either a = 0 or 0 < a < b = c. Therefore, we only need to prove the homogeneous
inequality

1 1
<
Z 10(a? + b2+ ) —3(b+¢)? = 2(a? 4+ b + ?)
fora=0and forb=c=1.

Case 1: a = 0. The homogeneous inequality becomes

1 1 1 1
< .
7(b% + ¢?) — 6bc * 1062 + 7c? * 762 +10¢? — 2(b% + )

This is true since
1 1

<
7(0? + ) — 6bc — 4(b? + ¢?)

and

1 1 B 17(6% + ¢2)
1002 +72 TR+ 108 70(b% + %) + 149b2c2
< 17(0* 4 %)
= 70(b2 + ¢2) + 140b2¢2
17 1

TR+ @) ARty

Case 2: b =c = 1. The homogeneous inequality turns into

1 2 1
<
2(5a? +4) N 7a?> — 6a+ 17 ~ 2(a® +2)’

2 2a% + 1
7a? — 6a+ 17 — (5a® +4)(a® +2)’
4a* — 12a® + 13a* — 6a +1 > 0,
(a—1)*(2a — 1) > 0.

The equality holds for a = b = ¢ =1, and also for

20 =b=c=

Sl

(or any cyclic permutation).
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P 5.46. Ifa,b, c are nonnegative real numbers, no two of which are zero, so that a*+b* +c* = 3,
then

1 n 1 n 1 S 3
a?+b  P+S A+ad T2
(Vasile C., 2010)

Solution. Using the substitution
€T = a4, Yy = b4, 5 = 047 p= x5/4 _|_y5/4 + 25/4,

we need to show that z +y + 2z = 3 and 2%/* + y®/* + 25/* = p involve

F@)+ f) + 1) 2 5

where
1

m, O§U<p4/5

flu) =
We will apply the EV-Theorem for £ = 5/4. We have

P = g s
1= wE

ole) = 1 (=71) = ) = 12

7524 (2p + 32°
o) - T 3
2(p — %)

Since ¢"(z) > 0, g is strictly convex. According to the EV-Theorem and Note 3, if

r+y+2=3, 4P 4P =p=fized, 0<z<y<z,
then
Sy = f(x) + f(y) + f(2)

1s minimum for either x =0 or 0 < x < y = z. Thus, we only need to prove the homogeneous
inequality

1 1 1 3 3 5/4
- - > ——
@+ B4 PS+ad T 2 \at b+
fora=0and 0<a<b=c=1.

Case 1: a = 0. The homogeneous inequality becomes

N SR 3\
B> S b4+ T 2\ b+ ’

() 6" gz ()
— + — + > —
ZARAUGRNOLIOL

5/4
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1 3\ 94 9 5/4
5/2 —5/2 - < =

1 3\t 1
5/2 =z .
24 + 2A5/2 Z <2> B5/2’

where

£5/2 4 4=5/2 2/5 2 2 1/2 b
G e R e R

By power mean inequality, we have A > B > 1. Since

1 1 1
5/2 _ 5/2 _ 5/2 _ 1b5/2 -
24P + 57 (23 +5 5/2)_(/1 B )(2 ST 5/2)20,

it suffices to show that

235/2 +

3\ 1
>\ 5) e
235/2 2 B5/2

: N 39 1/4
weiz ()

39 1/4

32-5% > 3%

which is true if

This inequality follows by multiplying the inequalities
5'>23.3°

and
3223 > 36

Case 2: 0 < a <1 =>b=c. The homogeneous inequality becomes

5 5/4
a+5>3 3 ,
ad+1— a*t+2

which is true if g(a) > 0, where

5 9ln3
g(a) =In(a® +5) — In(a® + 1) + 1 In(a* +2) — Z ,
with
g(a) a a 1 a'® +2a® — 8a +5

5@ @15 @+l a 42 (@ +5) @+ D) +2)
(a—1)(a®+ a® +a” + a® + a® + 3a* + 3a® + 3a® + 3a — 5)
(a* 4 5)(a® 4 1)(a* 4 2) '
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There exists d € (0,1) so that ¢'(d) = 0, ¢'(a) > 0 for a € [0,d) and ¢'(a) < 0 for a € (d,1).
Therefore, g is increasing on [0, d] and is decreasing on [d, 1]. Since g(1) = 0, we only need to
show that g(0) > 0. Indeed,

1. 5%.2°
g(0) = Zln 5 0.
The equality holds for a =b=c=1.
m
P 5.47. If a1, as,...,a, are nonnegative real numbers so that ay + as + - -+ + a,, = n, then

1
V@?+L+V@+&+~~+\m%+12v@(l—ﬁ)mﬂ+@+~~+a@+2ml—n+n.

(Vasile C., 2014)

Solution. For n = 2, we need to show that a; + as = 2 involves

\/a%+1+\/a§+12\/a%+a§+6.

By squaring, the inequality becomes

which follows immediately from the Cauchy-Schwarz inequality:
(af +1)(a3 +1) = (af + 1)(1 +a3) > (a1 + az)® = 4.
Assume further that n > 3 and a1 < ay < --- < a,. We will apply Corollary 1 to the function

flu)=—vu2+4, u>0.
We have
Va2 +4’

122
" o
g'(z) = (22 4 4)5/2°

Since ¢"(z) > 0 for z > 0, g(z) is strictly convex for z > 0. By Corollary 1, if a1 < ay <--- < a,
and

then the sum
Sn= f(a1) + f(az) + -+ f(an)

18 maximum for a; = as = -+ = a,_1. Thus, we only need to show that

P14 (n—1) b2+12\/2(1—%) @+ (n— 1) + 2(n? — n+ 1),



402 Vasile Cirtoaje

for
a+(n—1)b=n.

By squaring, the inequality becomes

2n(n — 1)/ (a2 + 1)(b2 + 1) > (n — 2)a® — (n — 2)(n — 1)%0* + n?,

which is equivalent to

V(02 +1)[(n —1)202 —2n(n — )b +n2+ 1] > n — (n — 2)b.
This is true if
(b + D[(n —1)%* —2n(n — )b +n*+1] > [n — (n — 2)b)?,
which is equivalent o
(n —1)%" — 2n(n — 1)b* + (n* + 2n — 2)b> — 2nb+ 1 > 0,
(b—1)%[(n—1)b—1]* > 0.
The equality holds for ay = ay = --- =a, = 1, and also for

1
a1:a2:~~~:an,1:n T a,=n—1

(or any cyclic permutation).

P 5.48. If ai,as, ..., a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then

Z\/(Sn—4)a%+n2 \/(Sn—4)(a%+a%+---+ai)—|—n(4n2—7n+4).

(Vasile C., 2009)

Solution. The proof is similar to the one of the preceding P 5.47. Thus, it suffices to prove the
inequality for a; = as = -+ - = a,,_1. Write the inequality in the homogeneous form

Z\/n(?m—él)a% + 5% > \/n(3n—4)(a% +a3+---+a2)+ (4n? — Tn+4)52,

where S = ay +as+- - -+ a,. We only need to prove this inequality foray =ay =---=a,_1 =1,
that is

(n—1)v/n(Bn—4)+(n—1+a,)?+V/n(Bn—4)a2 + (n — 1 +a,)? >
> \/n(3n—4)(n —1+a2) + (4n2 — Tn+4)(n — 1 + a,)?,

which is equivalent to

V(n—1)[a2 +2(n— Da, +4n% —6n+1] +/(3n — a2 +2a, +n — 1>

>/ (Tn — 4)a2 + 2(4n2 — Tn + 4)a, + 4n3 — 8n2 + Tn — 4.
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By squaring, the inequality turns into

2¢/(n — 1)[(3n — 1)a2 + 2a, + n — 1][a2 + 2(n — 1)a, + 4n% — 6n + 1] >

(3n — 2)a2 +2(n — 1)(3n — 2)a, +2n* —n — 2.

Squaring again, we get
(an — 1)*(a, — 2n +3)* > 0.

The equality holds for a; = ay =--- =a, = 1, and also for

. Qp, . n
2m—3 3n—4

) =dag = = 0p-1

(or any cyclic permutation).

Remark. For n = 3, we get the inequality

V5a2 43 + V52 + 34 V5c2 + 3 > \/5(a% + b2 + ¢2) + 57,

where a, b, c are nonnegative real numbers so that a + b + ¢ = 3. By squaring, the inequality
turns into

V(5a2 +3)(56% +3) + /(562 + 3)(5¢2 + 3) + /(5¢2 + 3)(5a2 + 3) > 24,

with equality for a = b= ¢ =1, and also for
3
— b _ - = —
¢ 35

(or any cyclic permutation).

P 5.49. If a,b, c are nonnegative real numbers so that a +b+ c = 3, then

8
Va2 + 4+ V2 +4+Ve2+4< \/g(a2+62+62)+37.

(Vasile C., 2009)
Solution. Assume that a < b < ¢, and apply Corollary 1 to the function a
flu) = —Vu2+4, u>0.
We have

22+ 4
12z
i .
g"(x) = (22 +4)5/2'

Since ¢”(x) > 0 for x > 0, g(z) is strictly convex for z > 0. By Corollary 1, if

a+b+c=3, >+ 0+ = fived , a<b<e,
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then the sum
Sy = f(a) + f(b) + f(c)

1s minimum for either a = 0 or 0 < a < b = c¢. Thus, we only need to prove the desired inequality
for these cases.

Case 1: a = 0. We need to prove that b + ¢ = 3 involves

V2 +4+Vc2+4< \/2(62+02)+37 - 2.

Substituting

we need to prove that z 4+ y = 2 involves

V922 + 16 4+ /992 + 16 < 24/6(22 + %) + 37 — 4.

By squaring, the inequality becomes

2¢/(922 + 16)(9y2 + 16) < 15(2* + y?) + 132 — 161/6(22 + y2) + 37.

Denoting
p=wzy, 0<p<l,

we have
2?4yt =4-2p, (927 +16)(9y* + 16) = 81p* — 288p + 832,

and the inequality becomes

V/81p2 — 288p + 832 < —15p + 96 — 8+/61 — 12p,

81 15
\/sz — T2+ 208 < —p o+ (48— 40/61 — 12p),

By squaring again (the right hand side is positive), the inequality becomes

81 225
Zp2 — 72p + 208 < Tp2 — 15p(48 — 44/61 — 12p) + (48 — 44/61 — 12p)?,

3p* — T0p + 256 > (32 — 5p)+/61 — 12p.

1-12p  2(55—
o /6l —12p < T+ 0 - b _ (557 o).

Since

it suffices to show that
7(3p* — T0p + 256) > (32 — 5p)(55 — 6p),

which is equivalent to
(1=p)(32+9p) =2 0.

Case 2: b= c. We need to prove that
a+2b=3
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implies

Va2 +4+2vh2+4 < \/§(a2 +20%) + 37.

By squaring, the inequality becomes

12¢/(a? + 4) (b2 + 4) < 5a® + 4b* 4 51,

which is equivalent to

V(462 — 120+ 13) (b2 + 4) < 20> — 5b + 8.

By squaring again, the inequality becomes
2b” — 7b* +8b — 3 < 0,

(b—1)*(20-3) <0,
(b—1)%a > 0.
The equality holds for a = b= ¢ =1, and also for

3
a ) c 5

(or any cyclic permutation).

P 5.50. If a,b,c are nonnegative real numbers so that a +b+ c = 3, then

V3202 + 3 + V3202 + 3 + V/32c2 + 3 < /32(a? + b2 + ¢2) + 219.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.49. Thus, it suffices to prove the homogeneous
inequality

D V9602 + (a+b+c)? < \/96(a + 12 + ) + T3(a+ b+ )
fora=0and forb=c=1.

Case 1: a = 0. We have to show that

b+ ¢+ VITb? + 2bc + 2 + Vb2 + 2bc + 97c2 < \/169(b2 + ¢2) + 146bc.

Since 2bc < b? + 2, it suffices to prove that

b+ ¢+ V98D + 2¢2 4+ V202 + 98¢2 < /169(b? + ¢2) + 1460bc.

By squaring, we get

(b+c) <\/98Z)2 +2c2 + V202 + 98c2) +24/(490% 4 ¢2) (b2 + 49¢?) <

< 34(b* + ¢*) + T2bc.
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Since

VO8H2 + 2¢2 + V/2b2 + 98¢% < /2(98D2 4 2¢2 + 2b2 + 98¢2) = 10+/2(b2 + ¢2)

and
10(b + ¢)\/2(b2 + %) < 20(b + ¢)?,

it suffices to show that

V(4902 + ¢2) (b2 + 49¢2) < 7(b? + ¢2) + 360bc.
Squaring again, the inequality becomes
be(b — c)? > 0.

Case 2: b =c = 1. The homogeneous inequality turns into

V97a2 + 4a + 4 + 2V a2 + 4a + 100 < V169a2 + 292a + 484.

By squaring, we get

V(9702 4 4a + 4) (a2 + 4a + 100) < 17a® + 68a + 20.
Squaring again, the inequality reduces to

ala —1)*(a+12) > 0.

The equality holds for a = b = ¢ = 1, and also for a« = 0 and b = ¢ = 3/2 (or any cyclic
permutation).

Remark. By squaring, we deduce the inequality

V(3202 + 3) (320 + 3) 4+ /(3202 + 3)(32¢2 + 3) + 1/(32¢2 + 3)(32a2 + 3) < 105,

with equality for a = b= c¢ =1, and also for

(or any cyclic permutation).

P 5.51. Ifay,as,...,a, are positive real numbers so that ay + as + - -+ + a, = n, then

1 1 1 2nvn — 1
—_—+ 4+ —+ >n—+2vn—1.

(Vasile C., 2009)
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Solution. For n = 2, the inequality reduces to
(alag — 1)2 Z 0.

Consider further that n > 3 and a; < ay < --- < a,. By Corollary 5 (case k = 2 and m = —1),
if ap<ay<---<a, and

a1+ as+---+a, =n, a?—l—ag—l—---—i—ai:fil’ed,

then the sum

1 1 1
Sp=—+—++—
aq (05} Qp,
is minimum for a; = - -+ = a,_1 < a,. Therefore, we only need to prove that

-1 1 2nyn —1
r + —+ v 5 > n+2vn—1,

aq a, (n—1)a? 2

for (n — 1)a; + a,, = n. The inequality is equivalent to

(ay —1)* | a; — 1 2>0
' Cn—1+vn-1) ©

The equality holds for a; = ay = --- =a, = 1, and also for

an
] =ag =+ = —

= Up_1 =
! vn—1

(or any cyclic permutation).

P 5.52. Ifa,b,c € [0,1], then
(14 3a?)(1 +3b*)(1 + 3¢*) > (1 + ab + be + ca)?.

Solution. Since
2(ab+bc+ca) = (a+b+c)® — (a* + b* + ),

we may apply Corollary 1 to the function
fu) = —In(1+3u?), welo,1],
to prove the inequality

fla)+ f(b) + f(c) +31n(1 + ab + be + ca) < 0.

We have 6
—6x
— / = —
o) = o) = T
~108z(1 — a?)

9"(v) = N
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Since ¢”(x) > 0 for x € (0,1), g is strictly convex on [0,1]. According to Corollary 1 and Note
2,1
! a+ b+ c= firved, a? 4+ b* + & = fized, 0<a<b<ce<Ll,
then
Sz = f(a) + f(b) + f(c)
1s mazximum for a = b < c¢. or for ¢ = 1. Thus, we only need to prove the original inequality for
these cases.

Case 1: a = b < c¢. We need to show that
(14 3a*)*(1 +3c%) > (14 a® + 2ac)®.

For ¢ = 0, the inequality is an equality. For fixed ¢, 0 < ¢ < 1, we need to show that h(a) > 0,
where
h(a) = 2In(1 + 3a®) + In(1 + 3¢®) — 3In(1 + a* + 2ac), a € [0,c.

From

, 12a 6(a+c) 6(1 —a*)(a—c)

h/ (a) - — = <
14+3a?> 14a®>+2ac (14 3a?)(1+ a® + 2ac)

it follows that h is decreasing on [0, ¢/, hence h(a) > h(c) = 0.

Case 2: ¢ = 1. We need to show that

4(1 4 3a*)(1+ 3b*) > (1 +a)*(1 + b)°.
This is true because
2(1+3a®) > (1+a)®,  2(1+3b%) > (1+0b)>

The first inequality is equivalent to
(1—a)®>0.

The proof is completed. The equality holds for a = b = c.
Remark. The following statement is true.

e Ifa,b, c are real numbers so that ab + bc + ca = 3, then

(14 3a*)(1+3b%)(1 + 3c%) > 64.

The inequality is equivalent to
(3abc —a —b—c)* > 0.

P 5.53. If a, b, c are nonnegative real numbers so that a + b+ ¢ = ab + bc + ca, then

1 n 1 L 1 >1
44502 4+5a2 4+5a2 3

(Vasile C., 2007)
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Solution. By expanding, the inequality becomes
4(a* + b* + 2) + 15 > 25a*b*c® + 5(a’b® + b*c® + c*a?).
Let p=a+ b+ c. Since
a? + b2+ 2 =p? —2p, a®b® + b + 2a® = p* — 2pabe,
the inequality becomes
(2p — 4)* > (p — babc)?,
(3p — 4 — babc)(p + babe — 4) > 0.
We will show that 3p > 4 + 5abc and p + 5abc > 4. According to Corollary 4 (case n = 3, k = 2)
or P 3.57 in Volume 1, if
a+b+c= fixed, ab+ bc + ca = fixed, 0<a<b<ce<d,

then the product abc is maximum for a = b, and s minimum for a =0 or b = c. Thus, we only
need to prove that 3p > 4 + babc for a = b, and p + babc > 4 for a = 0 and for b = c.
For a = b, from a + b+ c = ab + bc + ca we get

a(2 —a) 1
_ETY <9
w_1 2-%==

hence
(a —1)%(5a% + 4)

3p — 4 — 5abc = (3 — 5a®)c + 6a — 4 = > 0.

2a — 1 -
For a =0, from a + b+ ¢ = ab+ bc + ca we get
b
= — b>1
C b—l’ )
hence b o2
p+5abc—4:b+c—4:(b_ 1) >0
For b = ¢, from a + b+ ¢ = ab + bc + ca we get
b(2 —b) 1
= —<b<2
“Topo1 277

hence

(2 — b)(56° — 3b+2)
2b—1

p+5abc —4 = a(5b® + 1) +2b— 4 =

_ @20+ (0 -1 +2)]
B 2b—1 -

The equality holds for a« = b = ¢ = 1, and also for a = 0 and b = ¢ = 2 (or any cyclic
permutation).
O
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P 5.54. If a,b,c,d are positive real numbers so that a + b+ ¢ + d = 4abed, then

1 1 1 1
> 1.
1+3a+1+36+1+3c+1+3d_

(Vasile C., 2007)
Solution. By expanding, the inequality becomes
1+ 3(ab+ ac+ ad + bc + bd + ed) > 19abed,
2+3(a+b+c+d)?>3(a®+ b+ 4 d?) + 38abed.
According to Corollary 5 (case n =4, k =0, m = 2), if
a+b+c+d= fixed, abed = fized, O0<a<b<c<d,

then the sum
Sy=a>+ b+ + P

1s maximum for a = b= c < d. Thus, we only need to prove that

3a 1
— A3 —_
3a+d—4ad, d—m, a>%,
involves
3 n 1 > 1
3a+1 3d+1~ "7
3 4a® — 1
>1
3a+1 +4a3—|—9a—1 -
4a® — 9a* +6a — 1 > 0,
(a—1)*(4a —1) > 0.
The equality holds fora =b=c=d = 1.
Remark. The following generalization holds:
o Ifay,as,...,a, (n>4) are positive real numbers so that
ap + Qg + -+ Ay = NA1A2 " -+ Ay,
then
1 n 1 L L 1 > 1
I+ (n—1a; 14 (n—1)ay 1+ (n—1a, —
O
P 5.55. If ay,as,...,a, are positive real numbers so that
1 1 1
G+ agt Ay = — 4 — 4+ —,
ap a2 Qn
then
! + ! +ot ! > 1
I+ (n—1a; 14 (n—1)ay 1+ (n—1a, —

(Vasile C., 1996)
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Solution. For n = 2, the inequality is an identity. For n > 3, we consider
a1 < ap < e S G,
and apply Corollary 2 to the function
1
=— > 0.
J(w) 14+ (n—1u’ "
We have ( 0
J— n J—
/ —
M) = e
1 —(n—1)z
R ! R S S AN
s =1 <ﬁ> Vi +n =17
g//(x> _ 3(” B 1)2 )
2v/x(Vr+n—1)*
Since ¢”(x) > 0 for x > 0, g is strictly convex on [0, 00). By Corollary 2, if 0 <a; <as <--- <

a, and
. 1 1 1 ,
ay +ag + -+ a, = fized, —+ —+ -+ — = fized,
ap Qg an

then the sum

Sn = flar) + flaz) + - + f(an)

18 mainimum for as = - -+ = a,. Therefore, we only need to show that
1 n—1
1+(n—1)a+ 1+ (n—-1) =1
for
a—i—(n—l)b:é—l—n;l, 0<a<b.
Write the hypothesis as
1 1
a—a:(n—l) <b—g),
which involves a <1 < b and
1 —a>b— —, ab <1
a
Write the desired inequality as
_nt oyt
1+ (n—1)b — 14+ (n—1)ad’

which is equivalent to
n—1 - (n—1)a

I+ (n=1b" 1+ (n—1)a’
l—a>m-1alb-1).

For the nontrivial case b # 1, we have

If n > 3, then the equality holds for a; = as =---=a, = 1.
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P 5.56. Ifa,b,c,d, e are nonnegative real numbers so that a* + b* + c* + d* + e* = 5, then
T+ 4+ +d*+e*) > (a+b+c+d+e)” + 10.

(Vasile C., 2008)
Solution. According to Corollary 5 (case n =5, k=4, m = 2), if
a+b+c+d+e= fized, a'+b'+t+d +e'=5 0<a<b<c<d<e,
then the sum
Sy=a’+ b+ +d*+e?
1s manimum for a = b= c =d < e. Thus, we only need to prove the homogeneous inequality
7@+ P+ +d+e*) —(a+b+cet+dte))? >20(a* + b+ +d* 4 et

fora=b=c=d=0and a =b=c=d = 1. The first case is trivial. In the second case, the
inequality becomes

7(4 -+ ¢2) — (4+ )22 = 20(4 + ¢,
(3¢* — 4e +6)* > 5e' + 20,
et —6e3 4+ 13e* — 12e +4 > 0,
(e —1)*(e —2)? > 0.
The equality holds for a =b=c=d =e =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
e [fay,as,...,a, are nonnegative real numbers so that

4 4 4
a; +a,+---+a,=n,

then
(n++vn—1)(a?+a3+---+a>—n)>(ag +ag+---+a,)?* —n?
with equality for ay = ay =--- =a, =1, and also for
an, 1
a :'--:ani = =
! YT VUn—1 Wn-1

(or any cyclic permutation).
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P 5.57. If ay,as,...,a, are nonnegative real numbers so that ay + as + - -+ + a, = n, then

2 2 242 2 n(n—1)
a a et at) —-nt> —
(1+ 2+ +n) _n2—n—|—1

(al+a3+-+a,—n).
(Vasile C., 2008)

Solution. For n = 2, the inequality reduces to (ajas — 1)*> > 0. For n > 3, we apply Corollary
Sfork=2andm=4: if 0<a1<ay;<---<a, and

aL+as+ -+ a, =n, a%—i—ag—i—---—l—ai:fil'@d,

then
S,=al+a3+---+a:

1s maximum for ay = --- = a,_1 < a,. Thus, we only need to prove the homogeneous inequality
n?(n* —n+1)(a®+ai+---+a?)*>n*—2n+2)(a1 +ay+ - +a,)* +nd(n—1)8,,

fora; =---=a,-1 =0 and for a; = --- = a,_1 = 1. For the nontrivial case a; = --- = a,,_1 = 1,
the inequality becomes

n*(n* —n+1)n—-1+a2)*>m*-2n+2)(n—1+a,)* +n*(n—1)(n—1+a}),

(an — 1)2[an —(n— 1)2]2 > 0.

The equality holds for a1 = ay =--- =a, = 1, and also for

Ay =+ =0ap_1 = ap=n—1

n—1

(or any cyclic permutation).

P 5.58. If aj,as,...,a, are nonnegative real numbers so that a2 + a3 + -+ + a = n, then

1
a:f+a§’+~~+aiz\/nQ—n+1+(1—g) (af +af+--- +af).

(Vasile C., 2008)
Solution. For n = 2, the inequality is equivalent to
a$ 4 a$ + 4a3a3 > 6,
(a7 + a3)* — 3ajaz(a] + a3) + daja; > 6,
2aja3 — 3ajas +1 >0,

(a1a2 — 1)2(26L1(L2 + 1) Z 0.
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For n > 3, we apply Corollary 5 for k =3/2and m=3: if 0<z; <z <--- <2z, and

r1+x2+ -+ x, =0, xi’/2+x?2’/2+~-+xi/2:fixed,
then
Sp=a3+ s+
is maximum for x1 = -+ = x,_1 < x,. Thus, we only need to prove the homogeneous inequality
n?—n+1 1
(a} +a3+---+a))* > — (ai+a3+-+a)’+ <1_ﬁ> (af +a5+---+ap)
fora; =---=a,_1 =0and for a; =--- = a,_1 = 1. For the nontrivial case a; = -+ = a,,_1 = 1,

the inequality becomes
nn—1+a2)>>m*—n+1)n—-1+a2)* +n*n—1)(n—1+ab),

(an — 1)*(a, —n+1)*(a® + 2na, +n —1) > 0.

The equality holds for a1 = ay = --- =a, = 1, and also for

1 =" =0p-1 = =

(or any cyclic permutation).

P 5.59. If a,b, c are positive real numbers so that abc = 1, then

1 1 1
7Y I RS
a b ¢ a+b+c

(Vasile C., 2012)
Solution. According to Corollary 5 (case k=0 and m = —1, if
a+b+c= fived, abc =1, 0<a<b<e,
then

a b ¢
s minimum for 0 < a = b < ¢. Thus, we only need to prove that

4<2+1)+ >0 > 27
a c 2a +c¢

for

The inequality is equivalent to

8a® — 54a* — 26a® — 27a + 8 > 0,
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(2a — 1)*(2a* + 2a® — 12a® + 5a + 8) > 0.

It is true for a € (0, 1] because
2a* + 2a* — 12a® + 5a + 8 > —12a* + 4a + 8 = 4(1 — a)(2 + 3a) > 0.

The equality holds for

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Ifay,as,...,a, are positive real numbers so that aias - - - a, = 1, then
1 1 1 2" +n—1)2
(Lt 1y, ) > 2n(2" + 1),
a; Qo a, ay+ag + -+ ay,
with equality for
1 _
a; = :an,1—§, an:2" !
(or any cyclic permutation).
For
a1 =: =01 =0a<1, a"ta, =1,

the inequality is equivalent to f(a) > 0, where

fla)=2" (n i a“) Gl Y

a (n—1)a"+1
We have
f'la) _2"a"—1) (2"+n-— 1)2a"2(a™ — 1)
n—1 a? [(n—1)a™ + 1]?
_ (a"=1)(2"a" = 1)[(n — 1)%a™ — 2"]
a?[(n — 1)a™ + 1]2 '
Since

(n—1)%a"-2" < (n—1)*-2" <0,
1 1
it follows that f'(a) < 0 for a € (O, 5), and f'(a) > 0fora € (5, 1). Therefore, f is decreasing

1 1
on <O, 5] and increasing on {5, 1] , hence
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P 5.60. If a,b,c are positive real numbers so that abc = 1, then

11 1
a3+b3+c3+1526(—+—+—>.
a b ¢

(Michael Rozenberg, 2006)
Solution. Replacing a, b, ¢ by their reverses 1/a, 1/b,1/c, we need to show that abc = 1 involves

1 1 1
$+ﬁ+g+1526(a+b+c)'

According to Corollary 5 (case k=0 and m = —3, if
a+b+c= fived, abc =1, 0<a<b<ec,

then
1 1 1

53254-54-63

is minimum for 0 < a = b < ¢. Thus, we only need to prove that
2 1
$+§+15 > 6(2a + ¢)

for
a’c = 1, a < 1.

The inequality is equivalent to
2 1
-3 +a’4+15>6( 2a+ - |
a a

a’ —12a* + 15a® — 6a +2 > 0,
(1 —a)*(2 — 2a — 6a® + 5a® + 4a* + 3a® + 2a° +a") > 0.

It suffices to show that
2 —2a — 6a® + 5a® + 3a* > 0.

Indeed, we have
2 3 4 2 3 5 3 3
2(2 —2a — 6a” + 5a° + 3a”) = (2 — 3a) 1+2a—|—1a +a’(1—-a) >0.

The equality holds for a =b=c=1.

P 5.61. Let ay,as,...,a, be positive numbers so that ayas---a, =1. If k >n —1, then

11 1
af + a5+ +al+ 2k —n)n > 2k —n+1) <—+—+~--+—).
aq (05} Qp,

(Vasile C., 2008)
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Solution. For n = 2 and k = 1, the inequality is an identity. For n = 2 and k£ > 1, we need to
show that f(a) > 0 for a > 0, where

fla)=a* +a*+4k-1)— 2k —-1D(a+a™?).

We have
fl(a) = k("' —a™71) = (2k = 1)(1 —a7?),
f(a) = k[(k —1)a" 2 + (k+ 1)a "% — 2(2k — 1)a>.
By the weighted AM-GM inequality, we get

(k—1)(k—2)+(k+1)(—k—2)
2k

(k—1)a* %+ (k4 1)a "2 > 2ka = 2ka?,

hence
f"(a) > 2k*a™ =22k — 1)a™® = 2(k — 1)%a™* > 0,

f’ is strictly increasing. Since f'(1) = 0, it follows that f'(a) < 0 for a < 1 and f’(a) > 0 for
a > 1, f is decreasing on (0, 1] and increasing on [1,00), hence f(a) > f(1) = 0.

Consider further that n > 3. Replacing ay, as, .. .,a, by 1/ay,1/as, ..., 1/a,, we need to show
that ajas - - - a,, = 1 involves

1 1 1
J+J+---+a—k+(2k—n)n2(2k—n+1)(a1+a2—l—---+an).
1 2 n

According to Corollary 5, if 0 <a; <apy <---<a, and

a; + as + -+ a, = fixed, ajas - a, =1,

then

1 1 1

Sn:—k‘i‘—k-i-"'-i-—k

ay a4 ay,
1s minimum for 0 < ay = --- = a,—1 < a,. Thus, we only need to prove the original inequality
for a; = --- = a,_1 > 1; that is, to show that ¢t > 1 involves f(¢) > 0, where

ft)=(n—-1) —|—tk(n—_1)+(2k—n)n—(2k—n+1) T—i—t :

We have

fl(t) = (nt,;_#, g(t) = k(tF" — 1) — (2k —n + D)tFn=F=1m — 1),

gt) =t *2nt), ) = kK2nt"T — 2k —n+ D[(k+1)(n — D)t" — kn + k + 1],
R (t) = (k+ D)nt" HEH"T — (2k —n+ 1)(n — 1)].
If k=n—1,then h(t) =n(n—1)(n—2) > 0. If k > n — 1, then

Bttt 2k —n+ D(n—1)>k - 2k—n+1)(n—-1)=(k—n+1)?>0,
R'(t) > 0 for t > 1, h is strictly increasing on [1, 00), hence

h(t) > h(1) =n[(k —1)* +n —2] > 0.
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From h > 0, we get ¢’ > 0, g is strictly increasing, g(t) > g(1) =0 for ¢t > 1, f'(t) > 0 for t > 1,
f is strictly increasing, f(t) > f(1) =0 for ¢t > 1.

The equality holds for a; = as =--- =a, = 1. If n =2 and k = 1, then the equality holds for
109 = 1.

O

P 5.62. Let aj,aq,...,a, (n > 3) be nonnegative numbers so that ay + as + - -+ + a, = n, and

let k be an integer satisfying 2 < k <n + 2. If

n k—1
= —1
N e

ko ok k
a; +as +---+a
! 2 L —1>m(l —aay---ay).

then

n
(Vasile C., 2005)

Solution. According to Corollary 4, if 0 <a; <ay <---<a, and
ay +az+---+a, =mn, af +a§ + -+ +al = fized,
then the product
P=ayas---a,
1s manimum for either a; =0 or 0 < a; < ag = -+ = a,.
Case 1: a; = 0. We need to show that

nk

k k
Gttty 2 Ty
for as + - - - + a,, = n. This follows by Jensen’s inequality

k
ag_{_.._l_azz(n_l)(u) .

n—1
Case 2: 0 < a; < ag = --- = a,. Denoting a; = z and ay = y (z < y), we only need to show
that
f(z) >0,
where
k k n—1 n—x
f) =t 4+ (0 Dy omay = n(m 1), y=""" 0<r<i<y
n_

It is easy to check that

Since
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we have
fx) = k(" =" ) + nmy" 2 (y — )
= (y—2)nmy" 7 — k(" T+ P4+ 2P
= (y — 2)y" *[nm — kg(x)],
where
1 x k=2
g(ZL‘) = yn—k + yn—k-i-l toee Tt yn—2

We see that f'(x) has the same sign as
h(z) = nm — kg(z).

Since the function

is strictly decreasing, g is strictly increasing for 2 < k < n. Also, g is strictly increasing for
k =n+ 1, when

1’2 xn—l
g(:c):y+:c+—+“'+yn_2
:w x_Q ”.+xn—1
n—1 y ynf2’
and for & = n + 2, when
3 x"
R =
:(n2—3n+3)x2+n(n—3)$+n2+x_3+...+ v
(n—1)2 Yy yr?

Therefore, the function h(x) is strictly decreasing for x € [0,1]. Since f(0) = f(1) = 0, there
exists 21 € (0,1) so that f(z) is increasing on [0, 1] and decreasing on [z1, 1]. As a consequence,
f(x) >0 for z € [0, 1].

The equality holds for a; = as =--- = a, = 1, and also for

n

a; =0, a2:"':an:n 1

(or any cyclic permutation).
Remark 1. For k = 2, we obtain the following inequality
(n—=1)(af + a3+ +a,) + naray - a, =0,

which holds for any nonnegative real numbers aq, as, ..., a, satisfying ay + as + -+ + a, = n.
Since ajas - - - a, < 1 (by the AM-GM inequality), this inequality implies

(n—1)(a? 4 a3+ - - +ai) +n(ayas - - -an)Q/” > n2,
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which is equivalent to Shleifer’s homogeneous inequality:
(n—1)(a?+ a2+ - +a)+n(aas - a,)Y" > (ay +ag + - + a,)%.
For n = 4, Shleifer’s inequality becomes Turkevich’s inequality:
a: + a3 + a3 + ai + 2v/a1azazay > ajag + ajaz + ayaq + agaz + agay + azay.

Remark 2. For the particular case k = n, the inequality has been posted in 2004 on Art of
Problem Solving website by Gabriel Dospinescu and Calin Popa.
m

1 1 1
P 5.63. If a,b,c are positive real numbers so that — + 7 + — =3, then
a c

4(a® +b* + ) + 9 > 2labe.
(Vasile C., 2006)
Solution. Replacing a,b, ¢ by their reverses 1/a,1/b,1/c, we need to show that a +b+c¢ =3

involves
4 1 L 1 + 1 o> 21
b2 abc’

According to Corollary 5 (case k=0 and m = —2), if
a+b+c=3, abc = fized, 0<a<b<eg,

then 1 ] )
53:?%—[)—24-?

1s minimum for 0 < a = b < c. Thus, we only need to prove that
2 1 21
a c? a

for 2a + b = 3. The inequality is equivalent to

(9a* + 8)c* — 21c + 4a* > 0,

4a* —12a® + 13a> — 6a + 1 > 0,
(a—1)*(2a —1)* > 0.
The equality holds for a = b = c¢ =1, and also for

N | =

a="b=2, c=

(or any cyclic permutation).
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1
P 5.64. If ay,as,...,a, are positive real numbers so that — + — +---+ — =n, then
a1 a2 Qp,

ap+ay+ - +a, —n < e, i(amay---a, — 1),

where
1 n—1
= 1(1 .
€n—1 ( + . 1)
(Gabriel Dospinescu and Calin Popa, 2004)
Solution. For n = 2, the inequality is an identity. For n > 3, replacing aq,as,...,a, by
1/a1,1/as,...,1/a,, we need to show that a; + as + - - - + a,, = n involves

11 1
arag--Op | —+ —+- -+ ——n+ep1) < ey
ar a2 Qn,

According to Corollary 5 (case k =0and m = —1),if 0<a; <ay <---<a, and

a1+ as+---+a, =n, aias -+ a, = fixed,
then
1 1 1
Sp=—+— 4t —
a 5] Qn
1s maximum for 0 < a; < ag = --- = a,. Using the notation a; = x and as = y, we only need to

show that f(z) <0 for
z+(n—1y=n 0<z<1,

where
1 n-1
(ﬂw)ny%l<— -—n+em4> e
z Y
=y Tt (n—Day" 2 —(n—en )2y —en
Since
, 1
y - n — 17
we get
f'(z)
s = (y — z)h(z),
where
n—x
h(:z:):n—2—(n—en,1)y:n_2_(n_enﬂ) .
n J—

is a linear increasing function. Since

2
h(O): nl(en_1—3+g)<0

n —

and
h(l)=e,-1 —2>0,
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there exists x; € (0,1) so that h(xy) =0, h(z) < 0 for = € [0,21), and h(z) > 0 for = € (x4, 1].
Consequently, f is strictly decreasing on [0, z1] and strictly increasing on [z, 1]. From

f0)=fQ1) =0,
it follows that f(z) <0 for x € [0,1].
The equality holds for ay = ay = --- = a, = 1. If n = 2, then the equality holds for
ay + as = 2@1@2.
O
P 5.65. If ai,as,...,a, are positive real numbers, then

ay +ay +---+ap

a1a2...an

1 1 1
+nn—1)> (a1 +as+---+ap) | —+—+--+— .
aq Q9 Ap

(Vasile C., Cruz Mathematicorum, 8, 2006)

Solution. For n = 2, the inequality is an identity. For n > 3, according to Corollary 5 (case
k=0andme{-1,n}),if 0<ay <ay<---<a, and

a1+ as + -+ a, = fixed, aias - - a, = fired,

1 1 , L
then the sum — 4+ — + -+ -+ — is mazimum and the sum a} + a3 + --- 4+ a!' is minimum for
aq a9 Anp

O<ar <ag=---=a,.

Consequently, we only need to prove the desired homogeneous inequality for ay = --- =a, =1,
when it becomes

al + (n—2)a; > (n —1)ai.

Indeed, by the AM-GM inequality, we have

at +(n—2)a; > (n—1)"y/a}-a}? = (n—1)a].

For n > 3, the equality holds when a1 = ay = -+ = a,,.

P 5.66. If ay,as,...,a, are nonnegative real numbers, then
(n—1)(a} +a +---+a”) +najas---a, > (a; +ag + - +ap)(a ' +ay - +ah).

(Janos Suranyi, MSC-Hungary)
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Solution. For n = 2, the inequality is an identity. For n > 3, according to Corollary 5 (case
k=nandm=n-—1),if 0<a;<ay<---<a, and

ay + as + -+ a, = fizved, al +ay + -+ a, = fived,

then the sum ai™' 4+ ay™ ' + -+ +a"! is mazimum and the product ajay - - - a, is minimum for
either a; =0 or 0 < a; < ag = --- = a,. Consequently, we only need to consider these cases.

Case 1: a; = 0. The inequality reduces to
(n—1)(ay+--+ay) > (a2 + - +ay) (s +- +art),

which follows immediately from Chebyshev’s inequality.

Case 2: 0 < a; < ag =--- = a,. Due to homogeneity, we may set as = --- = a,, = 1, when the
inequality becomes
(n —2)a +a; > (n —1a?".

Indeed, by the AM-GM inequality, we have

(n—2)at+a; > (n—1) "/ a?(n_m ca; = (n—Da}™.

For n > 3, the equality holds when a; = ay = --- = a,, and also when
a, =0, Ay =+ =ay

(or any cyclic permutation).

P 5.67. If ay,as,...,a, are nonnegative real numbers, then
(n—1(ai™ +ayt + - +al™) > (a1 +az+ - +an)(a] +ab + -+ al —aranc - ay).

(Vasile C., 2006)

Solution. For n = 2, the inequality is an identity. For n > 3, according to Corollary 5 (case
k=n+landm=n),if 0<a; <ay<---<a, and

ay +as + -+ a, = fived, al™ ' altt o+ a" = fized,

then the sum a} 4+ aj + --- + a;. is maximum and the product aias - - - a,, is minimum for either
a;=0o0r0<a; <ay=---=a,. Consequently, we only need to consider these cases.

Case 1: a; = 0. The inequality reduces to
(n—1)(ay™ + -+ a™) > (ag + -+ a,)(ay + -+ +al),

which follows immediately from Chebyshev’s inequality.

Case 2: 0 < ay < ay = -+ = a,. Due to homogeneity, we may set as = --- = a,, = 1, when the
inequality becomes
(n —2)al™ 4+ a2 > (n — 1)a’.



424 Vasile Cirtoaje

Indeed, by the AM-GM inequality, we have

(n—2)a""'+a?>(n—1)" almtm=2) g2 (n —1)al.

For n > 3, the equality holds when a; = ay = - -+ = a,, and also when
0 =0, a=-=a,

(or any cyclic permutation).

m
P 5.68. If ai,as,...,a, are positive real numbers, then
1 1 1 1
(a1 +ax+--+a,—n)| —+—+-+——n) +aay--a, + —— > 2.
aq a9 Ay, a1G2 - - - Gy

(Vasile C., 2006)

Solution. For n = 2, the inequality reduces to
(1 —a))*(1 —ay)*>0.

Consider further that n > 3. Since the inequality remains unchanged by replacing each a; with
1/a;, we may consider ajasy - - - a, > 1. By the AM-GM inequality, we get

a1 +as+---+a, >nJajay---a, > n.

According to Corollary 5 (case k=0 and m = —1),if 0<a; <ay <---<a, and

a1+ as + -+ a, = fixed, aias - - a, = fired,
then the sum
1 1 1
Sn:__|___|_..._|__
ay a9 (07%
1s minimum for 0 < a; = as = --- = a,_1 < a,. Consequently, we only need to consider
= ="""=0-1=2, =Y, TIY.

The inequality becomes

n—1 1
_l’_

(0= 1)+ =

-1 1
(x”_l%—n——n)y—l—{ 1+(n—1)x—n]—2
T "

Since
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and

D —n =
gjnil—l—(n ) —n "

@—DZ{l 2

$n2+xn3++(n_1):|’

it is enough to prove the inequality

[a:”2+2x"3+~~+(n—1)}y+{ +~~—|—(n—1)}

< =

xn—2 $n—3

which is equivalent to

1 1 1
"y + —2)+2(a" Py + —2) 4+t =1 (y+-—-2) >0,
xn—Qy l‘n—?)y

"2y —1)? 2" 3y — 1)? n—1 —1)?
T R OO V[V Y
Ty Yy Y

The equality holds if n — 1 of the numbers a; are equal to 1.

P 5.69. If ay,as,...,a, are positive real numbers so that aias---a, =1, then
1 1
— < 1.
vai+ax+---+a, —n i+i+"'+i_”

(Vasile C., 2006)

Solution. Let
1 1 1
A=ar+as+---+a, —n, B=—+—+--4+——n.

By the AM-GM inequality, it follows that A > 0 and B > 0. According to the preceding P 5.68,
the following inequality holds

—n—1>+a1~~an+1+—22,

1
(a1+...+an+1_n_1) (__|_..._|_
al...an+1

3] Ap+1

which is equivalent to

> 2

Y

An+1 An41

(A—1+an+1)<B—1+ )+an+1+

+ Bapy1 + AB—A— B > 0.
An+41

Choosing

A
aTL+1 - E?
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we get
2VAB+AB—-A—-B >0,
2
AB > (JZ VB ) ,
1>‘ 1 1 |
~ VA VBl
O
P 5.70. If ay,as,...,a, are positive real numbers so that aias---a, =1, then

n%(n — 2 1 1 1
ai ' +ay T 4 al T + (n—2) >n—1)—+—+--+—].
ap+ag+---+ay ap a2 an

Solution. For n = 2, the inequality is an identity. Consider further that n > 3. According to
Corollary 5 (case k =0),if 0<ay3 <as <---<a, and

a; + as + -+ a, = fixed, aias - a, =1,

1

then the sum ai™ ' +ay ™'+ +a?"! is minimum and the sum — + — + -+ + — is mazimum
aq a9 (07%

for 0 <ay; <ay=---=a,. Thus, we only need to prove the homogeneous inequality

2(n — agas-- - a, 11 1
a’f_1+ag_1+"'+az_1 n(n )(11&2 a Z(n—l)alaz“'an(_+_+"'+_)
ar+ag+---+a, a; Qo a,
for ay = - -+ = a, = 1; that is, to show that f(z) > 0 for z € [0, 1], where
2

nz , 7°(n—2) 2

= TS -1

fla) a2 Oy

f’(ﬂf) _xn—3 o 7’L2
n—2 (x+n—1)%

Since f’ is increasing, we have f'(x) < f'(1) = 0 for x € [0,1], f is decreasing on [0, 1], hence

f(z) > f(1)=0.
The equality holds for ay = ay =--- =a, = 1. If n = 2, then the equality holds for a;as = 1.
O

P 5.71. If a, b, c are nonnegative real numbers, then

—1
(a+b+c—3)*> abe

— —(a®+ b 2 _3).
_abc+1(a+ te )

(Vasile C., 2006)
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Solution. For a = 0, the inequality reduces to
b2+ +bc+3 > 3(b+c),

which is equivalent to
(b—c)*+3(b+c—2)*>0.

For abc > 0, according to Corollary 5 (case k = 0 and m = 2), if
a+b+c= fixed, abc = fized,

then
Sy =a*+ b+ ¢

1s minimum and maximum when two of a,b, ¢ are equal. Thus, we only need to prove the desired

inequality for a = b; that is,

a’c—1

a?c+1

(2a +c—3)* > (2a* + ¢ — 3),

which is equivalent to
(a — 1)*[ca® + 2¢(c — 2)a + ¢* — 3¢+ 3] > 0.
For ¢ > 2, the inequality is clearly true. It is also true for ¢ < 2, because
ca® +2c(c—2)a+c —3c+3=cla+c—2)*+(1—c)?@B—c)>0.

The equality holds if two of a, b, c are equal to 1.

P 5.72. If ai,as,...,a, are positive real numbers so that ay + as + - -+ + a, = n, then

Lo 2 2 2
1 n = 1t.
(arag---ay)vr—T(aj+ay3+---+a,)<n

n

(Vasile C., 2006)
Solution. For n = 2, the inequality is equivalent to
(aray —1)* > 0.
For n > 3, according to Corollary 5 (case k =0, m =2), if 0 <a; <ay <---<a, and
ap+ay+---+a,=n, aias - - a, = fived,

then the sum
So=a?+alt-+a?

is maximum for a; = ay = -+ = a,_1. Lherefore, we only need to prove the homogeneous
inequality

(alaz...a/n)\/m. ng

1 a%—l_a%_f_..._’_a/z (a1+a2+...+an>2+ n—1

n n
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for a; = ay =--- = a,_1; = 1. The inequality is equivalent to f(x) > 0 for x > 1, where

)= (2+

n | r+n-—1 Inz | 2 4+n—1
n — —In———.
vn—1 n vn—1 n

Let

Since

f(z) is increasing for > 1, hence
f(z) = f(1) =0.
The equality holds for a; = as =---=a, = 1.

Remark. For n = 5, from the homogeneous inequality above, we get the following nice inequal-
ities:

e Ifa,b,c,d, e are positive real numbers so that

a®+ b+ dP e’ =5,

then
(a) abede(at + bt + ¢t + d* + et) < 5;
(b) a+b+c+d+e>5Vabede.
O
P 5.73. If ai,as, ..., a, are positive real numbers such that a; +as + ---+a, =n — 1, then

 on—1 > 4 a?+ai+--+a2
a1 Ay n(n —1) ’
(Vasile Cirtoaje and KaiRain, 2020)

Solution. For n = 2, we need to show that a; + ay = 1 involves

which is equivalent to
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For n > 3, write the inequality in the homogeneous form

a4ay+-+a\° [ n—1 > 4 a?+ai+---+a2
n—1 a1 Qp n(n —1) '

According to Corollary 4, for a; + as + -+ + a, = fized and a} + a3 + --- + a? = fized, the

product ajas - - - a, is maximum for a; = ay = --- = a,_1 < a,. Due to homogeneity, we may set
a1 = as = --+- = a,_1 = 1, when the inequality becomes
Az +n—1)?

>Va2+n—1,

W

where
A= Vi , x> 1.
A(n — 1)Bn-2)/@n)

The inequality is true if f(x) > 0, where
1 1,
f(x)=InA+2In(z+n—-1)— —Inz — Eln(a; +n—1).
n

From
2 1 T

FO = =1 e @Aao1
(n—1)[z=(n+1)2*+ 2n— 1)z —n+1]
nr(x+n—1)(x2 +n—1)

_ (n—1)(x—-1)*z—n+1)
nr(z+mn—1)(x2+n—1)

I

it follows that f is decreasing on [1,n — 1] and increasing on [n — 1, 00), therefore

flz)> f(n—1)=0.

n—1
The equality occurs for a; =ay =--- =a,_1 = = and a, = 5 (or any cyclic permutation).

2
O

P 5.74. If a1,aq,...,a, are positive real numbers so that a3 + a3 + -+ + a3 = n, then

a; +as+ -+ a, >n"Vaay - a,.
(Vasile C., 2007)
Solution. For n =2, we need to show that a} + a3 = 2 involves (a; + az)® > 8ajay. Let
T = ay + as.

From
2 =a’ +a) =1 — 3a,ay7,
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we get

x3 -2
a0y = )
102 3
Thus,
3 _ _ 9\2(9..2
(a1 + 02)° — Sayaz = o — 8(z® —2) _ (x —2)%(3z° + 4o + 4) > 0.
3T 3x

For n > 3, according to Corollary 4, if 0 <a; <as <---<a, and

a;+as + -+ a, = fived, ai+as+---+ad=n,

then the product
P=aias---a,

1s maximum for a; = ay = --- = a,_1. Therefore, we only need to prove the homogeneous
inequality
(a1+a2+---+an>n+l i,/ai’+oz£3+---+ag
= ayag - ap
n n
for a; = ag = --- = a,—1 = 1. The inequality is equivalent to f(z) > 0 for z > 1, where
r+n-—1 1. 284 n—1
=n+l)h————-—Inor—-In——.
fz)=(m+1)In - nz—zln "
Since
n—+1 1 x?
@) - -

T z+n—1 2 2d+n-1
_ m—D(x—-1)(2*-22—2x+n-1)
r(x+n—1)(x3+n—-1)
(n—1)(x—-1)(23—2>—x+1)
r(r+n—1)(x3+n—1)
DD+
r(x+n—1)(x*+n—-1)

f(z) is increasing for « > 1, hence
flz) = f(1) = 0.
The equality holds for ay =as =---=a, =1

P 5.75. Let a,b, c be nonnegative real numbers so that ab + bc + ca = 3. If

In4
k>2— — ~0.738
- In3 '
then
a® + ¥+ & > 3.

(Vasile C., 2004)
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Solution. Let

By the power mean inequality, we have

ak 4 bk 4k - (a?”+b7“+cr)’“/’“
5 > .

Thus, it suffices to show that
a"+b" +c" > 3.

Since
2(ab + be + ca) = (a+ b+ c)* — (a* + b* + ),

according to Corollary 5 (case k =2, m=71), ifa < b < ¢ and
a+b+c= fixed, a> + 0+ = fized,

then
Ss=a +b" +c"

1s minimum for either a =0 or 0 <a < b=c.

Case 1: a = 0. We need to show that bc = 3 implies b" + ¢" > 3. Indeed, by the AM-GM
inequality, we have

b4 ¢ > 2/(be)m = 2-3"2 = 3.
Case 2: 0 < a < b= c. We only need to show that the homogeneous inequality

ab—l—bc—l—ca)r/2

T bT T>3
a + +c_< 3

holds for b = ¢ = 1; that is, to show that a € (0, 1] involves

2 1 r/2
M+223(“+ ) ,

which is equivalent to f(a) > 0, where

=1 -1
The derivative ) (@
ra"” r rg(a
f/(a) - - = d-r(r ’
a+2 2a+1 a'""(a"+2)(2a+1)
where
gla)=a—2a""" +1.
From

2(1—1r)

!
—1—
g'(a) e

Y
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it follows that ¢’'(a) < 0 for a € (0,a;), and ¢'(a) > 0 for a € (ay, 1], where
ap = (2 —2r)Y" ~ 0.416.

Then, g is strictly decreasing on [0,a;] and strictly increasing on [a1, 1]. Since ¢g(0) = 1 and
g(1) =0, there exists as € (0,1) so that g(az) =0, g(a) > 0 for a € [0,a3), and g(a) < 0 for a €
(ag,1]. Consequently, f is increasing on [0, az| and decreasing on [ag, 1]. Since f(0) = f(1) =0,
we have f(a) >0 for 0 <a < 1.

In 4
The equality holds fora=b=c=1. It k =2 — 111_3’ then the equality holds also for
n

a=0, b=c=+3
(or any cyclic permutation).

Remark. For k = 3/4, we get the following nice results (see P 3.33 in Volume 1):

e Let a,b,c be positive real numbers.
(a) If a*b* + b*c* + cta = 3, then
a4+ b+ > 3.
(b) If a®+b*+ =3, then

a*bt + bt + ctat < 3.

P 5.76. Let a,b, c be nonnegative real numbers so that a +b+c = 3. If

k>ln9—1n8N

—— =~ 0.2
“In3—1n?2 0.29,

then
a + ¥ + F > ab + be + ca.

(Vasile C., 2005)

Solution. For k > 1, by Jensen’s inequality, we get

b F 1
a® +0F +cF >3 (%) =3= g(a—i—b—f—c)Q > ab + bc + ca.
Let
In9 —1Ing
=
In3 —1n2
Assume further that
r<k<l,

and write the inequality as

2(a" +0F + M)+ a* + 02+ 2 > 9.
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By Corollary 5, if a < b < ¢ and
a+b+c=3, >+ +c = fived,

then the sum
Sy =a® + b +F

18 minimum for either a = 0 or 0 < a < b = ¢. Thus, we only need to prove the desired inequality
for these cases.

Case 1: a = 0. We need to show that b+ ¢ = 3 involves b* 4 ¢* > be. Indeed, by the AM-GM
inequality, we have

b+ F —be > 2(be)*? — be = (be)*? [2 — (be)' /2]

> oyt |2 - (bgc)z_k] = (be)2 [2 - (;)H]

> (bo)2 |2 — (2)2_] _0

Case 2: 0 < a < b=c. We only need to show that the homogeneous inequality

a+b+c

(ak—l—bk—i-ck)( 3

2k
> > ab+bc+ ca

holds for b = ¢ = 1; that is, to show that a € (0, 1] involves

9\ 2-F
(ak—|—2)<a—§ ) > 2a + 1,

which is equivalent to f(a) > 0, where

2
fl@) = +2)+ 2 — k)2 n(2a+ 1).
We have e "
12— 2 2
f’(a) — a + _ — — g(a) 7
a+2 a+2 2a+1 a*a*F+2)(2a+1)

where

gla) =a®+ (2k = Da+k +2(1 — k)a** — (k +2)a' ™,
with

d(a)=2a+2k—1+2(1-k)2—k)a"*—(k+2)(1—k)a ",
g"(a) =2+2(1—k)*2—Kk)a* +k(k+2)(1 - k)a .
Since ¢” > 0, ¢ is strictly increasing. From ¢/(0;) = —oco and ¢'(1) = 3(1 — k) + 3k > 0, it
follows that there exists a; € (0,1) so that g’'(a1) =0, ¢’(a) < 0 for a € (0,a1) and ¢'(a) > 0 for

a € (ay,1]. Therefore, g is strictly decreasing on [0, a1] and strictly increasing on [ay, 1]. Since
g(0) = k > 0 and g(1) = 0, there exists as € (0,a1) so that g(as) = 0, g(a) > 0 for a € [0, az)
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and g(a) < 0 for a € (as, 1]. Consequently, f is increasing on [0, as] and decreasing on [ag, 1].
Since

2 2
f(O):ln2+(3—k)ln§21n2+(3—7‘)1n§:0

and f(1) =0, we get f(a) >0for 0 <a <1

In9 —1In8
The equality holds fora =b=c=1. If k = 1113—1112, then the equality holds also for
n3 —1In
3
a , c=3
(or any cyclic permutation).
m
P 5.77. If ay,as,...,a, (n>4) are nonnegative numbers so that ay; + as + - - - + a, = n, then
1 1 1
n <1.

n+1—asas---a, n+1—asas---aq n+1—aay - a,_1

(Vasile C., 2004)

Solution. Let a; < ay <---<aq, and

1 n—1
n—1 — 1 .
€n—1 ( +TL—1>

By the AM-GM inequality, we have

(a2+a3+"'—|—an>n1 <a1+a2—|—---+an)n1
(203 - Ap < < =ep_1,
n—1 n—1

hence
n+1l—agaz---a,>n+1—e,1=MnN—-2)+B3—e,_1)>0.

Consider the cases a; = 0 and a; > 0.
Case 1: a; = 0. We need to show that ay + a3 + -+ - + a,, = n involves

1 n—1
+ <1,
n+1—asas---a, n-+1

which is equivalent to

n+1
asas -+ a, < 5

Since

n—1
as +as+---+ay
= €n-1,

a2a3"'an§(
n—1

it suffices to show that
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For n = 4, we have

n+1 7>0
—ep 1= — :
2 Y
For n > 5, we get
1
nt >3 >e,-1.

Case 2: 0 < a; <ag <---<a,. Denote
ajag - - a, = (n+ 1)r, r > 0.

From asas---a, <e,_1, we get

n—+1)r
a, > a, a = u > 7.
€n—1
Write the inequality as follows
a a ap,
- 2 bt <n+1,
a,—7r ag—r ap — T

1 1 1 1
- ot < -,
ay—nr ay—r Qp —7 T

Flan) + flaz) + o+ flan) + 5 20,

where )
— > a.
fl)= -, u>a

We will apply Corollary 3 to the function f. We have

F) = o
g(z) = f’ (i) = (1—56—7“13)2’ g'(x) = % > 0.

According to Corollary 3, if a < a1 <ay <---<a, and

ay+as + -+ a, =mn, ajas -+ -a, = (n+ 1)r = fized,

then the sum Sy = f(a1) + f(az) + -+ + f(ay) is minimum for a < a3 < ag = -+ = ay,.
we only need to prove the homogeneous inequality
! - ! ot ! <1
n+1_a2a3..1.an n+1_a3a4..1.a1 n+1_alaj2...1an71 =
s s sn-
forO0<a; <ay=a3=---=a, =1, where

S_a1+a2+---+an‘

?

n

Thus,
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that is,
n—1 o n—1 N
s N (n—1)s <1, _mtn 1,
m+1)sm 1 -1 (nm+1)s"t—a — n
which is equivalent to
f<8)207 81<8S17
where
n—1
S1 —
n
and
f(s)=n+ 12 —n*"+(n+1)(n—2)s"'+ns—n+1.
We have
f’(s) — 2(n2 o 1)82n73 o n38n71 + (77,2 - 1)(71, . 2)8”72 + n,
f'(s) = (n—1)s"g(s),
where
g(s) =22n —3)(n+1)s"' —n®s+ (n —2)*(n + 1),
Jd(s) =2(2n—3)(n* —1)s"% - n’.
Since
2n(2n — 3)(n+ 1
g/<8) 2 g/(81> — ( - )( ) _n3
n—1
2n(2n —;)(n +1) W n(n? —32n —6) -0,

g is increasing. There are two cases to consider: g(s;) > 0 and g(s;) < 0.

Subcase A: g(s;) > 0. Then, g(s) >0, f’(s) > 0, f"is increasing. Since f'(1) = 0, it follows
that f’(s) <0 for s € [sy,1], f is decreasing, hence f(s) > f(1) = 0.

Subcase B: g(s;) < 0. Then, since g(1) = n* — 2n + 4 > 0, there exists sy € (s1,1) so that
g(s2) = 0, g(s) < 0 for s € [s1,52) and g(s) > 0 for s € (sq9,1], f’ is decreasing on [sy, $o]
and increasing on [sg, 1]. We see that f/(1) = 0. If f'(s;) < 0, then f'(s) < 0 for s € [sy,1],
f is decreasing, hence f(s) > f(1) = 0. If f'(s1) > 0, then there exists s3 € (s1,s2) so that
f'(s3) =0, f'(s) >0 for s € [s1,s3) and g(s) < 0 for s € (s3,1], hence f is increasing on [sy, s3]
and decreasing on [s3, 1]. Since f(1) = 0, it suffices to show that f(s;) > 0. This is true since
s = s; involves a; = 0, and we have shown that the desired inequality holds for a; = 0.

The equality occurs for a; = as =---=a, = 1.

P 5.78. If a, b, c are nonnegative real numbers so that
a+b+c>2, ab+ bc+ ca > 1,

then

Ya+Vb+ Je>2.

(Vasile C., 2005)
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Solution. According to Corollary 5 (case k =2 and m =1/3),if 0 < a < b < ¢ and
a+b+c= fived, ab + bc + ca = fized,

then the sum S5 = ¢/a + Vb + /c is minimum for either a =0 or 0 < a < b=c.
Case 1: a = 0. The hypothesis ab+ bc + ca > 1 implies bc > 1; consequently,

Ya+ Vb+ e =Vb+ e >2Vbe > 2.

Case 2: 0 <a<b=c. If c>1, then
Va+ Vb + e > 23/ > 2.

If c < 1, then
Va+Vb+e>at+b+c>2.

The equality holds for

(or any cyclic permutation).

P 5.79. If a,b,c,d are positive real numbers so that abed = 1, then
(a+b+c+d)*>36V3 (a®+ b+ +d?).
(Vasile C., 2008)
Solution. According to Corollary 5 (case k =0 and m =2), ifa <b < ¢ <d and
a+b+c+d= fixed, abed =1,

then the sum
Sy =a®+ b+ +d?
is mazximum for a = b= ¢ < d. Thus, we only need to show that

(3a+ d)* > 36V/3 (3a® + d?)

for a®*d = 1. Write this inequality as f(a) > 0, where
1 , 1

fla)=4ln(3a+ =) —-In(3a®+— | -n36v3, O<a<lLl
a a

Since C12(a*—1)  6(a® —1) 6(a* —1)%(3a* — 1)

)= BT D) " a3 +1)  aBa’+ D@ T 1)

f is decreasing on [0,1/+/3] and increasing on [1/+v/3, 1]; therefore,

f(a)> f (%) 0.
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The equality holds for

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:
e Ifay,as,...,a, are positive real numbers so that aias - - - a, = 1, then
4 16 n 3n—2 2 2 2
(ot a)t = = P2 (@ a4+ ad)

with equality for

a; = Qg = " =0p—1 =

(or any cyclic permutation).

P 5.80. If a,b, c are nonnegative real numbers so that ab+ bc + ca = 1, then

V/33a2 4+ 16 + /332 + 16 + V332 + 16 < 9(a + b + ).

(Vasile C., 2006)

Solution. Write the inequality as

Fla)+ f(b) + f(c) +297(a+b+c) > 0,

where 1
flu) = —§\/33u2 + 16, u>0.
We have -
z) = f(z) = —m—,
9(x) = J'(x) 33x2 + 16
33 - 48z

1 —
9@ = GaE g

Since ¢"(z) > 0 for x > 0, g is strictly convex on [0, 00). According to Corollary 1,if0 <a <b < ¢
and
a+b+c= fixed, a> + 0+ = fized,

then the sum
Sp= f(a) + f(b) + f(c)

is minimum for either a =0 or 0 < a <b=rc.

Case 1: a = 0. We need to show that bc = 1 involves

V3302 4+ 16 + V/33c2 + 16 < 9(b + ¢) — 4.
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We see that
9(b+c) —4>18Vbc —4 =14 > 0.

By squaring, the inequality becomes
V52812 + 289 < 24¢* — 36t + 25,

where
t=b+c>2.

Since
24t — 36t + 25 > 6t% + 25,

it suffices to show that
528t% + 289 < (6t + 25)?,

which is equivalent to
(t* —4)(3t* = 7) > 0.

Case 2: 0 < a < b= c. Write the inequality in the homogeneous form

Z\/33a2+ 16(ab + bc+ ca) < 9(a+ b+ c).

Without loss of generality, assume that b = ¢ = 1, when the inequality becomes

V33a2 + 32a + 16 + 2/32a + 49 < 9a + 18.

By squaring twice, the inequality becomes as follows:

V(3302 4 32a + 16)(32a + 49) < 12a* 4 41a + 28,

72a(2a* — a* — 4a + 3) > 0,
72a(a — 1)*(2a + 3) > 0.

1
The equality holds for a = b = ¢ = —, and also for

V3

(or any cyclic permutation).

P 5.81. If a,b, c are positive real numbers so that a + b+ ¢ = 3, then

a’b? + b?? + fa® <

3
Vi abc

(Vasile C., 2006)



440 Vasile Cirtoaje

Solution. Write the inequality in the homogeneous form

a+b+c 15 a’b? + b*c? + 2a? 3
—5 > abc 3 .

Since
a’b? + b*c? + c*a® = (ab + be + ca)® — 2abe(a + b + ¢)
1
= 1(9 —a® — b* — ¢*) — 6abc,
we will apply Corollary 5 (case k = 0 and m = 2):

o [f0<a<b<cand
a+b+c=3, abc = fized,

them the sum
Sy = a? + b + 2

1s manimum for 0 < a < b=c.

Therefore, we only need to prove the homogeneous inequality for 0 < a < 1 and b = ¢ = 1.
Taking logarithms, we have to show that f(a) > 0, where

2 202 + 1
at —Ilna—3In a3—l— .

f(a) =151In

Since the derivative

15 1 12a 2(a—1)(2a —1)(4a — 1)

f/(a):a—i—Q_a_QaQ—l—l: a(a +2)(2a* +1)

. i 1 1 . 11 . . 1 1
is negative fora € | 0, 1 U 3 1 ) and positive for a € 13) f is decreasing on | 0, 1 U 3 1

1 1
—|. Therefore, it suffices to show that f (Z) >0 and f(1) > 0. Indeed,

and increasing on e
we have f(1) = 0 and

The equality holds for a =b=c=1.

P 5.82. If ay,a9,...,a, (n <81) are nonnegative real numbers so that
a4ast--+ad=a+ay+--+a’,

then
al+ay+ - +ad <n.

(Vasile C., 2006)
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Solution. Setting a, = 1, we obtain the statement for n — 1 numbers a;. Consequently, it
suffices to prove the inequality for n = 81. We need to show that the following homogeneous
inequality holds:

81(af + a3+ +a3)* > (af + a5+ - +ag)(af + a5+ + ayy)”.
According to Corollary 5 (case k =3 and m =5/2), if 0 < a1 < ay < --- < ag; and

ai + a3+ -+ aly = fizved, al +aj+ - +ay = fived,

then the sum a3 +a5+- - -—i—agl 18 manimum for a; = as = - -+ = agy < agy. Therefore, we only need
to prove the homogeneous inequality for a; = ay = --- =agg =0and fora; =ay =--- =agg = 1.
The first case is trivial. In the second case, denoting ag; by x, the homogeneous inequality
becomes as follows:

81(80 4 2°)* > (80 + 2°)(80 + %),

2" — 22% — 802° + 1622° — z* — 1602° + 80 > 0,
(z — 1)*(x — 2)*(2° + 62° + 212" 4 602° 4 752 + 602 + 20) > 0.

Thus, the proof is completed. The equality holds for a; = ay = --- = a, = 1. If n = 81, then
the equality holds also for
e g 81 af
2 4

(or any cyclic permutation).

P 5.83. If a,b,c are nonnegative real numbers so that a + b+ c =3, then

1+ VI+ a3+ 08+ 3> \/3(a2+ 02+ 2).

(Vasile C., 2006)

Solution. Write the inequality as

VI+a3+ 0+ > /3(a2+ b2+ c2) — 1.

By squaring, we may rewrite the inequality in the homogeneous form

b 2
a®+ b+ 42 (%) V3@ +b02+¢2) > (a+b+c)a® + b+ ).
According to Corollary 5 (case k =2 and m =3), if 0 < a < b < c and
a+b+c= fixed, a® + b* + ¢ = fizved,

then the sum
Sy =a®+ 0>+ &
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1s minimum for either a = 0 or 0 < a < b = c¢. Thus, we only need to prove the homogeneous
inequality for a = 0 and for b =c = 1.

Case 1: a = 0. We need to show that

b+c
3

b3+63+2( >2 307+ ) > b+ (b + )

Simplifying by b + ¢, it remains to show that

b+ c)Vb2+ 2 > 3—\2/§bc.

Indeed,

b+ VR + > (2\/@ V2be > %gbc.
Case 2: b=c=1. We need to prove that

(a+2)*/3(a>+2) > 9(a” +a+1),

By squaring, the inequality becomes

a + 8a® — a* — 6a® — 174> + 10a + 5 > 0,

(a —1)*(a* + 10a® + 18a* + 20a + 5) > 0.

The equality holds for a =b=c=1.

P 5.84. If a,b,c are nonnegative real numbers so that a +b+ c = 3, then

2
Va+b+vVb+c+vet+a< \/16+§(ab—|—bc+ca).

(Lorian Saceanu, 2017)

Solution. Write the inequality in the form

fla)+ f(b) + f(c) + \/16 + ;(ab—i- be + ca) > 0,

where
flu) = —v3 —u, 0<u<3
We have )
g(r) = f'(x) = ﬁ,
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Since ¢"(z) > 0 for z € [0,3), g is strictly convex on [0,3]. According to Corollary 1, if
0<a<b<cand
a+b+c=3, ab + bc + ca = fized,

then the sum Sy = f(a) + f(b) + f(c) is minimum for either a =0 or 0 < a < b = c¢. Therefore,
we only need to prove the homogeneous inequality

1 2(ab+b
\/a+b+\/b+c+\/c+a§\/—6(a+b+c)+ (abt be + ca)
3 at+b+c
fora=0andb=c=1.
Case 1: a = 0. We need to show that
16 2bc
b b <4/ =(b
Vb+ e+ +c_\/3( +o)+ 5

Consider the nontrivial case b, ¢ > 0, use the substitution

b c
€r = -+ ) X Z 27
c b
and write the inequality as

1 2
\/b+c+2vbc+vb+c§\/—6(b+c)+ bc,
3 b+c
16 2
Vo+2++x < \/?wr;

By squaring twice, the inequality becomes as follows:

5 1
N < —r—1 —
x(:v—l—)_gx +:c’

162* — 4823 + 3922 — 182 + 9 > 0,
(z —2)[162%(z — 1) + 7o — 4] +1 > 0.

Case 2: b=c=1. We need to prove that

2(2a +1)
a—+ 2

16
2a+1+V2< \/?(a+2)+
By squaring twice, the inequality becomes as follows:
6(a+2)v/2(a+ 1) < 2a* + 17a + 17,

da* — 4a® — 3a® +2a+1 > 0,
(a—1)*(2a +1)* > 0.

The equality holds for a =b=c = 1.
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P 5.85. If a,b,c € [0,4] and ab+ bc + ca = 4, then

Va+b+vVb+c++vVeta<3++5.

(Vasile Cirtoaje, 2019)

First Solution. Denote s = a + b+ ¢, consider s fixed and write the inequality as

fla) + f(b) + f(e) = =3 = /5,

where
flx)=—Vs—z. 0<z<s.
From . ;
g(z) = f'(z) = (s~ o)V () = S 2)752 >0,

it follows that g is strictly convex. Thus, by Corollary 1 and Note 2, the sum f(a)+ f(b) + f(c)
is minimum for either a < b=cor a = 0.

Case 1: a < b= c. We need to show that 2ac + ¢? = 4 yields

2Wa + ¢+ V2 < 3+5,
that is
2(cz2 4+ 1
A2+ | e <3+ 5.
c
From 2ac + ¢ = 4,it follows that
2
— < <2
\/g [ —_
Since v2¢ < 2, it is enough to show that
2(c2 +1
M <1+ \/3’
c
that is
- (34+V5)c+4<0.
Indeed,

A —B+Vo)e+4<E—bc+4=(c—1)(c—4)<0.
Case 2: a = 0. We need to show that bc = 4 yields

Vb+ e+ Vb +e<3+ V5.

From (4 —b)(4 — ¢) > 0, we get b+ ¢ < 5. Thus,
Vh+ e+ Vh+e< b+ c+2Vbe+ Vb + ¢

<\/5+2V4+V5=3+5.
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The equality occurs for a =0, b =1 and ¢ = 4 (or any permutation).
Second Solution(by Kiyoras-2001) Assume that a > b > ¢, denote
S =ab+bc+ca
and show that
S
f(a7b7c)§f(a7_70)§3+\/57
a
where
fla,b,c) =Va+b++Vb+c++ec+a.
The left homogeneous inequality is true because
S
f (a,—,O) - f(CL?baC) =
a
S S
= a—i-g—\/a—l—b—i- - —Vb+c+Va—+Ve+a
B £(a+0) N bf c
/(a—i—bl(a—‘rc) Iy s \/EJM/m Va++e+a
5 ¢ a(a+ ) a >0
“a\Vatct+va a+etal T
Also, the right inequality is true for S =4 and a,b, ¢ € [0,4] since a > 1 and
4
f <CL,—,O) _3_\/52
a
4 2
= - —Vh+ — -3
a+-—V5+ 7t Va
-1(1-14 2
_(a-DH{-3) +(Va—1) <1——> <0.
a+2+ V5 va
O

P 5.86. If a,b,c are positive real numbers so that abc = 1, then

() a+§+cz§/2+a2gb2+02;

(b) @+ 5+ > /30T T 0 + o).

(Vasile C., 2006)
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Solution. (a) According to Corollary 5 (case k =0 and m =2), ifa < b < c and
a+b+c= fired, abc =1,

the sum S3 = a® + b? + 2 is mazimum for 0 < a = b < c¢. Thus, we only need to show that

9

a?c = 1 involves
2a + ¢ S 3/2 4+ 2a? + c?
3 - 5 ’

which is equivalent to
1\* 1
5 (2a+—2) > 27 (2+2a2+—4) ,
a a

40a° — 54a® + 64’ + 30a® — 27a® + 5 > 0,
1)%(40a” + 26a® + 12a° + 4a* — 4a® — 12a® + 10a + 5) >

(a— 0.

The inequality is true since
12a° + 4a* — 4a® — 12a® + 10a + 5 > 2a° + 4a* — 4a® — 124° + 10a
=2a(a — 1)*(a® +4a +5) > 0.

The equality holds for a =b=c=1.
(b) According to Corollary 5 (case k =0 and m =4/3), if a < b < ¢ and
a® + b2 + & = fived, v =1,
the sum S = a* 4+ b* + ¢* is mazimum for 0 < a = b < c¢. Thus, we only need to show that
2a° + & > \/3(2a* + )

for ac =1, a < 1. The inequality is equivalent to
1\’ 1
(2(13 + _6) Z 3 (2&4 + _8) .
a a
Substituting a = 1/t, t > 1, the inequality becomes

2
(70) =35 0)
3 - t4 ’

which is equivalent to f(¢) > 0, where

f(t) =t — 3" - 4¢° — 61> + 4.

g(t) = 31 — 7' 4617 — 2,

We have
f(t) = 6tg(t),
— 14¢° + 7,

g (t) = 6t°h(t), h(t) = 8t
B (t) = 2t*(36t* — 35).

Since h/(t) > 0 for t > 1, h is increasing,

2t
h(t) =
for t > 1, f is increasing, hence f(t) > =

f()

0 for ¢t > 1.

The equality holds for a =b=c = 1.

h(1) = 1fort > 1, g is increasing, g(t) > g(1)

=0
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P 5.87. If a,b,c,d are nonnegative real numbers so that a + b+ ¢+ d = 4, then
(@ + 0+ +d*—4)(a®+ 0+ +d*+18) <10(a® +b° + 2 + d® — 4).
(Vasile Cirtoage, 2010)

Solution. Apply Corollary 2 forn =4, k =2, m = 3:
e [fa,b,c,d are real numbers so that 0 <a <b<c<d and

a+b+c+d=4, a> + b+ 2+ d* = fized,

then
Sp=ad*+b++d°
1s minimum for either 0 < a <b=c=4d ora=20.

Case 1: 0 <a<b=c=d. We need to show that a + 3d = 4 involves
(a® + 3d* — 4)(a® + 3d* + 18) < 10(a® + 3d* — 4).
This inequality is equivalent to
(1—d)*(1+d)(4—3d) >0,
(1—d)*(1+d)a > 0.

Case 2: a = 0. Let
s =04+ c*+d%
We need to show that b + ¢ + d = 4 involves
(s —4)(s+18) < 10(b* + & + d* — 4).

By the Cauchy-Schwarz inequality, we have
16

1
—(b+c+d)? =~

s >
-3 3

and
2

btct+d)(BP+E+d) > 0+ @+ d?)?, b3+c3+d325—.
4
Thus, it suffices to show that

2
(s—4)(s+18) < 10 (%-4),
which is equivalent to the obvious inequality
(s —4)(3s —16) > 0.

The equality holds for a = b= c=d =1, and also for

(or any cyclic permutation).
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P 5.88. Ifa,b,c,d are nonnegative real numbers such that
a+b+c+d=4,

then
(a* + 0+t +d)V > (PP +E+d?)(d® + 0+ +dP).
(Vasile C., 2020)

Solution. Consider the inequality
(a1 +ay+--+an)’>(ai+a3+---+a3)(a) +a3+ - +ad),

where aq, as, ..., a, are nonnegative real numbers such that a; + as + --- + a,, = n. Write this
inequality in the homogeneous form

n(af +ay+---+a)> > (ag +ag+---+ay)(@d+ai+--+a?)(a]+a)+--+add).

Replacing ay, as, ..., a, with x}/4, a:;/4, e ,x}/4, the inequality becomes

n(ry +ag+ - +x,)* >

> <$}/4+:L‘;/4+---+x71/4> <$1/2+I§/2+”_+$711/2> (m?/4+xg/4+---+xi/4).
By Corollary 5 (case k = 5/4), if

T+ 1o+ +x, = fived, 2t 4 Y = fized,

then the sums JJ}M + x§/4 to+a)t and xiﬂ + x;/z + o+ 2 are mazimum for

0<z=20="--=xp-1 < Tp.

Since the case a1 = ay = - -+ = a,_1 = 0 is trivial, it suffices to consider the case a; = ay = -+ =
an—1 = 1, when the required inequality becomes f(a) > 0, where

fla)=(a*+n—-12=(a+n—-D@+n-1)@"+n-1), a>1.

We have
f(a)l =a®—a" —a®* -~ (n—1)d°+2na* —a®* -~ (n—1)a* - (n—Da+n-—1
n_
=a’A—(n—-1)B,
where
A=ad’—a* —a®>+2a—1, B=a"—2a"+d*>+a—1.
Since
A=(a—1)*a*+ada*—1), B=(a—-1)?%*a*—a-1),
we have

fla) = (n—1)(a - 1)*g(a),
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where
gla)=a’+d° —na®* +(n—1a+n—1.

The inequality is true if g(a) > 0. For n = 4, we have
g(a) = a® +a® — 4a® + 3a + 3 > 2a° — 4a® + 2a = 2a(a* — 1)* > 0.

The equality occurs fora=b=c=d =1.
Remark 1. Since g(a) > 0 for n < 16, the homogeneous inequality is true for all n < 16.

Remark 2. Since
(a1 +ag+---+a,) (@ +ay+-+ad) <|(a+ay+ - +ay)(a] +a5+--+ad)

< (Jaa| +la| + -+ + lan)(Jar* + Jasf” + -+ + |an]”),

the homogeneous inequality is true for n < 16 and real aq, ao, ..., a,.

P 5.89. Ifa,b,c,d are nonnegative real numbers such that
a+b+c+d=4,

then
13(a® + 0> 4 ¢ + d*)? > 12(a* + b* + ¢* + d*) + 160.
(Vasile Cirtoaje, 2020)

Solution. Write the inequality in the homogeneous form
104(a® +b* + 2+ d?)? > 96(a* +b* + * +d) +5(a+b+c+d)h
According to Corollary 5, for a + b+ ¢+ d = fized and a® + b*> + ¢ + d* = fized, the sum
S=a*+b"+c+d*

is maximum when a > b = ¢ = d. Therefore, it suffices to consider this case. Due to homogeneity;,
for the nontrivial case b = ¢ = d # 0, we may consider that b = ¢ = d = 1. Thus we only need
to prove that

104(a® 4 3)* > 96(a* + 3) + 5(a + 3)*,

which is equivalent to
(a—1)*(a—9)*>>0.
1
The equality occurs fora =b=c=d =1, and also fora =3 and b=c=d = 3 (or any cyclic

permutation).
[
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P 5.90. If ay,as,...,a8 are nonnegative real numbers, then
19(a} 4+ a5+ -+ a3)> > 12(a; +ay + -+ +ag)(a} + a3 + - +a3).
(Vasile C., 2007)
Solution. By Corollary 5 (casen =8, k=2, m=3),if0<a; <ay <---<ag and
ay +as + -+ ag = fized, al+ a3+ -+ ai = fived,

then the sum
Sg=ab+ay+ -+ ap

1s maximum for a; = as = -+ = a7y < ag. Due to homogeneity, we only need to consider the
cases a; = ag = -+ =ay = 0 and a; = ag = --- = ay = 1. For the second case (nontrivial), we
need to show that

19(7 + a2)? > 12(7 + ag) (7 + af),

which is equivalent to
ag — 12a3 + 38a3 — 12ag + 49 > 0,

(a3 — 6ag + 1)* + 48 > 0.

The equality holds for a; = as = -+ = ag = 0.

P 5.91. If a, b, c are nonnegative real numbers so that

5(a®> +b* + c) = 17(ab + be + ca),

3 _ [a b [ _1+V7
/=< < .
\/7_ b+c+ c+a+ a+b = V2

Solution. Due to homogeneity, we may assume that a + b + ¢ = 9. From the hypothesis
5(a* + b* + ¢*) = 17(ab + bc + ca), which is equivalent to

then

(Vasile C., 2006)

27(a* +b* + %) = 17(a + b + ¢)?,

we get
a> +b* +c* =51,

Also, from 2(b? + ¢*) > (b+ ¢)? and
b+c=9—a, b2+ ¢* =51 —d?,
we get a < 7. Write the desired inequality in the form

14+7
N

3\/§ < Ja) + F0) + £(0) <
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where
u
= 0<u<T
We have 9
o) = () = rimg
2 2 _ 1
() 21082 — 360+ 81)
8x5/2(9 — x)7/2
Since ¢"(x) > 0 for x € (0,7], g is strictly convex on (0,7]. According to Corollary 1, if
0<a<b<cand

a+b+c=9, a>+b* + ¢ =51,

then the sum S = f(a) + f(b) + f(c) is mazimum for a = b < ¢, and is minimum for either
a=0o0r0<a<b=c.

(a) To prove the right inequality, it suffices to consider the case a = b < ¢. From
a+b+c=9, a®+b+c* =51,

we get a = b =1 and ¢ = 7, therefore

b 1 7
© 4 == VT
b+ c c+a a+b V2

The original right inequality is an equality for a = b = ¢/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the cases a = 0 and 0 < a < b = c.
For a = 0, from
a+b+c=9, a® 4+ b* 4 ¢ =51,

we get

therefore

a N [ b . c —\/Z—l— c /b+c+2_3\/§
b+c c+a a+b Ve b Ve b Vs
The case 0 < a < b = c is not possible, because from

a+b+c=9, a+b*+c =51,

we get a = 7 and b = ¢ = 1, which don’t satisfy the condition a < b. The original left inequality
is an equality for

(or any cyclic permutation).
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P 5.92. If a,b, c are nonnegative real numbers so that
8(a® + b* + ¢*) = 9(ab + be + ca),
then

19<a+b+c<141
12 " b+c c+a a+b~ 88

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 5.91. Assume that a + b+ ¢ = 15,
which involves a? + b* 4+ ¢* = 81 and a € [3,7], then write the inequality in the form

19 141
o <@+ 1)+ flo) < oo,
where
u
flu) =z <u <7
We have ) 90
9(z) = f'(x) = =15 - z)?, g'(x) = 15— )

Since g is strictly convex on [3, 7], according to Corollary 1, if 0 < a < b < ¢ and
a+b+c=15, a’+b* +c* =81,

then the sum S3 = f(a) + f(b) + f(c) is mazimum for a = b < ¢, and is minimum for either

a=0o0r0<a<b=c.

(a) To prove the right inequality, it suffices to consider the case a = b < ¢, which involves

and
a b c 141

b—l—c+c+a+a+b: 88 °

The original right inequality is an equality for a = b = 4¢/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the cases a = 0 and 0 < a < b = c.
The first case is not possible, while the second case involves

and
a b c 19

b+c+c+a+a+b_ﬁ'

The original left inequality is an equality for 2a = b = ¢ (or any cyclic permutation).
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P 5.93. If a,b,c € (0,2] such that a + b+ ¢ = 3, then

2
\/M_l +\/M_1 ek o 9
a b c vab + be + ca

(Vasile C., 2020)

Solution. Write the inequality in the form

_3\/§

f(a)+f(b)+f(0)§m,

where

We have f(0+) = —oo and
g(x) = f'(@) =222 —2)""?  g(2) = 2w - 3)a (2 - 2)7?,

Q/I(x) = (7132 — 20x + 15)1-*7/2(2 _ x)—5/2 -0

Since g is strictly convex on (0, 2), according to Corollary 1, Note 1 and Note 2, ifa > b > ¢ >0
and
a+b+c=3, ab+ bc + ca = fixed,

then the sum Sz = f(a) + f(b) + f(c) is maximum for a =2 or a > b = c. Thus, it suffices to
prove the desired inequality for these cases.

Case 1: a = 2. We need to prove the homogeneous inequality

\/M_1+\/M_1+\/M_1> 3(a+b+c)

a b c “ Vab+be+ ca
for
a=2(0b+c).

The inequality is equivalent to

%, @HZ 3v3(b + ¢) |

c b 2(b+¢)? +be
Let b+

+c
= > 1.
v 4be T

Since

\/%C+1+\/2—b+122</(2—b+1) (%+1>=2\/48x+1,
& C

the inequality becomes

3V 3z
V8r + 1

V8r + 1>
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(8 +1)% > 72922

Since
8r+12>32zx+1),

it suffices to show that
(2x 4+ 1)% > 272%.

This is true because
2 +1=z+z+1>3Va2

Case 2: a > b = c. We need to show that a + 2¢ = 3 implies

\/ 14 \/ (a~|—c)_1> 9
c ~ V2ac+ 2’

that is

1+a
\/ +2
\/ 1+a 3—a)

—a> 2(2—a) .
« T +aB-0

It is true if
1 < 22 —a
N (1+a)(3—a)’

which, by squaring, reduces to
(a—1)*>0.

1
The equality occurs for a = b = ¢ = 1, and also for a = b = = and ¢ = 2 (or any cyclic

permutation).
[

P 5.94. Let a,b,c and x,y, z be nonnegative real numbers such that
PP+ =+ 0+ 0

Then,
(a+b+c)(zx+y+2) > 3.
ab+ bc+ ca+ xy + yz + 2x

(Vasile Cirtoaje, 2019)

Solution. Assume that
rT+y+z>2a+b+c

and denote
rt+yt+z t>a+b+c

t= ; >
3 3
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Since
atbte_ztytz_ i/m: W
3 - 3 - 3 3 ’
we have
b1 <t <o,
where

a+b+c sjad + b3 4¢3
e R i

It is enough to prove the inequality

1 1
— (a+b+e)(z+y+z)>ab+be+ca+ =(x+y+2)>

3 3
For fixed a, b, ¢, we may write the required inequality as f(t) < 0, where
f(t)=3t>=V9 (a+b+c)t +ab+bc+ca

is a quadratic convex function. Thus, it is enough to show that f(¢;) < 0 and f(¢3) < 0. We
have
3f(t1) = 3(ab+ bc + ca) — (\3/5— 1) (a+b+c)?

<3(2-V0) (ab+be+ca) < 0.

To prove the inequality f(t2) < 0, we write it as
3t2 — V9 (a+ b+ c)ty +ab+ be + ca < 0.

According to Corollary 5, for a +b+ ¢ = fired and a™ + b" + " = fized, the sum a® + b? + ¢ is
minimum (hence the sum ab + bc + ca is maximum) for @ > b = ¢. Thus, due to homogeneity, it
is enough to prove the inequality for a = 1 and b = ¢ < 1. So, we need to prove that g(u) <0,

where
&+ 2c

\g/g )
u=v23+1, cel01].
Consider two cases: ¢ € [0,4/5] and ¢ € [4/5,1].
Case 1: ¢ € [0,4/5]. Since v/3 > 4/3, we have

g(u) =u* — (2c+ Du +

with

g(u) <u? — (2c+ Du+ 3(022_ 2¢) _ (2u — 30)(iu —c— 2)'

Thus, we need to show that

3¢ c+ 2
— < u< .
2 ==
The left inequality is equivalent to
8

< .
1

o
—_
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This is true since

The right inequality is equivalent to

c(2c+ 6 — 5¢%) > 0.

Case 2: ¢ € [4/5,1]. Since v/3 > 7/5, we have g(u) < h(u), where

5(c? + 2
h(u) = u* — (2¢ + 1)u + w
It suffices to prove that h(u) < 0. From
R (u) =2u—2c—1
and
64 24 -9
2u)’ — (2c+1)° =748 =126 =6 <T7—4 —6c<T— — — — == <0
(2u)® — (2¢+ 1) + 8¢ c c < c c < 555~ o5 <0
it follows that h'(u) < 0, hence h(u) is a decreasing function. Since
3
c
>14+ 2
u +3
it follows that , ) . ,
5c ¢ ¢ 4 2
huw) <h(1+S) =X+ 222
(w) < <+3> c(7+3 9 7 3)
Since
5 2 _be ¢ & 22
e

it suffices to show that

that is

Indeed, we have

4 563_2+2+503>33 20¢3 22¢
709 7 7 9 T7V49.97 21
Thus, the proof is completed. If @ > b > ¢ and * > y > z, then the equality occurs for
x a
a=b=c=—andy=z=0,andforx =y=2= and b=c=0.
v Y T

]
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P 5.95. Ifa,b,c,d are positive numbers such that

1 1 1 1
atbtct+d=—+-+—-+-,
a b ¢ d

then
ab + ac+ ad + be + bd + cd + 3abed > 9.

Solution. Write the inequality as

(a+b+c+d)?+6abed > 18 +a* + b* + > + d°

(Vasile Cirtoaje, 2019)

and apply Corollary 4 for £ = —1, and Corollary 5 for k = —1 and m = 2:

e Ifa,b, c,d are positive numbers such that

1 1 1 1
a+b+c+d= fived , -+ -+ -+ = = fized,
a b ¢ d

a<b<c<d,

then the product abed is minimum and the sum a® 4+ b* + ¢ + d? is mazimum for a =b = c < d.

Thus, it suffices to consider this case. We need to show that
3 1
a+d=—-+—
a d

involve
a®+ ad + a3d > 3.

From the hypothesis, we get

3(1 —a®) + v9a* — 14a2 + 9

d —
2a

So, the required inequality becomes as follows:

a® + (a* + 1)ad > 3,

(a® +1)vV9a* — 14a% + 9 > 3a* — 24 + 3,

(a® +1)*(9a* — 14a® +9) > (3a* — 2a* + 3)?,

16a*(a®> —1)* > 0.

The equality occurs fora=b=c=d =1.

P 5.96. If a1, as, a3, aq, a5 are nonnegative real numbers, then

(a3 + a3 + a3 + a3 + a)?
a‘{+a§+a§+aﬁ+a‘5‘

AV

a;iQj.

<J

1
2i

(Vasile Cirtoage, 2019)
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Solution. Write the inequality in the form

4(af 4 a3 + a3 + af + a3)?

+a?+ai+ai+ai+al> (a1 +as+as+aq+as)’
at + ad + ai + af + a 1@t ey it as 2 (a0t ay Fagtas as)

According to Corollary 5, for a; + ag + a3 + a4 + a5 = fized and a3 + a3 + a3 + a + ai = fizved,
the sum a? + a3 + a2 + a3 + a is minimum and the sum af + a3 + a3 + aj + a3 is maximum for
a1 = as = az = a4 < as.Thus, it is enough to show that

—4(:? _—:: Zij)2 +42* + y* > (4o +y)?,
which can be written as
425 — 825y + 83y> — 322y — 22y° +4° > 0,
(z —y)*(22”" —y*)* 2 0.
The proof is completed. The equality occurs for a; = as = a3 = a4 = as, and also for

Qs . .
A =0y =03 = Ay = — (or any cyclic permutatlon).

V2
O
P 5.97. Ifay,as,...,a, > 0 such that
ay +az +---+a, =n,

then

|
Vi + g + -+ Jan < 2n—1+2(1—5>2aia¢

i<j
(Vasile C., 2018)

Solution. Since

2 2 9 2 2 2 9 2
25 aa; = (a1 +ay+---+a,)" —aj—a;—---—a;, =n"—a]—a;—---—a

n’
1<j

we can write the inequality as

1
(\/a_1+\/a_2—l—---+\/a_n)2§n2+n—1—(1—E>(a%+a§+---—l—ai).
Now, we can apply Corollary 5 for k = 2 and m = 1/2:
e Ifay,ao,...,a, are nonnegative real numbers so that
apt+ay+-ta,=n, a+ait---+a=fived, ay<ag<---<ay,

then the sum

Vai+yay + -+ y/a,
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1s mazimum for 0 < a; = -+ =ap_1 < ay.

Thus, it suffices to show that

(n—Dz+yP<n*+n-1- <1—%> [(n — Da* + 4.

for
(n—1)2"+y*=n, 0<z<y

Write this inequality in the homogeneous form
(n +n — DI=EEEE — (0= D)0 — o' +y']

[(n—1z+1y)* < ?n "2+ g ;

which is equivalent to
(n —1)%z* = 2n(n — D2’y + (n® + 2n — 2)2*y* — 2nay® +y* > 0,

(z —y)*[(n — Dz —y* > 0.

The inequality is an equality for a; = as = --- = a, = 1, and also for a; = --- = a,_1 =
1

n—1

and a, =n — 1 (or any cyclic permutation).
O

P 5.98. Ifay,as,...,a, > 0 such that

atay+- 4 an =Y aa; >0,
i<j
then 1 9
n—1)(n—
( )2( )(a1+a2+-~~+an)+2«/ai%Zn(n_l)-

1<J

(Vasile C., 2020)

Solution. For n = 2, we need to show that a; + as = ajas involves ajas > 4. Indeed, this
follows from

ajay = ay + ax > 2\/a1a;,
Since
QZaiaj:(a1+a2+---+an)2—a%—a§—---—ai
i<j
and

2 @ty = (Var +vas + -+ ap) —a—ay — - — an,

i<j
we can apply Corollary 5 for k=2 and m = 1/2:
o Ifay, as,...,a, are nonnegative real numbers so that

a; +as + - +a, = fized , al+ay+ - +a = fived, ap <ag << ay,
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then the sum

Vai+yay + -+ yay,

is minimum for either 0 < a; < ag =---=a, ora; = 0.
Thus, it suffices to consider the case a; = 2%, ay = - - = a, = y?, 0 < x < y, and the case a; = 0.
In addition, we will use the induction method.
Case 1: a; = 2%, ay = --- = a,, = y*>. We need to show that
(n—1)(n—-2) ,

2+ (n— 1)y = (n— Day? +

B Y

implies
(n—2)
2
which can be written in the homogeneous form

n—2
[$2+(n—1)y2]+:vy+—( 5 >y22n,

2(n — 1)a*y* + (n—1)(n — 2)y4‘

2 2
(n = 2)a” + 2zy +n(n = 2)y" > n z? + (n —1)y?

For y = 1, the inequality becomes
(22 +n—1D)[(n —2)2* + 22+ n(n — 2)] > 2n(n — 1)2* +n(n —1)(n — 2),
(n —2)z* +22° — (3n — 2)2* + 2(n — 1)a > 0,
z(z —1)?[(n —2)x +2(n—1)] > 0.
Case 2: a; = 0. We need to show that

a2+a3+..-+an:Zaia3~>O (1)
2<i<j
involves 1 9
n— n—
( )2( )(a2+a3—|—-"+an>+ Z /aiajZn(n—l). (2)
2<i<j
From
(a2+a3+.--—|—an)2 < (n—l)(a§+a§+---+a2)
= (n—1)(az+az+---+a,)’ =200 1) Y aa,
2<i<j
we get

(n—2)(ag+as+---+a,)? >2(n—1) Z aa; =2(n—1)(as +as+--- +ay),
2<i<j
hence

2(n—1
a2+a3—|—~~—|—an2M. (3)
n—2

On the other hand, by the induction hypothesis, (1) involves
—2)(n—3
(n )2(” J(as+ ag + -+ an) + N Vag > (n—1)(n-2).

2<i<j
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According to this inequality, (2) is true if

n—1)(n—2 n—2)(n-3
( >2( )<a2+a3+~--+an>+<n—1)(n—2>— : )2< )<az+a3+-~-+an>
>n(n—1),
which is equivalent to (3).
The inequality is an equality for a; = ay = -+ = a, = 1 and also for a; = 0 and
2
Ay =a3 ="+ =a, = (or any cyclic permutation).
n JR—
O
P 5.99. Let

F(ay,as,...,a,) =n(al +a5+--+a)— (a1 +ay+ - +a,)?,
where ay, as, ..., a, are positive real numbers such that a; = min{ay, as,...,a,} and
aila3+az+---+a2)>n—1

Then,

(Vasile C., 2020)

Solution. Assume that a; < ay < --- <a,. For n = 2, we need to show that a;as > 1 involves

(afa3 — 1)(a1 — az)* > 0,

1 1 1
which is clearly true. For n > 3, since F(ay,as,...,a,) > 0 and F (—, — .. .,—) > 0, it
ap Gz an
suffices to prove the homogeneous inequality
2.2 2
ajilas +---+a 1 1 1
F(ay,as,...,a,) > 1(92 ")-F(—,—,...,—)
n—1 ay G n,
for a; < ay < -+ < a, and without the inequality constraint a?(a3 + a§ +-+a2) >n-—1
Due to homogeneity, we may set a; = 1, hence 1 < ay < --- < a,,. Thus, we need to show the
inequality
2 2
as+---+a 1 1
F(las,....a) > LF(l——)
n—1 Qo an,

which is equivalent to

S
n(1+52)—(1+a2+---+an)2—n_gl-[n(1+22)—(1+—+~~+—)2] >0,
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1 1
where Sp = a3 +---+ a2 and By = — + - + — - We will show first that the left hand side of
a a

2 n
the inequality increases when Sy increases. This is true if

1 1

- n(l+%) —(1+—+--+—)* >0.
n— as ap,
By Lemma bellow, it suffices to show that
1 n?
= — >0
n—1 4 — 7
which is clearly true. So, the left hand side of the inequality increases when S, increases and
when Y5 decreases. According to Corollary 5 (case k = —1), we have:
e Ifas,as,...,a, are positive real numbers so that
. 1 1 1 _
as+az+---+a, = fized, —+—+--4+—=fized, ax<az<---<ay,
(05} as Qp
then the sum Sy is minimum and the sum Yo is mazimum for ay < ag = --- = a,.
Thus, it suffices to consider the case 1 < as < a3 =---=a, := x. We need to show that

n[l4+a;+ (n—2)2*] —[14+ay+ (n—2)z]* > A

1 n-—2 1 n—2\2
n(l+5+——)—(1+—+ ,
as x as x
az + (n — 2)2?

x
. Write this inequality as follows

where A =
n—1

(a3—1)%+(n—2)(x—1)>+(n—2)(as—2)> > A [(GQ—QU L= =12 (n=2)(a —x) 1

(ag — 1) <1 — %) +(n—2)(z —1)? (1 - %) + (n — 2)(ay — z)? (1 - ag;) > 0.

Since a3z? > A, it suffices to show that

(n —2)(z —1)? (1—%) > (ay — 1)? (%—1),

(1 _ %)Q(ﬁ —ad) > (1 - %)2(902 — a3),

1
The equality occurs for ay =as =---=a, >1and for —=ay=---=a, > 1.
a

1.e.

which is true.

Lemma. If 1, 2,...,z, € [0,1], then

nl+zs+- - +22)—1+zp+-+12,)2 <
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Proof. Since the function f(z) = z? is convex on [0,1], the left hand side of the inequality is
maximum when x, zs, ..., z, € {0,1} (see P 2.104 from Volume 1). Assuming that m numbers
x; are 1 and the others are 0, it suffices to show that

o _
n(l+m)—(1+m) SZ‘

Indeed,

2

n 9 ny\ 2
T —n(l+m)+(1+m) :<1+m—§> > 0.

Remark. Since a;(as+az+---+a,) > n—1yields a}(a3+a3+---+a2) > n—1, the inequality
is also true for
ar(ag+az+---+a,) >n—1

In addition, it is true in the particular case

al,ag,...,anZI.

P 5.100. Let
F(ay,ag,...,a,) = a1 +as+ -+ a, —nJajay - ay,
where ay, as, . . ., a, are positive real numbers such that a; = min{ay, as,...,a,} and
ar(as +az+---+a,) >n—1
Then,
1 1 1
F(ay,aq,...,a,) > F(—,—,...,—) )
ay’ as a,

(Vasile C., 2020)

Solution. Assume that a; < ay < --- <a,. For n = 2, we need to show that a;as > 1 involves

(a2 — 1) (var — az)* > 0,

which is true. For n > 3, the inequality has the form

1 1 1 n
a+ay+--+a, —nYaag---a, > —+ —+ - — — —— .
! 2 12 aq ag an /a1ag - - Ay
According to Corollary 5 (case k = 0 and m = —1), we have:
o Ifas, as,...,a, are positive real numbers so that
as +as+---+a, = fized , asasz -+ - a, = fixed, ay <az<---<a,,
1 .
then the sum — 4+ — 4+ - -+ + — is maximum for as < az = -+ = ay,.

a2 a3 anp,
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Thus, we only need to show that

1 1 n-2 n
r+y+(n—2)z—n{ryzn"2>—+ -+ -
( ) T Y z n xyznf2

for 0 <z <y < zand z[y+ (n—2)z] > n— 1. Since both sides of the inequality are nonnegative,
it suffices to prove the homogeneous inequality

-2 1 1 -2
x—i—y—{—(n—Q)z—n\"/xyz"*?} Za;[y+(n )] Z4o4 1l - - ;
n—1 Ty z o wy2n—?

that is

(n=1) [z +y+ (n—2)z = ni/ayz2] >

R R 5 U VR MR FTy
yz v

>y+(n—2)z+

For fixed y and z, write this inequality as f(z) > 0, z € (0,y]. We will show that

flx) = fly) 20
To prove that f(z) > f(y), we show that f'(z) <0, which is equivalent to

Jyz" 2 [y 4 (n—2)2][(n — 2)y + 2] +(n— 1)y+(n—2)2

oo yz oyt

y+(n—2)z

/xyzn 2

n—1—(n-1) <0,

yzn—Q
-1

(n—2)( + - +n—3)+(n—1)” >(n—1)

)
By the AM-GM inequality, we have

x?’l

n yzn—2

>

z xn—l

n—2 n—2
n— z n Z
> (n—1) \1/(%+§+n—3) (n—1) yxn_l .

Thus, it suffices to show that

n—2 n—2 -9
"§/<Q+f+n—3> (- syt 2z
z oy xn Y xyzn—2

(n—2)~(g+§+n—3)+(n—1)

which is equivalent to

n—2
(n—1) <%+§+n—3> yz" 2>y + (n—2)2"" .

Due to homogeneity, we may set z = 1, when the inequality becomes

(nﬁ_ 1)Ay Z:y_Frl_'Qa
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where

1 —3\"?
:<y+y_{_yn+_n2 > , 0<y <L

By Bernoulli’s inequality, we have

A:(1+1/y—_1)n_221+<”—2)(1/y—1) Y42

y+n—2 y+n—2 S yly+n—2)°

hence
(n—1)(y*+n-2)

y+n—2

_ (=2 -1
y+n—2 =

(n—1Ay—(y+n—2)>

—(y+n—2)

The inequality f(y) > 0 has the form

2y+(n—2)z_nWZy[y+(n—2)z] [§+n—2_ N ]

n—1 y z W

Due to homogeneity, we may set z = 1 (hence 0 < y < 1), when the inequality becomes

—2) (2
2u+n—2—ny/y? > yly +n )<—+n—2— n )
Y

n—l nyQ

Denoting
t =y, 0<t<,
we need to show that g(t) > 0, where

gt) = (n —1)(2t" —nt* +n —2) — (t" +n — 2)[(n — 2)t" — nt""% 4 2

—(n =2+t 2 — (n—2)(n —At" +nn—2)t" 2 —nn - D>+ (n—2)(n —3) .

For n = 3, we have
g(t) =t(1 —1)*(3+3t+1*) >0,

and for n = 4, we have
g(t) =2(1 — )31+ %) > 0.
For n > 5, we have
g'(t) = ntgi(t),
gat)==2n—-2)t""242(n — 1)t*"* — (n—2)(n —4)t" 2+ (n —2)*t"* —2(n — 1),
gty =n—-t"°(1 —tHdn - Dt"+n—-2] >0,

hence ¢ () is increasing, ¢1(t) < ¢1(1) =0, ¢'(¢t) <0, g(¢) is decreasing, g(t) > g(1) = 0. Thus,
the proof is completed. The equality holds for a; = as =--- =a, > 1.

Remark 1. Since a} ‘asas - --a, > 1 yields ai(ay + as + - -+ a,) > n — 1, the inequality

1 1 1
F(al,ag,...,an)2F(—,—,...,—)
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is also valid if ay, as, ..., a, are positive real numbers such that
ay < ay < -0 < ap, altagaz - a, > 1.
Also, it is valid in the particular case
ay1,ag,...,0a0, > 1.

Remark 2. Since aqas---a, > 1, from P 5.100 it follows that

1 1 1
a1+a2+...+an2_+_+...+_
aq (05} Qp,
for
al(a2+a3+---+an)2n—1.
O]
P 5.101. Let
F(a1,a2,...,an):\/a%+a%+“.+a%_a1+a2+“.+ana
n n
where ay, as, . . ., a, are positive real numbers such that a; = min{ay, as, ..., a,} and
n—1
al " (ag+as+---+a,) >n—1.
Then,
1 1 1
F(al,ag,...,an)ZF(—,—,...,—).
ap ag Qn

(Vasile C., 2020)

Solution. Assume that a; < ay < --- <a,. For n = 2, we need to show that a;as > 1 involves

(ara2 — 1)(y/2(af + a3) — a1 — az) > 0,

which is true. For n > 3, write the inequality in the form

V@ + a3+t a2) — (@t ast o+ ay)

11 1 11 1
>yn|5+5++5)|——+—++—2>0.

ai a3 a?

According to Corollary 5 (case k = —1), we have:

e I[fas,as,...,a, are positive real numbers so that

1 1 1
ay+az+---+a, = fived, —+—+---+— = fived, ay<az<---<ap,
Qo as Qp
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1 1 1

then the sum a3 + a3 + --- + a2 is minimum and the sum — + — + -+ + — s mazimum for
a; aj a

Ay < a3 =+ = A, '

Thus, it suffices to consider the case as < a3 = -+ = a,. We need to show that if x,y, z are

positive real numbers such that x <y < z and
"y +(n—2)z] 2n—1,

then E(x,y,z) > 0, where

T4yt (n—2)

Jn

1+1+n—2+1 1+1+n—2
x2 2 22 vn\r gy z '

E(z,y,2) = /a2 + y* + (n — 2)2?

We will show that

where
w -_—

r<y<w<z.
n—1

Write the inequality F(z,y, z) > E(z,w,w) as follows:

v+ (=22 — (n— Do’ L (Lyn=2 n-ld
\/x2+y2+(n—2)z2+\/x2+(n—1)w2+\/ﬁ< >

Y 2 w
e

> — :

= =
(n=2)(y —2)* 1 (=2 = 2)
n—1 Va4 y?+ (n—2)2+ /22 + (n— Dw?  Vnyzly + (n —2)2]

- (n—2)(y —2)*[y* +2(n — yz + (n — 2)2°] 1

= 2,2 _ 2 ’
Y222y + (n —2)7] w_lz_i_y%_i_n;Q_i_\/x%_i_nw_—zl

which is true if
1 1 n 1
n—1 a2 4+y2+(n—-2)2+/22+ (n—Dw?  Vnyzly + (n — 2)7]

y>+2(n—1)yz + (n — 2)2? 1
2.2 — 2 :
Y222y + (n — 2)z] x%+y%+n;2+\/x%+nw_721

Since x < y, it is enough to show that

1 1 1
n—1 ot D2 P Dwt | Vayly + (n—2)7]
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y>+2(n—1yz + (n— 2)2?

VA -2

In addition, since w < z, it suffices to show that

1 1 1
n—1 V292 + (n—2)22 + /y2+ (n — 1)22 " Vnyzly + (n — 2)7]

y>+2(n—1)yz+ (n— 2)2? 1
Y222y + (n— 2)z]? 2 n-2 \/i | nl '

Since
Y’ +2(n—1yz+ (n—2)2° = [y* + (n — 2)2%] +2(n — 1)yz,
we rewrite the inequality as

A+B>C+D,

where

1 1
n—l‘\/2y2+(n—2)z2—|—\/y2+(n—1)z2
1

Vﬁwb+&n—®4’
I @f
222y + (n—2)2 \/

A:

B =

2(n —1)yz
y 222y + (n — 2)z

We will show that
A>C, B> D.

Since the inequality B > D is homogeneous, we may consider y = 1 and z > 1, when it
becomes

[(n—2)z+ 1] [\/222—|—n—2—|—\/22+n—1 > 2v/n(n — 1)z

Since

224+n—2 z4+n-—-1 3z+2n—3

i

V222 4+n—24+V2+n—1>
it is sufficient to show that
[(n—2)z+1)(3z +2n —3) > 2n(n — 1),

which is equivalent to
(z— 1D)[3(n —2)z+2n* — 4n + 3] > 0.

To show that A > C, we see that 2" [y + (n — 2)z] > n — 1 yields

V' + (=22 =n— L
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Thus, it suffices to prove the homogeneous inequality

n—1 ) 2/n
A> G, Ooz{y [y:_(n1 )z]]

I

that is

Co
2 2 - n— n—
Y222y + (n — 2)z] /y_z2+ Z22+ y%“‘ 221

Due to homogeneity, we may set y = 1, hence z > 1. The inequality becomes

V222 4n—2+V224n—1>

(n—1)[1+ (n—2)2%Cy
= T (n—2)P [

2+ (n—2)22+ n—1)22] :

where

o [1+(n—2)zr/n_

n—1

By Bernoulli’s inequality, we have

Ci = |1+

(n—2)(z—1)r/n<1+2(n—2)(z—1) C2(n—2)z+n®—3n+4)
n—1 -

nin—1) n(n —1)
Thus, it suffices to show that

V222 4n—2+V224n—1>

S L+ (n—2) 1[[12<n(— 2);;]7; e EaTE RN T el

We will show that

A T3> 1+ (n—2)2%[2(n — 2)z +n? — 3n + 4] (S

nz[l+ (n — 2)z]?

and

R e e (e

Since
222 +n —2 Z4n—-1 (n —3)(z%2 —1)? -0
(n—1224+1 (n—2)224+2 [n—-122+1][n—-2)22+2] =’
it suffices to prove the second inequality. After squaring and making many calculations, this
inequality can be written as (z — 1)P(z) > 0, where P(z) > 0 for z > 1.
To complete the proof, we need to show that E(z,w,w) > 0 for 2" 'w > 1. Write the
required inequality as follows:

Vil + (n— Dw?] - [z + (n - D] > \/n [é+ nwzl} - (§+ n;1> |
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(n—1)(z —w)? S 1 (n—1)(z —w)?
\/:C2 (n—1) w2—|—w T aw \/(n—l)x2+w2+(”_\l/)g+w :
This is true if
\/(n—l)x2+w2+%2— [\/x2 n—1w2+$+(7f/ﬁ ”“”]

Since 2" tw > 1, it suffices to prove the homogeneous inequality

(n—1)x+w - (2" Lw)?/m

vn - Tw

Due to homogeneity, we may set w = 1, which yields < 1. The inequality becomes

Vin—1Da? +w? + [\/x2 + (n—1w? +

—1 1 n— —1
(7’L—1)3172+1+%2xn2 |:\/£L'2+TL—1+%:| :

We can get this by summing the inequalities
(n—1)z2+1 >z Vil tn—1

and
(n—1)x+1 > g2 x—i—n—l.
Vn - NLD
Replacing x with 22 in the second inequality gives the first inequality. Thus,it suffices to prove
the second inequality, which can be rewritten as f(x) > 0, where

fl)y=l[n-Dz+1]—In(z+n—-1)—

From

o n—1 1 n—2_ —(n-1)(n-2)(x—1)
f(x)i(n—l)x—irl_x—irn—l_ nx 7n$[(”—1>“’+1]$+n_1)§07

it follows that f is decreasing, hence f(x) > f(1) =
The proof is completed. The equality holds for a; = as =---=a, > 1.

Remark. The inequality

1 1 1
F(al,aQ,...,an)EF(—,—,...,—)

a1 a2 ap,

is also valid in the particular case
ay,as,...,a, > 1.
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P 5.102. If ay,aq,...,a, (n > 4) are positive real numbers such that

a +as+ - +a, =n, a, = max{ay,as,...,a,},
then

1 1 1 9 9 9

n|{—+—+---+ >4(a] +a3+---+a;)+n(n—>5).
3] a2 Qp—1
(Vasile C., 2022)
Solution. Assume that a, is fixed and a; < ay < -+ < a,. According to Corollary 5 (case
k =2 and m = —1), we have:
o Ifay,as, ..., a,_1 are positive real numbers so that

a+ay+ -+ a,1 = fized,  ai+a;+--+apy = fived, a1 <ag <o < g,

1 1
then the sum — + — 4 -+ +
ai a2 Ap—1

18 manimum for a; = as =+ = Ap_9 < Ap_1.

Therefore, it suffices to consider the case a; = as = - -+ = a,,_», that is to show that F'(a,b) > 0,
where

Fla)=n

-2 1
n +z)—ﬂn—mf—4¥—&¥—Mn—m, c=n—(n—2a-b,

a
with a, b positive real numbers such that a < b < ¢. From ¢ > b, we get
(n—2)a+2b <n.

We will show that
F(a,b) > F(t,t) >0,

where
t:w’ t<1.
n—1
Since o 1 1 o 2
F(a,b)—F(t,t):n( - —1—5— " )—4[(71—2)@ + b — (n— 1)¢]
_ n(n—2)(a—"b)> 4(n—-2)(a—0b)?
(n — 1)abt n—1
- n(n —2)(a —b)? _A(n - 2)(a — b)?
~ (n—1)ab n—1
:(n—Z)(a—b)Q(n—élab)
(n—1)ab ’

it suffices to show that 4ab < n. From

n > (n—2)a+2b>2/2(n—2)ab,

we get
n? n(4 —n)
4ab—n< ————n=—-—"><0.
CTNEom g " T a2 =



472 Vasile Cirtoaje

In addition,

-1
F(t,t) = % —4(n — 1) —4n — (n — DIJ? — n(n — 5)
_ n(n —1)(1 ; t)(1 —2t)? > 0.
The equality occurs for a; = as = --- = a, = 1, and also for
o B 1 o n+1
a; = az = —%4—2, ap = 5
m
P 5.103. If ay,ao,...,a, are positive real numbers such that
ay +az + -+ ap =M,
then
1 1 n(n —1)2

(Vasile C., 2022)

Solution. For n = 2, the inequality is an identity. Consider further that n > 3 and a; < as <
- < a,. By Corollary 5 (case k =2 and m = —1),if 0<a; <as <---<a, and

a1 +as+---+a, =n, Z a;a; = fixed,
1<i<j<n
1 1 |
then the sum — + — +---4+ — s minimum foray = --- = a,_1 < a,. Therefore, we only need
a; a2 G

to show that (n — 1)z +y =n (0 < 2 < y) involves

n—1 1 2n(n — 1)
+-+n—-22> :
Ty -2+ 29

The inequality is equivalent to

n_1+ 1 +n_2>2(n—1)
x n—(n—1)z ~x(2—x)
n—1 1 1
x n—(n—l)x_nZQ(n_l)[m_l]’
n(n—1)(z —1)? - 2(n —1)(x —1)?
n—(m-1x ~ 2—x ’

(n—1)(n - 2)z(x —1)* > 0.

For n > 3, the equality occurs for ay = as =---=a, = 1.
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P 5.104. If ay,ao, ..., a, are nonnegative real numbers such that
ay +az + -+ ap =M,

then

n—2 n
Z < + .
—'n— al n—1 E a;a;
1<i<j<n

(V. Cirtoage and L. Giugiuc, 2022)

Solution. For n = 2, the inequality is an identity. Consider further that n > 3 and a; < ay <
1
- < a,, and apply the EV-Theorem (Corollary 1) to the function f(u) = —— defined on

[0,n). We have -
1 6

m = g(u), 9" (u) = m > 0.

f'(w) =

According to Corollary 1, if a; + a2 + -+ a, = n (which implies a; < n fori=1,2,...,n) and

Z a;a; = fived, the sum Z is maximum when a; = -+ = a,—1 < a,. Therefore,
n— a;
1<i<j<n
we only need to show that (n — 1)x +y=n (0 <z <y) involves
n—1 " 1 <= 2 " 2n
n—xr n—-y n—1 (n—1z[(n—2)z+2y]

The inequality is equivalent to

-1)2 1 2
n—x x (2 —x)
—-1)2 1
n—x x (2 —x)
n(x — 1) < 2(x — 1)27
n—x ~ 2—=x
(n —2)z(z —1)*> > 0.
For n > 3, the equality occurs when ay =ay =--- =a, = 1.
m
P 5.105. If ay,as,...,a, are nonnegative real numbers such that

ay +az +---+a, =n,

then

n

1 n
14—
;n_aiz +2 Z a;a;

1<i<j<n

(V. Cirtoage and L. Giugiuc, 2022)
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Solution. We use the induction method and EV-Theorem (Corollary 1). For n = 2, the in-
equality reduces to (a; — az)? > 0. Consider further that n > 3 and a; > ag > -+ > a,.

1
According to Corollary 1 applied to the function f(u) = (see the preceding problem), if
n—u

n
1
i toa, = d sa; = fized, th is mini hen eith
a; + as + +a n an 1<;<na a; fixe e sum ; — IS minimum when elther
L=+ =0ap_1 > a, > 0 or a:L = 0. Therefore, we only need to consider these cases.
Case 1: a1 = -+ = ay—1 > a, > 0. We need to show that

m—lz+y=n (x>y>0)

involves
n—1 " 1 > 14 n
n—x n—y (n—Dz[(n —2)x +2y]
The inequality is equivalent to
—-1)? 1 1
(n—1) +->n—-1+ ;
n—x x (2 —x)
—1)? 1
Gl I ,
n—zx x (2 —x)
n(z —1)32 - (x — 1)2’
n—x ~ 2—x
(x —1)%y > 0.

Case 2: a, = 0. We need to show that a; + as + -+ + a,—1 = n involves

o 1 1 n
> +->1+ .
@ N 2 Zl§i<j§n—1 a;a;
Using the substitution
n
a; = T, 1=1,2,...,n—1,
n—1

we need to show that 1 + x5+ -+ + x,_1 = n — 1 implies

n—les 1 1 (n— 1)
> +->14 ,
n “n—1-z; n 2”21§i<j§n—1xixj

1=

which is equivalent to the induction hypothesis

P S U L
mnolom 2 Zl§i<j§n—1 TiT;
The proof is completed. The equality occurs for ay = -+ = a, = % and ajiq = - = a, =0,

where k =2,3,...,n.
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P 5.106. If ay,as,...,a, are nonnegative real numbers such that

n

1
O
i1 2@1 +n—2
then
2 Z aa; > (n—1)(ay +az+ -+ ay).
1<i<j<n

(L. Giugiuc and V. Cirtoaje, 2022)

Solution. For n = 2, the conclusion coincides with the hypothesis. Consider now n > 3, and
use the contradiction method and the EV-Theorem. By the contradiction method, it suffices to
show that

2 Z aa; < (n—1)(a1 +as +--- +ay,)

1<i<j<n
involves
flar) + flaz) + -+ flan) < —1,
where .
flu) = 2u+n—2
—1
To prove this, we apply EV-Theorem (Corollary 1) to the function f(u) = CTER— which
u+n—
satisfies 5 18
!/ "
S ——— =——>0.

According to EV-Theorem, for fixed Z a; and Z a;aj, the sum f(ay) + f(az)+---+ f(an)
i=1 1<i<j<n

is maximum for a; = as = -+ = a,_1 < a,. Denoting the equal variables with x and a,, with y

(x < y), we need to show that

(n—2)2*+2zy < (n—Da+y
involves

1 . z—1 -
204+n—2 2x+4+n-—2

1.

Applying again the contradiction method, it suffices to show that

1 r—1

<1
2y+n—2+2x+n—2_

involves
(n—2)2* + (2r — 1)y > (n — 1)z.

From the hypothesis, we get
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Thus, we have
n—2)2*+Q2r—1)y—(n—-Dz>n—-2)2+n—-2—n—-3)xr—(n— 1)z

=(n-2)(z-1>%*>0.

The proof is completed. For n > 3, the equality occurs when a; =ay =--- =a, = 1.
n
P 5.107. If ay,ao, ..., a, are positive real numbers such that
! - ! ot ! =

201 +n—2  2ay+mn—2 2a, +n—2

then . . ) ( 2)
n(n —
—— e+ —+ > 2(n —1).
ar  a ap a1 +ag+---+a,

(V. Cirtoage and L. Giugiuc, 2022)

Solution. We use the contradiction method and the EV-Theorem. For n = 2, the required
inequality is an identity. Consider further n > 3 and a1 < a; < --- < a,,. By the contradiction
method, assume that

1 1 1 n(n —2
— 4 (n—2) <2(n—1),
a1 a2 Qp, a1+a2+"'+an
and show that
! + ! + + L <1
201 +n—2 2ay+n—2 2a, +n — 2 )
1
To prove this, we apply EV-Theorem (Corollary 2) to the function f(u) = CE—t which
u+n—
satisfies ) . )
— —2x
/ _ YN N
0=y 90 =1(35) = o
12
"(x) = > 0.
A W
1 1 1
According to the EV-Theorem, for fixed a; + as + -+ + a, and — + — 4+ --- + —, the sum
aq a9 (07%
& 1
Z —— is maximum when a; = ay, = --- = a,_1 < a,. Denoting by x the equal variables
— 2a; +n — 2
and by y the remaining variable (z < y), we need to show that
-1 1 -2
L S P et B

T y (n—1Dzx+y

involves
n—1 1

<1
2x+n—2+2y+n—2




EV Method for Nonnegative Variables

477

Using again the contradiction method, we need to show that

n—1 1
+ >
20 +n—2 2y+n-—2 "

1

involves L ( 2)
n— n(n —
S S 2 O 10 O
x y (n—Dx+y — ( )

From the hypothesis, we get
n—2—(n-3)uz 1 n—2

< — < < .
y= w—1 = 2°"Sh3

Clearly, it suffices to prove the required inequality

oy T (n—1z+y

2 (n—3
for y = n o (—nl ):c The inequality is equivalent to
(n—1)(n—2)(xz —1)? - 2(n —1)(n —2)(x — 1)?
zn—2—(n—-3)z] ~2n—-1)22-2(n—2)z+n—2

This is true if
1 2

x[n—2— (n—3)x] = 2(n —1)a?2 —2(n—2)x +n—2’

which reduces to
(n —2)(2z —1)* > 0.

The proof is completed. For n > 3, the equality occurs when a1 = ay =--- =a, = 1.

P 5.108. If ay,as,...,a, are positive real numbers such that

1 1 1
+ +r =
ar+n—1 a+n-—1 a,+n—1

)

then 11 1 3n — 4
n{on —
— 4 — 4+ —+ ( ) > 4(n —1).
ay - a an @y tag+ - +ay,

(V. Cirtoage and L. Giugiuc, 2022)

Solution. The proof is similar to the one of the preceding problem. For n = 2, the required

inequality reduces to (a +b — 2)? > 0. For
ap =Qaz =+ =0p-1 =T, an =Y,
we need to show that
n—1 . 1 B
t4+n—1 y+n—-1
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involves
n—1 1 n(3n —4)
——

oy (m-lz+y~
So, we need to show that

—1—(n—-2 _
y:n (n )I, O<£L‘<n ,
T n—2
involves e
L S R PR |
T Yy n—1z+y

The inequality is equivalent to

(n—1)?*(z—1)°
zln —1— (n — 2)x]

(n—1)3n —4)(z — 1)
m—1Dz2—(n—-2)z+n—-1

v

This is true if
n—1 3n—4

zn—1—-(n—-2)2] ~ (n—1)22—(n—2)z+n—1

v

which reduces to
[(2n —3)z —n+1]> > 0.

The proof is completed. The equality occurs when a; = as = --- = a, = 1, and also for
n—1
L =Qg =+ =Qp_1 = 5 3 and a, =n — 1 (or any cyclic permutation).
n —_—

]

P 5.109. If ay,ao, ..., a, are nonnegative real numbers such that

then
on? —4n +1

- n
(n—Q);amLQ Z > n—1

a;Q
1<i<j<n

(V. Cirtoaje and L. Giugiuc, Mathproblems, 3, 2023)

Solution. We use the contradiction method and the EV-Theorem. For n = 2, the required

1 1
inequality coincides with the hypothesis + > 1. Consider further n > 3. By the
a; + 1 as + 1

contradiction method, it suffices to show that

n

o2n? —4 1
(n—2) Z a; + i < n n+
i=1 2 Zlgiqgn a;a; n—1

involves

flar) + flag) + -+ flan) > 1 —n,
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where .
To prove this, we apply EV-Theorem (Corollary 1) to the function f, which satisfies

[l) = = gle). g ) = e > 0

(u+1)2" ’ (u+1)% '
1
According to EV-Theorem, for fixed Z a; and Z a;aj, the sum Z is maximum for
i=1 1<i<j<n

either a1 = ay = -+ = a,_1 > a, > 0 or a, = 0. Thus, it sufﬁces to con31der these cases.

Applying again the contradiction method (only for these cases), it suffices to show that

n

1

>n—1
a; + 1~
1
involves
2n? — 4 1
(n—2) Z a; + 2 r nt
1<i<j<n
(which is just the original statement).
Case 1: a1 =ay =+ = an_1 > a, > 0. We need to show that
n—1 1
—— >n-1, >y>0
r+1 + y+1— " r=9Y
involves on? _ 4 .
n n® —4n +
-9 -1 > .
(=2 =Dyl o e = w1
From the hypothesis, we have
< 1—(n—2) - 1
—— = .
v= (n—1)x n—2

We claim that for fixed x, the function

(n — Dz[(n = 2)z + 2y

F(y)=(n—-2)[(n -1z +y| +

is decreasing. We need to show that F”(y) < 0, which is equivalent to
(n —1)(n—2)z[(n —2)x + 2y]* < 2n.
Since (n — 2)z < 1, it suffices to show that
(n —1D[(n —2)z + 2y]* < 2n.

According to Lemma below, we have

(n— 1)[(n — 2)x + 2y]? ”1<2n
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Since F'(y) is decreasing, we have

F(y)ZF(M),

(n—1)x

and it suffices to show that

— — 2 _
” 1—(n—2)z >2n 4n—|—1.
(n—1x - n—1

This inequality is equivalent to
[1—(n— 12’1 - (n—2)2][2— (n—1)x] >0,
which is true for (n —2)z < 1.

Case 2: a, = 0. We need to prove that

n—1 1
2 n— 27
— q; + 1
=1
involves 2y
n 2n° —4n+1
(n—2)S+ > :
2 Z a;a; n—1
1<i<j<n—1
where
n—1
S = a;
=1
n—1 ) .
Case 2a: S > 5 Write the hypothesis as
n —
n—1 @
1 < 1
a; + 1~
=1
From the Cauchy-Schwarz inequality
n—1 a: n—1 n—1 2
(Z a¢+1) alat 1)) 2 (Zai) ’
i=1 =1 =1
we get
n—1
d @i+ 85>

i=1

52— 2 Z aiaj—i—SZSQ, 2 Z aa; < S.

1<i<j<n—1 1<i<j<n—1

Thus, it suffices to show that

S on? —4n+1

n
(n—2)5+§_

Y

n—1
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which is equivalent to the obvious inequality

(i) (5t =0

—1
Case 2b: § < n . Since
n— 2
2(n —1
$>) S
1<i<j<n—1
it suffices to show that
(n—2)5 1 n(n—1) S 2n? —4n +1

(n—2)5% — n—1

(”_1—5) (1+"_25—"_252) > 0.
n—2 n—1 n

This inequality is true because

which is equivalent to

n—2 n—2 n—2 n—1 1

1 S — S%>1 S — S=1———-5>0.
+n—1 n - +n—1 n n(n —1)
. ) 1
The proof is completed. For n > 3, the equality occurs when a1 = as =--- = a, = T and
n —
1
also for a; =as =---=a,_1 = 5 and a,, = 0 (or any cyclic permutation).
n —
O
P 5.110. If ay,as,...,a, are nonnegative real numbers such that

then

(V. Cirtoage, 2022)

Solution. We use the contradiction method, the induction method and the EV-Theorem. For
n = 2, we need to prove that a,as = 1 implies a; +ao > 2, which is true. Consider further n > 3.
By the contradiction method, it suffices to show that
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involves
flar) + f(a2) + -+~ + f(an) < —1,
where
-1
flu) = PR

To prove this, we apply EV-Theorem (Corollary 1) to the function f, which satisfies
1 6

") = ———s = , "(u) = ——— > 0.
f0) = e =90 9= Ty
n n 1
According to EV-Theorem, for fixed Z a; and Z a;aj, the sum Z PaEe— is maximum
a; n —
i=1 1<i<j<n i=1
for either a1 = ay = --- = a,_1 > a, > 0 or a,, = 0. Thus, it suffices to consider these cases.

Applying again the contradiction method (only for these cases), it suffices to show that

n

1
2o <!

i=1

involves ) .
2 Z a;Q; Z " (n _ )
1<i<j<n a1+a2+' +an
Case 1: a1 =ay =--+ = a,—1 > a, > 0. We need to show that
n—1 1
<1, >y>0
:c+n—1+y+n—1_ r=Y
involves
242 > "
n—2)z*+2xy—m>——————n
(n=2) Y s T ety
From the hypothesis, we have
n—1—(n-2ux n—1
y = ., T < .
T n—2
Thus, it is sufficient to show that
n2
(n—2)2 +2n—1—(n—2)2] —n > n—l—(n—2)x_n’
(n—1az+
x
that is
n(z — 1)

(n—2)(x—1)* +

> 0.
mn—122—n—-2)z+n—-1"

Case 2: a,, = 0. We need to prove that

n—1

1 n—2
) <
¢:1ai+n_1 n—1
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involves

2
—1
2 Z a;a; > n (n )

1<i<j<n—1
Using the substitution
n—1
a; = Z;, 1=1,2,...,n—1,
n—2

we need to show that .
.

1
2 e <1

implies

2 _23
2 ) w2 )

1<i<j<n—1 T (n-1DXa+apt o Tno)

By the induction hypothesis, we have

5 Z viz; > (n—1)%(n—2)

1<i<j<n—1

Thus, it suffices to show that

(n—1)%(n —2) S n?(n —2)3
T+ xot o F e (=12 Fae o Fa)
This is true if (n —1)* > n%(n —2)?2, which is true if (n —1)? > n(n —2). The proof is completed.

The equality occurs for ay =as =--- =a, = 1.
O

P 5.111. If ay,as,...,a, (n > 3) are nonnegative real numbers such that

n

1
2aao1sh

=1

then
n 2
—14+k|—— a;a; — 1| >0,
a1+ as + - +a, n(n—1)1<;<n J ]
where
B 4(n —1)2
 (n—2)(3n —4)

(L. Giugiuc and V. Cirtoaje, Recreatii Matematice, no. 1, 2022)

Solution. By the contradiction method, it suffices to show that

2
m Z aiaj—ll <0

1<i<j<n

n
ay+ag+ -+ ay

—1+k
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involves
Y L > 1
- a; +n — 1 '
=1
—1
To prove this, we apply EV-Theorem (Corollary 1) to the function f(u) = e which
u+n—
satisfies . 6
") = ———mMm—— = "(u) = ———— > 0.
f'(w) =1 g(w),  ¢"(u) Wrno1)
n n 1
A ding to EV-Th for fixed . and a;, th ———— is mini
ccording to eorem, for fixe izlaz an 1<;<n a;a;, the sum Zzl pa— is minimum
for a; = ay = -+ = a,-1 < a,. Thus, it suffices to consider a =ay = -+ = ayp—1 = ¢ and

a, =y, r <y. We need to prove that

k
14+ Z2n =22+ 20y — 0
1) ” + n[(n )<+ 2xy —n] <

involves
n—1 1

> 1.
x+n—1+y+n—1

Applying again the contradiction method, it suffices to show that

n—1 1
+ <1
z+n—1 y+n-—1

involves

k
— 14+ ~[(n—=2)2*+ 22y —n] > 0.
sty +n[(n Jo© +2xy —n] >0

From the hypothesis, we get
-1
y 2> DT e
x

n—1
Having in view Lemma below, we only need to prove the inequality for y = —— —n + 2. Since
x

n —(n—1)(z—1)?

(n—l)x—i—y_l_ (n—1)(z2+1)— (n—2)x

and
(n—2)2® + 22y —n = (n—2)(z —1)%

we need to show that

—(n—1) k(n —2)
D@4 =2z =0
which is equivalent to
An—1) 1
nBn—4) — (n—1)(z2+1) — (n —2)x’

2(n — 1)z —n+2)*> > 0.
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The proof is completed. The equality occurs when a; = as = --- = a, = 1, and also for
n—2 n? — 2

a1:a2:-..:an_1:mandan:

(or any cyclic permutation)

Lemma. For fized x > 0, define the function

n 2k
fly) = =Dz ty + -y,
4(n — 1) . : : , ,
where n > 3 and k = . The function f is strictly increasing for
(n—2)(3n —4)

n—1
y>——n++2.
T

Proof. We need to show that f’(y) > 0, that is

2kx[(n — 1)z +y]* > n’.
Since

n—1z+y> (n—l)x+n7_1—n+2: (n—1) (x+é) —n+2,
we need to prove that ,
2kx {(n—l) (m—i—é) —n—i—Q] > n?
In addition, since
(n—1) (x+i) —n+2>2n—1)—n+2=n,

it is sufficient to show that

2kx [(n—l) <x+%) —n+2] >n,

which is equivalent to

8(n —1)2
(=230 = [(n—1)(2* +1) — (n—2)z] >n.
Since . 5 )
n— n—

it suffices to show that 3

(n—1)(2*+1)—(n—2)x > e
For n = 3, we have

9 3 9 9 9 15 1 9

(n—1)(x +1)—(n—2)x—§n:2(:v +1)—x—§>2(.:1: +1)—x—§:§(4x—1) > 0.
Also, for n > 4, we have

3 3 3 3 3

(n—l)(x2+1)—(n—2)x—§n>(n—2)(x2—:c+1)—§n2Z—L(n—2)—§n:§(n—4)20.

O
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n(n —1)

th
5 , then

P 5.112. If ay,ao,...,a, are positive real numbers such that Z a;a; =

1<i<j<n

1 1 1
n{—+—+--+—|+nn—-2)>2n—-1)(a; +az+---+ay).
aq a9 Qp,

(V. Cirtoage and L. Giugiuc, 2022)

Solution. For n = 2, we need to show that a;as, = 1 involves ajas > 1, which is true. Consider

further n > 3 and apply EV-Theorem (Corollary 5, case k = 2 and m = —1): For fixed
nn—1
a,+axy+ -+ +a, and E a;a; = Q, the sum — + — + --- + — is minimum when
— ai a2 Qn
1<i<j<n
a; =ag = -+ = ay_1 < a,. Thus, it suffices to consider a1 = as =---=a,_1 = x and a, =y

(0 < x <1<y). Thus, we need to show that

w (P54 2) Haln-2) 2 20 Dl D+

for ,
—(n—2
(n —2)a? + 22y = n, y:n(z—)x.
x

Write the inequality to be proved as follows:

n(n;1+§—n)ZZ@—IWn—Dx+y—M,

n?(x —1)2[(n—2)z+n—1] _ nn—1)(z—1)>
z[n — (n — 2)a? x '

Vv

This is true if
n[(n —2)z+n—1]

n—(n—2)z? =nTh

which is equivalent to
(n—2)z[(n— 1)z +n| >0.

The proof is completed. The equality occurs for a1 =ay =+ =a, = 1.

Remark 1. Since ay +as + -+ + a, > n, from P 5.112 we get

1 1 1
n a—+&——|—---+a— +(n—2)(a+as+---+ay,) >2(n—1)(ar +ag+ -+ ay).
1 2 n

Thus, the following statement is true:

n(n—1
e Ifay,as,...,a, are positive real numbers such that Z a;a; = %, then
1<i<j<n

1
—+—+-t+t—2atat+--+a,
ay Gz an
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Remark 2. Since
n2

artag+---+ay, > 2n — ;
a;+ag+---+ay

from P 5.112 we get

—1
e Ifay, as,...,a, are positive real numbers such that Z a;a; = %, then
1<i<j<n
1 1 1 2 -1
—+— 4+ —+ M=) L,
ay Qo a, ay+tax+---+ay
O]
. n(n—1)
P 5.113. If ay,ao, ..., a, are nonnegative real numbers such that Z a;a; = B a— then
1<i<j<n

1 1 1 n n
+ + e+ — =4k —-1) <0,
ar+1 ax+1 a,+1 2 air+as+ -+ a,

where

1
k= §(n —1)v/n(n —2).
(V. Cirtoage and L. Giugiuc, 2022)

Solution. For n = 2, the inequality is an identity. Consider further n > 3 and apply EV-
-1
Theorem (Corollary 1) to the function f(u) = w1l which satisfies
u

1 6

"u) = ——— = , "(u) = ——— > 0.
F) = o = ol 0" =
n n 1
According to EV-Theorem, for fixed a; and a;a;, the sum is maximum for
° ; 1§;§n ! ; a; +1
either a1 = ay =--- =a,_1 > a, > 0 or a, = 0. Thus, it suffices to consider these cases.
Case 1: a1 =ay =+ = a,_1 > a, > 0. We need to show that
n—(n—2)x?
y — M’ O < x < n ,
2x n—2

involves
n—1 1 n

n
k| ————1| <0
:r;—l—1+y—|—1 2+ {(n—l)m—l—y }_ ’

which is equivalent to
n(n —2)(z —1)? k(z—1)2 <0
2[n 4 2x — (n — 2)a?] ?2+1 — 7

This is true if
n(n —2) 2k

— <0
n+2x—(n—2)22 22+1~ "7
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that is
Vn—2[(n=1)vn—=2+n]2* —=2(n— 1)z —/n[(n—1)v/n—+vn—-2] <0,
(en/T =2 — i) aw 1 b) <0,

where

a=(n—1)vn-2++/n, b=n—-1)vn—+vn-2
Case 2: a, = 0. We need to prove that
-1
S, = n(n—1)
£ 2
1<i<j<n—1

involves

1 1 1 n—2 n
+ +oe ot - +k
CL1—|—1 a2+1 Gn,1+1 2 ay+ag + - --

+ Ap—1

which is equivalent to

(3] a2 ap—1

n n
+ +---+———2k:( —1).
ar+1 ax+1 p—1+1 2 ar+as+ -+ ap1

Denoting
aj+ay+--+a,_1=(n—-1)5,

from the known inequality

2(n—1
(a1 +as+ - +a,1)* > 2n=1) Z a;a;,

n—2 £
1<i<j<n—1

we get
n

S > )
—\\n-—-2

On the other hand, by the Cauchy-Schwarz inequality, we have

[i a;(a; + 1)

=1

hence
— (n—1)252
Z:; a; + 1 — n-d
‘ Z a:+(n—1)8
i=1
(n —1)252 B (n—1)52

(n—1)25%2 -2 Z aiaj—i—(n—l)S_ (n—=1)8*+S—-n

1<i<j<n—1
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Therefore, it suffices to show that

(n —1)S? n>kh_ﬁ__

n—1)82+S—n 27
which is equivalent to

2k[(n —1)S — n]
(n—1)S

[(n—1)S —n][(n—2)S + n|
(n—1)S2+S5—n

>

Since

(n—1)S—n>(n—1)

—n>0
n—2 " ’

we need to show that
2k - (n—2)S+n

n—1)S~ (n—=182+S5—-n’

which is equivalent to

~——_ (n—2)S?+nS
nn—2) 2 (n—1)S2+S5—-n’
(Svn—2—+/n) (aS+b) >0,

where

a=(n—1)vn—+vn-2, b=nvn—2.

Clearly, the last inequality is true.

The proof is completed. The equality occurs for a; = ao = -+ = a,, = 1, and also for

n
AL = Qg =+ = Qp_1 = 5 and a, = 0 (or any cyclic permutation).

n(n—1
P 5.114. If ay,ao, ..., a, are nonnegative real numbers such that Z a;a; = (T), then
1<i<j<n

1 1 1 n n
- ot ——+k —1) >0,
ar+1 ay+1 a,+1 2 ar+as+ - +ay,

where

k:H(m_l).

(V. Cirtoage and L. Giugiuc, 2022)

Solution. For n = 2, we need to show that a;as = 1 involves ajas < 1, which is true. Consider
further n > 3 and apply the EV-Theorem (Corollary 1) to the function f(z) = which

satisfies

—1
x+1’
1 6

f/(g;) = 5 = g(x)’ g”(aj) = (x n 1)4 > 0.
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n n 1
According to the EV-Theorem, for fixed a; and a;a;, the sum is minimum
¢ 121 1<§<n ! ZZ1 a; +1
for ay = ay = -+ = a,_1 < a,. Thus, it suffices to consider that a1 = ay =--- = a,_1 = z and
a, =y. So, we need to show that
—1)(n—2 -1
(=D =2) 5 (=)
2 2
that is ( Ja?
n—(n-—2)x n
= O<z<
4 2x ’ * n—2
involves . .
n— n
————+4+k|——— -1 >0
x—|—1+y+1 2" l(n—l)x—ky } ’
which is equivalent to
n(n—2)(z —1)? k(z—1)2 >0
2[n + 2x — (n — 2)a?] ?2+1 — 7
This is true if
n(n —2) 2k
_ > 0,
n+2r—(n—2)22 22+17~
that is
(n — 2)(2k +n)a® — 4kz +n(n — 2 — 2k) > 0,
2k 2
— >0
["” (n—2)(2k +n>] =
2
<$+n—1—\/n2—2n+2> > 0.

The proof is completed. The equality occurs for a; = ay = -+ = a, = 1, and also for
ap=ay =+ =a, 1 =vVn: —2n+2—-n+1and a, = vV/n?—2n+2+ (n—1)? (or any cyclic
permutation).

[
. n(n—1)
P 5.115. If ay,as, ..., a, are nonnegative real numbers such that Z a;a; = — 5 then
1<i<j<n
(2)(+++)>21+1++1+(3)
n—2)(a+as+---+a,) > n(n — 3).
! 2 a+1 ax+1 an +1

(V. Cirtoaje and L. Giugiuc, 2022)

Solution. For n = 2, we need to show that a;as = 1 involves ajas < 1, which is true. Consider
-1
further n > 3 and apply EV-Theorem (Corollary 1) to the function f(u) = T which satisfies
u
1 6

f(u) = m = g(u), 9" (u) = m > 0.
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is maximum for

According to EV-Theorem, for fixed Z a; and Z a;a;, the sum Z

=1 1<i<j<n
either a; = ay = = a,_1 > a, > 0 or a, = 0. Thus, it suffices to con81der these cases.
Case 1: a1 =ay =+ = ap_1 > a, > 0. We need to show that
n— (n—2)z? n
=V D<o < —
Y 2% ' s n—2
involves
(n=2n—r+y =22 L) fnm—3)
" " Sl y+1 T ’
which is equivalent to
2(n—1) 2
-2 -1 —n] > —
(n=2)ftn = o4y —n > 2y
n(n—2)(x —1)? S n(n —2)(z —1)?
2z “n+2z—(n—2)x?

n(n —2)(x —1)*[n — (n — 2)z% > 0.
Clearly, the last inequality is true.
Case 2: a, = 0. We need to prove that
-1
Z aiaj = n(nT)
1<i<j<n—1

involves

(n—2) ;aZZQZaZ +n?—3n+2,

=1
which is equivalent to

(n—2) Zaz—i—QZa >n(n—1).

Denoting
ap +ag+ -+ a,-1 = (n—1)85,

from the known inequality
2(n—1)
2
(a1+a2+"‘+anfl) Zﬁ Z a;ay,
1<i<j<n—1

we get
n

n—2
On the other hand, by the Cauchy-Schwarz inequality, we have

S >
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hence
— a (n —1)%52
>

— ai+_1'_ n—1
= Z az+(n—-1)98

i=1

B (n —1)%52 _ (n—1)5?
(n—1)252 -2 Z a;a; + (n—1)8 (n—1)S*+5—n

1<i<j<n—1

Therefore, it suffices to show that

2(n —1)5? > n(n—1),

(n_l)(n_2)5+(n—1)52+5—n_

which is equivalent to
(n—1)(n—2)S* —n(n—2)S* —n(n —1)S +n* >0,

[(n—1)S —n][(n —2)S* —n] > 0.

Since
-1H)S—nmn>(n-1 —n>0
(n=1)S—n> (n— 1)/ —n>0
the last inequality is clearly true.
The proof is completed. The equality occurs for a; = a3 = -+ = a, = 1, and also for
AL =g =+ = Qp_1 = " 5 and a,, = 0 (or any cyclic permutation).
m
P 5.116. If ay,ao, ..., a, are positive real numbers such that
1 1 1
aq Qo Qp
then )
1 1 1 n°(n—1
2(n+1) + +-+ > ( ) + 2n.
ar+1 ay+1 an, + 1 ap+a+---+ay,

(V. Cirtoage, 2022)
Solution. For n = 2, we need to show that a; +as = 2a,a, involves aja, > 1. This follows from
0 < (a1 —a)* = (a1 + a)® — 4aray = 4a2a; — 4ajay = 4ajaz(aray — 1).

1
rz+1

Consider further n > 3 and apply the EV-Theorem (Corollary 2) to the function f(x) =

which satisfies . .
f’(m) = g(r) = f (ﬁ) = m;

Y




EV Method for Nonnegative Variables 493

3

q"(x) = N EESIE > 0.

1 1 1
According to the EV-Theorem, for fixed a; + a3 +---+a, and — 4+ — +---+ — = n, the sum
aq a9 (07%
"1
Z is minimum when a; < ay = a3 = --- = a,,. Thus, it suffices to consider this case. We
a;
i=1
only need to show that
1 n-1
-+ =n, mfglh
T Yy
that is
(n—1)z 1
y = ) x > )
nr —1 n
involves . . ) .
2(n+1)< + Iz )z nin=b o,
r+1 y+1 r+(n—1)y
that is ) ) )
n(n—l){l—#}zm+l)(n— il >
r+(n—1)y r+1  y+1
Since
n (x —1)2
1— =
r+n—1y z(x+n-—2)
and
2 2n—2 n(z —1)32

cr+1  y+1  (z+D[2n—1z—1]
the inequality becomes

n(n—1)(x —1)32 S n(n+1)(x — 1)
rz4+n-2) ~ (z+D[2n—-Dz—1]

This inequality holds if
n—1 n+1

r(x+n-—2) = (x+D[(2n— 1)z —1]

which is equivalent to
(nx —1)[2(n —2)z +n — 1] > 0.

This inequality is clearly true.

The proof is completed. The equality occurs for a1 =ay =+ =a, = 1.
m

P 5.117. If ay,as,...,a, are positive real numbers such that

1 1 1

- +___ +_...+___ :;n,

aq a9 (07%
then o2

n
ai+as+-tal+ > 3n.

(V. Cirtoage, 2022)
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Solution. For n = 2, we need to show that a; + as = 2aja, involves
(aray — 1)(2a%a3 + ayay — 2) > 0.
This is true if ajas > 1. Indeed, we have
0 < (a1 —a)* = (a1 + az)? — 4a1ay = 4a’a3 — 4ajay = 4araz(aras — 1),

hence ayas > 1. Consider further n > 3 and apply the EV-Theorem (Corollary 2) to the function
f(x) = 2?, which satisfies

f/(x) = 2.’15, g(x) = f/ (%) = %, g"(a:) = # > 0.

1 1 1

According to the EV-Theorem, for fixed a; +as+---+a, and —+ — +--- 4+ — = n, the sum
aq Q9 Qp

a? + a3+ -+ + a2 is minimum when a; < a3 = a3 = --- = a,. Thus, it suffices to consider this

case. We only need to show that

1 n-—-1
- =n, xéya
T Yy
that is . .
(] (n - >x, <z <1,
nr — 1 n
involves )
2n
2 2
r+n-1)y"+ —— > 3n,
( Jv r+(n—1y —
that is
2 2 n
zZ+n-1)y"—nm>2n|l — ——|.
( )y - x4+ (n—1y
e (¢ = 1)*na + 2(n — 1)z — 1]
9 9 n(zx —1)*nz* +2(n—-1)r -1
I —n =
+(n—-1y" —n (e —1)°
and
n (xr—1)2

1— =
r+(n—1)y x(x+n—2)

the inequality becomes

n(z —1)*nz? +2(n — 1)a — 1] S 2n(z —1)?

(nz —1)2 “z(z4+n-2)
This inequality holds if
nx2+2(n—1)x—1> 2
(nz —1)2 Trz(x+n—2)

Since nx > 1, we have

ne’ +2n—Nz—-1>z+2n—1)z—-1=2n— 1)z — 1.
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Thus, it suffices to show that

(2n—1)x —1 2
(nx —1)2 = r(x+n—2)

which is equivalent to
(1 —z)[3nx — (2n — 1)z* — 2] > 0.

This inequality is true because
3nz— (2n—1)a® —2=nw(3—-22) +2° —2> (3 —-2z)+2>-2=(z—-1)*>0.

The proof is completed. The equality occurs for a; =ay =---=a, = 1.

P 5.118. If ay,as,...,a, are nonnegative real numbers such that ay + as + - -+ + a, = n, then

1 1
Za%+(n2—n+1)(a§+-~-+ag) = n?—2n+2
(V. Cirtoaje, 2022)
Solution. For n = 2, we need to show that a; + a; = 2 involves
3(ay + ;) + 10ata; > 8(aj + a3),

which is equivalent to
3(aj + a3) + 10aia3 > 2(ay + az)?(a? + a3),
(ay — a)* > 0.
Consider further n > 3 and write the inequality in the homogeneous form
1 n?

< .
Z(n2—n+1)(a%+a§+~~+a%)—n(n—l)a% ~ (n?2—=2n+2)(a; +as+ -+ ay)?

Without loss of generality, assume that

2

2 2 2 n-—n
Adtaittadd =
L " on2-n+1
We need to show that
n3(n —1)

flar) + flaz) + -+ flan) <

(n?2 =2n+2)(a; + ag+ -+ + ay)?’

where
0<zx<1.

1=z

Since ) 2a(a® 4 1)
/ x ” xr(x

g(ﬂf)zf(%):m, g(x)zmzo,



496 Vasile Cirtoaje

according to the EV-Theorem, for fixed a; + as + -+ + a, and a} + a3 + --- + a2, the sum
f(ay) + f(az) + -+ + f(a,) is maximum when a; = as = -+ = a,-1 < a,. Thus, it suffices to
prove the homogeneous inequality for a; = as =+ =a,_.1 =0and a1 =ay =+ =a,_1 = 1.
In the first case, the inequality becomes

n—1 n?

L R
n?—n—l—l+ “n2—92n+42’

n > 1.
In the second case, when af + a3 + - -- 4+ a2 = a2 +n — 1, we need to show that

n—1 n 1 < n?
m?—n+1a2+n—-172 a2+n-1)n>*—n+1)~ (n®>—2n+2)(a,+n—1)%

Using the substitutions a,, = x and n = k + 1, the inequality can be written as follows:

k N 1 < (k+1)?
(K2+k+1)22+ k> 22+k(k2+k+1) — (B2+1)(x+ k)2
2?4+ k? 1

(B2 +k+ 12?2 + B3]z + k(k2+ k4 1)) = (k2 +1)(z+ k)2’

' —2(k* + 1)2° + (' + 4> + 1)2° — 2k*(K* + D)x + k' > 0,
(x —1)*(x — k*)* > 0.
The proof is completed. The equality occurs for a; = ay = -+ = a, = 1, and also for

A=Ay =+++=Qp_1 = and a, =n — 1 (or any cyclic permutation).
n —

O

P 5.119. If a,b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

1 1 1 1
< —.
(at 201202  (2a+5b120)°  (2a+2b1 50 27

(V. Cirtoage, 2022)
Solution. Write the inequality in the homogeneous form

| 1 1 1
< .
(Ba+ 20+ 202 (201561207 | (2a+2b+ 52 — 9(ab+ be + ca)

Due to homogeneity, we may consider a+b+c =3, 0 < a < b < ¢, when the inequality becomes

1
f(a)+f(b)+f(0)+m_ :
where ]
flw) = — z>0
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To prove it, we apply Corollary 1 to the function f. We have

2 24

o) =)= g 90 = g

Since ¢"(z) > 0, g is strictly convex. According to Corollary 1, if
a+b+c=3, ab+ bc + ca = fixed, 0<a<b<ec,

then the sum f(a) + f(b) + f(c) is minimum for either a =0 or 0 < a < b = c. Thus, we only
need to consider these cases.

Case 1: a = 0. The homogeneous inequality becomes

1 1 1 1
< —.
b+ (Bh+202 | (Bet 20~ Obe

Since
1 1 1 1 2 2

>
Obc  4(b+c)? ~ 9be  16bc  48be ~ 49bc’

it suffices to show that
2 1 1

>
19bc = (5b+ 20 (Be + 20)2

which is equivalent to
200(b* + ¢*) — 261bc(b* + ) + 122b*c* > 0,
200(b* + ¢*)* — 261bc(b® + ¢*) — 278b*c* > 0,
(b* + ¢® — 2bc) (2006 + 200¢* + 139bc) > 0.

Case 2: b= c. For b = ¢ = 1, the homogeneous inequality becomes

1 2 1
<
Gat 42  (2a+72 " 0@Ra+1)

100a* — 112a® — 21a® — 22a + 55 > 0,
(a —1)*(100a® + 88a + 55) > 0.
The equality holds for a = b =c = 1.

P 5.120. If a,b, c are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1
(3a+b+c)2Jr (a+36+c)2+(a+b+30)2

1
< -.
-8

(V. Cirtoaje, 2022)
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Solution. Write the inequality in the homogeneous form
1 1 1 3
+ + < :
(Ba+b+c)? (a+3b+¢)? (a+b+3c)? ~ 8(ab+ bc+ ca)

As we showed in the previous P 5.119, it is sufficient to consider the casesa = 0and 0 < a < b = c.

Case 1: a = 0. The homogeneous inequality becomes

1 n 1 n 1 < i
(b+¢)2  (Bb+¢)?2  (3c+b)% ~ 8bc

Since
3 1 3 1 1

e S e S
8c (b+c¢)?2 — 8¢ 4bc  8bc’

it suffices to show that . ) )
_— >
Roc =~ (Bb+ o | Betrb)?

which is equivalent to
9(b* + *)? — 20bc(b? + ¢*) + 4b*c* > 0,

(b* + ¢ — 2bc) (b + 9¢® — 2be) > 0.
Case 2: b= c. For b = c = 1, the homogeneous inequality becomes
1 N 2 < 3
(Ba+2)?2  (a+4)* ~ 8(2a+1)

a(27a® — 52a* + 68a + 32) > 0.

It is true since

27a® — 52a” + 68a + 32 > 27a” — 54a® + 27a = 27a(a — 1)* > 0.

The equality holds for @ = 0 and b = ¢ = v/3 (or any cyclic permutation).
O

P 5.121. If a,b, c are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1 1
< —.
(1 db140?  (datb140?  (datdbto? 27

(V. Cirtoage, 2022)

Solution. Write the inequality in the homogeneous form
1 1 1 1
+ + < .
(a+4b+4c)?  (da+b+4c)?>  (da+4b+c)?> — 9(ab+ be + ca)
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Due to homogeneity, we may consider a+b+c =3, 0 < a < b < ¢, when the inequality becomes

1
b < -
fl@)+ 10)+ 1(0) £ >,
where ]
SR 1.
f<x> (4_x)27 xe[()? ]
To prove it, we apply Corollary 1 to the function f. We have
2 24

ol _ " _
Since ¢"(z) > 0, g is strictly convex. According to Corollary 1, if
a+b+c=3, ab+ bc + ca = fixed, 0<a<b<ec,

then the sum f(a) + f(b) + f(c) is maximum for a = b < c¢. Thus, we only need to prove the
homogeneous inequality for a = b = 1, that is
2 . 1 < 1
de+1 ¢4+8 7 9(2c+1)’

16¢* — 28¢® + 231¢? — 442¢ + 223 > 0,
(c — 1)*(16¢* + 4c + 223) > 0.
The equality holds for a =b=c=1.

P 5.122. If n>3, 1<k<nand ay,as,...,a, are nonnegative real numbers,then
(n =1 " a} + - +ap) + ™ = (0= D) (ar )" > (@ +ag + -+ an)”
(Petru Mironescu, 2022)
Solution. According to Corollary 4, if 0 <a; <ay <---<a, and
a tay+--+a,=n, af+ab+- +adk = fived,

then the product P = aqas - - - a, has the minimum value for either a, =0 ora; =+ = a,_1 >
a, > 0. Thus, it suffices to prove the desired inequality for these two cases.

Case 1: a,, = 0. We need to show that
(n—1)"a" 4+ +d"_ ) > (a1 +as+ - +an_1)F,
which is a consequence of the power mean inequality.

Case 2: a1 =+ = a,_1 > a, > 0. Due to homogeneity, we need to prove that f(x) > 0 for
xr > 1, where

f@)=(n—1)"(n-1)2"+1]+ nAxFm=1/m _ [(n— 1D+ 1], A=n1—(n-1)*1>0.
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We have

fl(z) = k(n — D2 + k(n — 1)Ax’€(”_1)/"_1 —k(n—D[(n—Dz+ 1 =k(n - 12" "g(z),

where
1\ A1
g(z) = (n— DF 1 4 Ag=h/m — (n -1+ —) :
x
with - e
k-1 N2 k., 1 1\
g (x) = . (n—l—i—;) —EAx / :w(n—ljtg) h(x),
where

hx) = (k— Dn — kAhy(2),  ha(z) = 224 (n 14 i) N

We will show that hq(z) is strictly increasing for x > 1. If k£ > 2, this is obvious. For 1 < k < 2,

we have
1\ 2-F 1\
hi(z) = <1 — E) zk/m (n —1+ —) R (n -1+ —)
n x x
1\ 1k
= g 17k/m (n -1+ —) ho(x),

x

where L
ho(z) = (1——) (n—1x+1] —2+k.
n

Since ho(x) > ho(l) = n —2 > 0, we have hi(x) > 0, hi(x) is strictly increasing and h(x) is
strictly decreasing. We will show that h(1) > 0. We have

h) _ (1—1)“—1, ”_1h(1):k<1—l>k—1+1.

n n n?

If 2 < k < n, by Bernoulli’s inequality, we get

@>k(1—k_1)—1:(k_1)(”_k)>o.

n n

Also, for 1 < k < 2, we have

”glh(1)>k<1—ﬁ)—1+1_(k_1)("_k_1) L k=Dm=3) 5,

n n n n n

Since h(z) is strictly decreasing, h(1) > 0, lim,_,, h(z) < 0, there is x; > 1 such that h(z;) =0,
h(z) > 0 for = € [1,21), and h(z) < 0 for € (x1,00). Since ¢'(x) has the same sign as h(z),
g(x) is increasing on [1, 1] and decreasing on [z1,00). So, from

g(1)=0,  lim g(x) =0,

T—r00

it follows that g(x) > 0, therefore f(x) is increasing and f(z) > f(1) = 0.
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The proof is completed. The equality occurs fora; = ay = -+ = a, and also fora; = --- = a,,_1
and a,, = 0 (or any cyclic permutation).

Remark 1. The inequality is also true for n = 2, when it becomes as follows:

Kk —k —1\ k
rhr +l<:—1zk;(x+x )

2 2

where k£ > 2 and =z > 0.

Remark 2. For k = 2, we get Shleifer’s inequality:
(n—1)(a?+ a2+ +a)+n(aras - a,)Y" > (ay +ag + - + a,)>

For n = 4, Shleifer’s inequality turns into Turkevich’s inequality:

2 2 2 2
aj + a3 + a3z +a; + 2 /a1asa3a4 > a109 + a1a3 + ajaq + asas + asas + asay.

Remark 3. In the same conditions, the following inequality (Petru Mironescu) is also true:
(n— 1)1—1/k(a11f 4t aﬁ)l/k + nl/k[nl—l/k — (n— 1)1—1/k](a1 . aﬂ)l/n >a +tag+ -+ ap,

with equality for a; = ay = -+ = a, and also for a; = -+ = a,_; and a,, = 0 (or any cyclic
permutation).

For aias---a, = 0, the inequality is a consequence of the power mean inequality. For

aias - --a, > 0, the inequality follows from P 5.122. Due to homogeneity, we may assume
: n—1 ap+as+---+an : o
aias---a, = 1. Denotingm = —— < 1 and x = > 1, the inequality in P
n

n
5.122 and the desired inequality become
(n =1 ay + - +ap) > nf(@" —1+m")

and
(n =1 ab 4 ak) > nb(a — 1 - mi Ry,

respectively. So, it suffices to show that
2L mh > (2 — 1 ml YR,
which is equivalent to f(x) > 0, where
fl@)=aF —14+mF ! — (z — 1+ mi-/kyk,
Since £ > 1, m < 1 and x > 1, we have
%f’(m) — R (= 1Ry S gkl kel

f(z) is increasing, therefore f(z) > f(1) = 0.
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P 5.123. If ay,a9,...,a, (n>3) are nonnegative real numbers such that

n

1
Z(n—l)ai—i—l:l'

=1

then
ar+az + - Fap = n " aray .
(V. Cirtoage, 2022)
Solution. Consider a1 < ay < -+ < a,. If n > 4, we may apply Theorem 2 for m = 1.
So, since for fixed a1 + as + - -+ + a,, the product ajas---a, has the maximum value when
a; < ap =az=--- = a,, we only need to show that if
1 n—1
=1 0<ax<
(n—l)x+1+(n—1)y+1 ’ =9
that is
_ (n—=2)z+1
v= (n—1x ~
then
ot (n— 1)y >n "oy,
that is
r 4 (n—1)y > ny Yy ,
2 n woaf(n—2)x+1
-2 1> -2 1 -
P (= 2)a+ 12 (- 2+ 1) "

By Bernoulli’s inequality, we have

2 (n—2)x+1: ,L\2/1+(n—2)(x—1) §1+x—1:a:—|—n—2.
n—1 n—1 n—1 n—1

So, it suffices to show that

2+ (n—2)z+1> 5[(n=2)z +1)(z +n —2),

n
(n—1)
which is equivalent to (z — 1)% > 0.

For n = 3, we need to show that

ap + as + as Z 3a1a2a3
for

1 N 1 N 1 .
200 +1 2a9+1 2a3+1 7’

that is
4a1a2a3 =ai; +as+as+ 1.

Denote t = Jajasaz. From the AM-GM inequality, we have

43 =ay+as+as+1>3t+1,
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(t—1)(2t+1)>>0,
hence ajasasz > 1. Finally, we get

a1 + as + as — 3ajasas = ajasas — 1 > 0.
The equality occurs for ay =as =--- =a, = 1.
O]

P 5.124. If ay,aq,...,a, (n > 3) are nonnegative real numbers such that

& 1

2 a1k

1=1

then

n—1\""
where k = )
n—2

a;+as+ - +a, —n < k(aay---a, — 1),

(V. Cirtoaje and L. Giugiuc, Creat. Math. Inform, 2, 2022)

Solution. Consider a; < ay < --- < a,. For n = 3, the inequality is an identity. Consider
further n > 4. According to Theorem 2 (case m = 1), for fixed a; + as + - - - + a,, the product
aiag -+ -G, 1s minimum when a1 = ay = -+ = ap—1 < a,. We need to show that if

n—1 1

)

m—De+l (n-Dy+1

which leads to
1 n—2

n—1zr—n+2’ n—1

<z <y,

.

then
(n—1Drx+y—n<k@ 'y-—1),

which is equivalent to

1+[n—1Dx—n+2)[(n—1)z—n] <kz"'—(n—-1z+n-—2],

(n=1)*z -1 <kf(x), fle)=2""=1=(n—-1)(z-1).
Since

fl@) = (@=1E"Z 42" 4w —n+2) = (v - 1)%(),
where

glx) =" 422"+ 4 (n—2),

we only need to show that
(n—1)* < kg(x).
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Since g is an increasing function, it suffices to show that

(n—l)zgkg<2:i>.

n J—
This inequality is true if the inequality (*) holds for x =
n p—

2
T Indeed, in this case, (**) is an
identity:.

For n > 4, the equality occurs when ay =ay, =--- =a, = 1.

Remark. From P 5.123 and P 5.124, we get the following nice double inequality:

o Ifay,as,...,a, (n>4) are nonnegative real numbers such that

& 1

R T

—~ (n—1)a; +1

then
a a ce. Qay,
Vaias -Gy < Lot < ayag - .
n

By the AM-HM inequality

[nZ((n— a; +1)

i=1

n—1
> 2
(Z n—lal—l—l) "

=1

we get a; +as + - - -+ a, > n. As a consequence, the inequality in P 5.124 involves
aiasg - -+ a, > 1.
So, denoting p = ajas---a, (p>1), the inequality in P 5.124 leads to

najag - a, — (@ +ag+--+a,) >np—k(p—1)—n=Mn-Fk)(p—1) >0.

P 5.125. Ifay,aq9,...,a, (n>3) are nonnegative real numbers such that

n

Y1
(n—Da;+1 7

i=1

then
(n—2)(a1 +ay+---+a,) +aay---a, > (n—1)>%

(V. Cirtoaje and L. Giugiuc, Creat. Math. Inform, 2, 2022)
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Solution. Consider a; > ag > -+ > a,. According to Theorem 2 (case m = n — 1), for fixed
a1+ as + -+ + a,, the product ajas---a, has the minimum value for either a; = ay = --- =
Gp_1 > a, > 0 or a, = 0. Thus, it suffices to consider these cases.

Case l: ay = a9 = -+ = an,—1 > a, > 0. We need to show that if
n—1+ 1 B
r+1 y+1 7
which leads to
n—1—(n-2)z n—1
y= ) O<y<ez<——F,
T n—2

then
(n—2)[(n— 1z +y +2"ty>(n—1)7>

which is equivalent to
(n—2y+2"y>mn-Dn—-1-(n—2).
Since n — 1 — (n — 2)x = xy, we only need to show that
n—2+z"1'> -1z,

which is just the AM-GM inequality.
Case 2: a,, = 0. We need to show that

n—1

— a+n—1 n-—1

involves
(n—2)(a1 +az+ -+ an_1) > (n—1)%,

This follows immediately from the AM-HM inequality

[i(ai—i—n—l) (i r;_J > (n— 1)

i=1 i=1

The proof is completed. The equality occurs for a; = ay = -+ = a, = 1, and also for
—1
A=Ay =" = Qp_1] = n and a,, = 0 (or any cyclic permutation).
n J—
m
P 5.126. If ay,as,...,a, (n > 3) are nonnegative real numbers such that
- 1
> g
i1 26Li +n—2
then

ay+ag - Fa,—n > 2" Haay - -a, —1).

(V. Cirtoaje and L. Giugiuc, Creat. Math. Inform, 2, 2022)
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Solution. Consider a; > as > --- > a,. For n = 3, the inequality is an identity. For n > 4,
according to Theorem 1 (case m = n — 2), for fixed a; + as + - - - + a,, the product ajas---a,
attains its maximum value when a; > as = a3 = --- = a,,. Thus, we only need to show that

y+(n—1Dx—n>2"(y2" ' -1)
for

1 n n—1
2y+n—2 22+n—2

)

which implies
n—2—(n-3)z 1 <
—<x .
or—1 2 "=Y

The required inequality is equivalent to

y:

n—2—(n-3z+ (2x—1)[(n— 1)z —n -

gn—1 =
> (n—2)(a""" = 1) = (n = 3)(z" — 1) = 2(x — 1), (*)
)
where

=—n—-3)2"?~n—4)2" 3 - 2+ 1.
So, we only need to show that
n—1
oz = 9().

Since g is a decreasing function, it suffices to show that

n—1 1
> — .
om=2 = 2

This is true if the inequality (*) holds for x = —. Tt is easy to show that (*) is an identity.

N[ —

For n > 4, the equality occurs when a; = ay =--- =a, = 1.
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—1
P 5.127. Let n > 3, and let a1 > as > --- > a, > 0 such that Z a;a; = % Then
1<i<j<n
1 1 1 4 Ay an,
(a) —2+—2+"'+—2—n2(3——>( 1+ —2),’
ay  ay ay, n Qn 1
1 1 1 4 )

(V. Cirtoage, 2024)

Solution. Since a,_1a, < 1, the inequality (b) follows from the inequality (a). We write now
the equality constraint as follows:

n—1
2 Z aiaj+2an2ai:n(n—1),
1<i<j<n—1 i=1

n—1 n—1
and fix a,,, Z a; and Z a?. To prove the inequality (a), we denote

=1 =1

Gy an,
E<an71) = - + - 27
G, Ap—1
will use Lemma below and Corollary 5 for a; > as > --- > a,_1 >0, k=2 and m = —2:
n—1 n—1

o forai>ay>--->a,1>0,if 5 = Zai and Sy = Za? are fized, then the sum

i=1 =1

! + =+ + !
ai = a3 az_;
has the minimum value when a; > ag = - = Qp_1.
On the other hand,
1 a
Eap_,) = — — —— >0,
( n 1) a, a%,1 -

E(a,_1) is increasing and has the maximum value when a,,_; is maximum, hence when a; > ay =
-+« = a,_1 (see Lemma below). So, it suffices to prove the inequality (a) for a; > as = -+ = a,,_1.
To do it, write the inequality in the homogeneous form

2 ( Z aiaj) (Z %) _ n2(n 1> (n— 1)(3na;_41)a(:nl _ an)2‘

1<i<j<n i=1 ¢

Due to homogeneity, we may set a, = 1. Denoting a; := z and ay = --- = a,,_1 := y, we need to
prove that x >y > 1 implies f(x) > 0, where

f(@) = [2(n = 2)zy + 2z + (n — 2)(n — 3)y* + 2(n — 2)y] <i2 + n_—22 + 1>

T
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(n—1)(3n — 4y~ 17

—n“(n—1)— ;
We have
@ -2yt 1] (% N ny— 2 N 1> 2(n—2)zy+22+(n —gj)(n —3)y* +2(n — 2)y’
f”;x) _ —2[(n ;31)y +1] | 4n —;3)1/ +4  3n- 2)[(%3; 3)y® + 2y
_ 2z[(n — 2)y + 1] + 3(n — 2)[(n — 3)y* + Zy]'

Since f"(z) > 0, f'(z) is increasing, therefore

f'x) _ f'(y) n— 2(n = 2)y* + 2y + (n — 2)(n — 3)y* + 2(n — 2)y
o L -y (P ) - ;

_ n—2)y3+y*—n+1 _ (y—D[n—-2)y*+(n—1)y+n—1] -0
y? y? -

Since f'(z) > 0, f(z) is increasing, therefore

() fy)

-1~ n—l

(3n —4)(y — 1)?
Y

= [(n = 2)y* + 2y (ny_—21+1) —n?—

:[m—2w+zn—m@—1ﬂ—@n—®@—1fz<n—m@—1ﬁ>o
Y Y B
The proof is completed. The inequalities (a) and (b) become equalities for a; = ay = -+ =
a, = 1.

Lemma. Letn > 3, and let the fized sums Sy = a1 +as+-+-+a,_1 and Sy = at+a3+---+a?

n—1’
where ay, as, . . ., a,_1 are positive real numbers satisfying a; > ag > -+ > a,_1. Then the number
an—1 has the mam’mum value when a1 > ag = -+ = Gp_1.

Proof. Let
G 2t
N n—2 ’
hence

Sl = ai +(TL—2)S.

From the known inequality
ay+ - +ap_y > (n—2)8°

(with equality for ay = -+ = a,_1), we have
Sy > a2+ (n—2)S* =[S — (n—2)S* + (n —2)S?,

therefore

(n—1)(n—2)S* —2(n —2)S,S + 57 — S, <0,

(n—1)S <8 — /S~ (n—1)/(n—2)- (57— ).
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Since a,_1 < S (with equality for ay = - -+ = a,_1), we obtain

(n— Dyt < S — /St~ (n—1)/(n—2) - (52— 5),

with equality for ao = -+ = a,_1.
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Chapter 6
EV Method for Real Variables

6.1 Theoretical Basis

The Equal Variables Method may be extended to solve some difficult symmetric inequalities in
real variables.

EV-Theorem (Vasile Cirtoage, 2010). Let xq,29,...,2, (n > 3) be real numbers such that
1 < a9 < --- <y, let k be an even positive integer, and let f be a differentiable function on R
so that the joined function g : R — R defined by

o) = 1 (/)
is strictly conver on R. For fived x1 + 29 + -+ + 1, and x§ + 25 + -+ + 2F | the sum
Sn = [(@1) + flz2) + -+ f(xn)
has the minimum value for xo = x3 = - - - = x,, and the maxzimum value forxy =xo = -+ = Tp_1.

To prove this theorem, we will use EV-Lemma and EV-Proposition below.

EV-Lemma. Let x,y, z be real numbers such that x <y < z. For fized x+y+z and x* +y* +2~,
where k is an even positive integer, there exist two real numbers m and M so that

(1) y € [m, M];
(2) y=m if and only if © = y;
(3) y=M if and only if y = z.

Proof. We may consider x and z as functions of y. From

I + S = _1’ 'kalw/ + Zkflz/ — _ykf:l?

we get

The two-sided inequality
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is equivalent to the inequalities fi(y) < 0 and fo(y) > 0, where

fily) =x(y) —y,  foly) = 2(y) —v.

Using (*), we get
k=1 _ k-1

reon Y
fl(y) - k=1 _ k=1 -1
and k—1 k—1
/ . Yyt —ar
f2(y> - k=1 _ k=1 -1

Since fi(y) < —1 and fi(y) < —1, f; and fy are strictly decreasing. Thus, the inequality
fi(y) < 0 involves y > m, where m is the root of the equation z(y) = y, while the inequality
fo(y) > 0 involves y < M, where M is the root of the equation z(y) = y. Moreover, y = m if
and only if x = y, and y = M if and only if y = 2.

EV-Proposition. Let x,y,z be real numbers such that x < y < z, let k be an even positive
integer, and let f be a differentiable function on R so that the joined function g : R — R defined

b
' g(z) = f' ("Vz)
is strictly convexr on R. For fized x +y + 2 and x* + y* + 2%, the sum
S=[f(x)+fly)+ f(2)
has the minimum value for y = z, and the maximum value for x = y.
Proof. Assume that x and z are functions of y. Thus, we have
S =flx() + fy) + [(2(y) == F(y).

According to EV-Lemma, it suffices to show that F'(y) is maximum for y = m and is minimum
for y = M. Using (*), we have

F'ly) =2'f'(x) + f'(y) + 2 f(2)

E—1 k-1 k—1 E—1
y ——= - _ Yy -z _
= Wg(ffk D9t + WQ(Zk D
hence
F'(y) N gz 1)
(yk—l _ xk—l)(yk—l _ Zk—l) - (:L‘k:—l _ ykz—l)(xk:—l _ Zk—l)
N gy ) N g(z" 1)

(Y1 — 2E=1)(yh=1 — gh=1) * (h=1 — gh=1)(zh=1 — g1
Since g is strictly convex, the right hand side is positive. Moreover, since
(yk—l o l‘k_l)(yk_l o Zk—l) < 0,

we have F'(y) < 0 for y € (m, M), hence F is strictly decreasing on [m, M]. Therefore, F' is
maximum for y = m and is minimum for y = M.
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Proof of EV-Theorem. For n = 3, EV-Theorem follows immediately from EV-Proposition.
Consider next that n > 4. Since X = (z1,%2,...,%,) is defined in EV-Theorem as a compact
set in R™, S, attains its minimum and maximum. Using this property and EV-Proposition, we
can prove EV-Theorem via contradiction. Thus, for the sake of contradiction, assume that S,
attains its maximum at (by, by, ..., b,), where by < by < --- < b, and by < b,_1. Let 1, x, 1
and z,, be real numbers so that

Ty =Tp 1 < Tp, T+ Tp g+ T, =b by +b,, ¥k k=0 40
According to EV-Proposition, we have
f(@1) + flana) + f(@n) > f(b1) + f(bnoa) + f(bn),
which is a contradiction. Similarly, we can prove that S, is minimum for 2o = 23 = --- = x,,.
Corollary 1. Let x1,xs,...,x, (n > 3) be real variables such that
1 Sxg < --- < Ty,

and let f be a differentiable function on R so that the derivative [’ is strictly convex on R. For
fized x1 + x9 + -+ + 1, and 23 + x5+ - - + 22, the sum

Sn = f(21) + flz2) + -+ f(xn)
has the minimum value for xro = x3 = -+ = x,, and the maximum value forxy = x9 = -+ = x,_1.
Corollary 2. Let x1,xs,...,x, (n > 3) be real variables such that
Ty S Xp <o S Ty,

and let k be an even positive integer and m an odd integer such that m > k. For fized x1 + x5 +
oo+ x, and 2 4+ 2k + - 4 2k the power sum

Sp=a"+a +---+a,

has the minimum value for xro = x3 = -+ = x,, and the maximum value forxy = x9 = -+ = x,_1.
Proof. We apply the EV-Theorem the function f(u) = u™. The joined function
o) = ' (“5) = m Ve

is strictly convex on R because its derivative

j@:ﬂ%iﬁwgﬂ
is strictly increasing on R.
Theorem 1. Let x1,xs,...,2, (n > 3) be real numbers such that xy + xo + -+ + x,, and
i+ a3+ -+ a2 are fized.

(a) The power sum

Ay=xi+a3+ -+
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has the minimum and mazimum values when the set (x1,xs,...,x,) has at most two distinct
values.

(b) For m =6 and m = 8, the power sum
Ap =ao +2y + -+
has the mazimum values when the set (x1,xs, ..., x,) has at most two distinct values.

The proof of Theorem 1 is based on the following Proposition 1 below.

Proposition 1. Let x,y, z be real numbers such that x +y + z and 2> + y? + 2% are fived.

(a) The power sum
Ay =a*+y* + 2

has the minimum and mazximum values when two of x,y, z are equal to each other.

(b) For m =6 and m = 8, the power sum
Ap=al"+ay + -+
has the mazimum values when two of x,y, z are equal to each other.
Proof. Let
p=x+y-+z, q=2zy+yz+ zx, T = TYz.

From
(z—y)*(y —2)*(z —2)* > 0,

which is equivalent to
—27r* — 2(2p* — Ipq)r + p°q* — 4¢° > 0,

we get r € [rq, 73], where

_ g = 20" = 20" =3¢)Vp* =3¢ 9pa —2p + 200" —39)v/p* — 3¢

27 r 2 27

From
—27(r —r)(r —my) = (z — y)*(y — 2)*(z — 2)* > 0,

it follows that the product r = xyz attains its minimum r; and its maximum 7o when two of
x,y, z are equal to each other. For fixed p and ¢, we have

A4 = 4p7" + h4(p7 q) = 94(7’),

Ag =3r* + fo(p,q)r + he(p, q) = ge(r),
Ag =43p* = 29)r* + fs(p. @)r + hs(p, q) := gs(r).

(a) Since g4(r) is monotone, A4 has the minimum and maximum values for r = 7 or r = 79;
that is, when two of z,y, 2z are equal to each other.

(b) Since

7. 09
3p* —2q = 5292 + g(p2 —3q) >0,
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the functions gg and gg are strictly convex, hence Ag and Ag has the maximum value only for
r =1, or r = ry; that is, when two of z,y, z are equal.

Open problem. The point (b) in Theorem 1 is valid for any integer number m > 3.

Note. The EV-Theorem for real variables and Corollary 1 are also valid under the conditions
in Note 2 and Note 3 from the preceding chapter 5, where m, M € R.
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6.2 Applications

6.1. If a,b, ¢, d are real numbers so that a + b+ ¢+ d = 4, then
2 g2, 2, 2,8 ’ 5 3, 3,53, 04
a—l—b+c+d+§ >4 a+b—|—c~|—d—|—§.

6.2. If a,b, c,d are real numbers so that a + b+ ¢+ d = 4, then

(a®> + b+ +d* —4) (a2+62—|—02+d2+%6) > 8(a’® +b° + & + d* — 4).

6.3. If a,b, ¢ are real numbers so that a + b+ ¢ = 3, then

(a®> +0* +c = 3)(a® + b* +* +93) > 24(a® + b + & - 3).

6.4. If a,b, ¢, d are real numbers so that a + b+ ¢+ d = 4, then

(@ +0+E+d*—4)(a®+ 0+ +d*+116) > 24(a® +0° + 3+ d® — 4).

6.5. Let a, b, ¢, d be real numbers so that a +b+ ¢+ d = 4, and let

E=ad®+V+c+d* —4, F=a+V++d*—4.

()

6.6. Let a1, ao,...,a, be real numbers so that

Prove that

a+ay+-+a, =0,  al+as+--+a=n(n-1).
If m is an odd number (m > 3), then

n—1l—-(mn-1)"<al"+al+--+ar<(n—-1)"—n+1

6.7. Let a1, ao, ..., a, be real numbers so that
_ 2, 2 2 .2
ar+ay+---+a, =1, ai+ay+---+a, =n"+n-—1

If m is an odd number (m > 3), then

2 " 2 " m m m m
m=1)(1+=) —(n—=) <al'+ay'+---+a'<n"™—n+l.
n n
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6.8. Let ay,ao,...,a, be real numbers so that
ay +ax+ - +a, =1, a?+a3+---+a2=n?—3n+3.

If m is an odd number (m > 3), then

2 m m
n—l—(n—2)m§a’ln+a’2"+---+a7’f§(n—2+—) —(n—l)(l——> :
n

6.9. Let ay,as,...,a, be real numbers so that
a+ag+-+a,=a;+a3+-+a=n-1

If m is an odd number (m > 3), then

2\" 2\"
n—1<al"+ay+--+ar<n-1)(1—--=) +(2—=] .

6.10. Let aq,ao,...,a, be real numbers so that
a+ay+-Fa,=n+1, a+ai+---+a>=n+3

If m is an odd number (m > 3), then

2\"™ 2\"™
(—> +(n—1)(1+—) <a'+ay+---+ay<2"+n-1
n n
6.11. If aq, as, ..., a, are real numbers so that
atas+-ta,=ai+ay+---+a,=n—1,

then
a‘;’+ag+---+a22n—1.

6.12. If a, b, c are real numbers so that a? 4 b* + ¢? = 3, then

A+ +c+3>2a+b+c).

6.13. If aq, a9, ..., a, are real numbers so that
ap+az+---+a, =0, ai+as+---+a=n(n-—1),

then
aj+a;+---+ar <n(n—1)(n*—3n+3).
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6.14.

then

6.15.

then

6.16.

then

6.17.

then

6.18.

then

6.19.

6.20.

then

If ay, a9, ...,a, are real numbers so that

a+ay+---+a, =n+1, al+as+ - +ad=4n*+n—1,
ai +ay+---+al <16n* +n— 1.

If n is an odd number and a4, as, ..., a, are real numbers so that

ay+ay+---+a, =0, al+az+---+a:=nn*-1),
ai +a5+ - +at >n(n?—1)(n*+3).

If ay,asq,...,a, are real numbers so that

ay+ag+ - +a,=n*—n-—1, ai a5+ +ai=n+2n*—n—1,
ai+ay+---+at>nt+(n—1)n+Dn

If ay,as,...,a, are real numbers so that

ay+ag+---+a, =n*—2n—1, a?4as+---+a:=n4+2n+1,
aj +ay+--+ay > (n+1)"+ (n—1)n’.

If ai,as,...,a, are real numbers so that

a+ay+-+a,=n*—-3n—2,  al+a;+---+a:=n"+2n*—3n-2
ai +a3+---+at>2n*+ (n—2)(n+ 1)~

If a,b,c,d are real numbers so that a + b+ ¢+ d = 4, then

(@®+ V0 + A+ &> —4)(a® + 0>+ +d* +36) < 12(a” + b + '+ d* — 4).

If ay,as,...,a, are real numbers so that

a +az+---+a, =0, al+a3+---+a:=n(n-1),

a+as+-+a<(n—-1°+n-1
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6.21. If aq,as,...,a, are real numbers so that
_ 2 2 2 _ 2
ap +ag+---+a, =1, ai+ay+---+a, =n"+n-—1,
then
a§+ag+---+ag§n6+n—1.
6.22. If aq, as, ..., a, are real numbers so that
atas+-+a,=0, aj+ai+---+a,=n(n—1),
then
ad+a5+ - +ad < (n—1°%+n—1
6.23. If aq, as, ..., a, are real numbers so that
_ 2 2 2 _ 2
ar+as+---+a, =1, ay+ay+---+a, =n"+n-—1,
then

a§+ag+---+ai§n8+n—1.

6.24. Let a1, as,...,a, (n > 2) be real numbers (not all equal), and let

g tat--ta B:a§+a§+---+ai C:a§+a§+---+a§’;
n ’ n ’ n '
Then,
1 ] " 2n? BQ—AC’<1 L1t 2n?
4 n—1) =~ B2—A* — 4 n—1/"

6.25. If a, b, c,d are real numbers so that
a+b+c+d=2,

then 3
at + o+t d §4O—|—Z(a2+b2—|—02—|—d2)2.

6.26. If a,b, c,d, e are real numbers, then

141
a4+b4+c4+d4+64§%§

3
(a+b+0+d—|—€)4+Z(a2+b2+62+d2+62)2.
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-5
6.27. Let a,b,c,d, e # e be real numbers so that a + b+ c+d+ e = 5. Then,

aa—1)  bb—1)  clc=1)  dd=1) ele=1) _
(da+5) " (4b+5)*  (de+5)2 " (dd+5)2  (de+5)2 =7

6.28. If a, b, c are real numbers so that
a+b+c=9, ab + bec + ca = 15,
then

19 1 n 1 N 1 <7
175 — 2 4+bec+c2 24+ca+a? a?+ab+02 19

6.29. If a, b, c are real numbers so that
8(a® + b? + ¢*) = 9(ab + bc + ca),
then
419 a? b? c? 311
— < + + <.
175 = B2 +bc+c?  A+ca+a®  a?+ab+b? 19

6.30. Let aq,as,...,a, be real numbers such that a; +as +--- 4+ a, = n. If n <10, then

Q(a%+a§+---+ai)2—n(ai’—l—ag—k---jtai)>n2.
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6.3 Solutions

P 6.1. Ifa,b,c,d are real numbers so that a + b+ c+ d = 4, then
2, 2, 2, 2,0 ’ 5 43, 3, 3, 04
a”+b"+c" +d +§ >4 (a”+b°+c+d —l-? .

(Vasile Cirtoaje, 2010)
Solution. Apply Corollary 2 forn =4, k =2, m = 3:
e Ifa,b, c,d are real numbers so that a <b<c<d and
a+b+c+d=4, a? + b 4+ 2 + d* = fived,

then
Sy=a+*+S+ &

1s maximum for a =b=c <d.
Thus, we only need to show that 3a + d = 4 involves
8\’ 64
<3a2+d2+§> 24(3a3+d3+§> :

This inequality is equivalent to
(a —1)*(3a —2)* > 0.

The equality holds for a =b=c¢=d =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Ifay,as,...,a, are real numbers so that

ap+ag+---+a, =n,

then
3 2 40,2
5 o 9 n 3 3 3y . nH(n®+16n — 16)
a a - ta >nla a - ta
(1+ 2t ”+8n—8> Zr(aitat o)+ e
with equality for ay = ay = --- =a, =1, and also for
n n
al = a :---:ani = —Q, an:_
P Yo —2 2

(or any cyclic permutation).
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P 6.2. Ifa,b,c,d are real numbers so that a + b+ c+ d = 4, then

(a®> + b+ +d* —4) (a2+b2+62+d2+§> > 8(a’® +b° + & + d&* — 4).

Solution. As shown in the preceding P 6.1, we only need to show that
3a+d=4
involves

3

(3a* + d* — 4) (3a2 +d? + E) > 8(3a” + d° — 4).

This inequality is equivalent to
(a—1)*(3a — 1) > 0.

The equality holds for a = b =c=d =1, and also for

d=3

W =

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Ifay,as,...,a, are real numbers so that

ay +az + -+ a, =n,

then
2
n(n®+n-—1
(af+---+a) —n) af—l—~--—|—ai+% > 2n (a} +
with equality for ay = ay =--- =a, =1, and also for
1
ap=ag =+ =ap1 = ;o ap=n—1
n—1

(or any cyclic permutation).

P 6.3. If a,b,c are real numbers so that a + b+ c = 3, then

(Vasile Cirtoaje, 2010)

o tay —n),

(a® + b+ = 3)(a® + b* + ¢ +93) > 24(a® + b* + & — 3).

(Vasile Cirtoaje, 2010)
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Solution. As shown in the proof of P 6.1, we only need to show that
2a+c=3

involves
(2a® + ¢ = 3)(2a* + ¢* + 93) > 24(24° + ¢* - 3).

This inequality is equivalent to
(a* —1)* > 0.

The equality holds for a = b= ¢ =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Let a,b,c be real numbers so that a + b+ c = 3. For any real k, the following inequality
holds
(a® +b* + ¢ — 3)(a® + b* + ¢ + 6k* + 36k — 3) > 12k(a® + b* + & — 3),

with equality for a =b=c =1, and also for
a=b=1—-k, c¢=1+2k

(or any cyclic permutation).

P 6.4. Ifa,b,c,d are real numbers so that a +b+ ¢+ d = 4, then
(@®+ 0+ +d>—4)(a*+ 0+ +d®+116) > 24(a® + b* + & + d° — 4).
(Vasile Cirtoage, 2010)
Solution. As shown in the proof of P 6.1, we only need to show that
3a+d=4

involves
(3a* + d* — 4)(3a* + d* + 116) > 24(3a® + d* — 4).

This inequality is equivalent to
(a*> —1)* > 0.

The equality holds for a =b=c¢=d =1, and also for
a=b=c=—1, d=717
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
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e Letay, as,...,a, be real numbers so that
ar+as+---+a, =n.
If k is a real number, then

a2+ +at+nn—1)n-2)72%k*+6n(n—-1)k—n
2n(n — 1) ’

k(aj+---+a—n)
ai+---+a2—n

<

with equality for
ag=-=a,_1=1—(n—2)k, a,=1+(n—-1)(n—-2)k
(or any cyclic permutation).

—6
For k = g We get the following nice inequality
n

12 —1
(a3 4 a3t tad—n) + 0D g al o m) 20
with equality for a; = ay =--- =a, = 1, and also for
aL=:"=apn_1 =1, a, =7—6n

(or any cyclic permutation).

P 6.5. Let a,b,c,d be real numbers so that a +b+c+d =4, and let

E=+V+3+d*—4, F=d+¥+S+a -4

o({E5) =

Solution. As shown in the proof of P 6.1, we only need to prove the desired inequality for
3a +d =4 and

Prove that

(Vasile Cirtoaje, 2016)

E=3d*+d*-4, F=3+d -4

Since
E=12(1-a)*  F=12(5—-2a)(1—a)?

we get

E ( §+ 3) — F=12(1—-a)*2|1 —a| +3) — 12(5 — 2a)(1 — a)*

=24(1 —a)?[|1 —a| — (1 —a)] > 0.
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The equality holds for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Letay,as,...,a, be real numbers so that a; + as + - - -+ a, = n, and let

E=a+a5+ --+a:—n, F=a+a+ - +a—n.

Then,

E
(TL—Z) —1+3

R R

with equality for

(or any cyclic permutation).

P 6.6. Let ay,ao,...,a, be real numbers so that
a +as+---+a, =0, ai+as+---+al

If m is an odd number (m > 3), then

n—1—-n-1D"<a"+al'+---F+ar<n-1)"—-n+1.

Solution. Without loss of generality, assume that

ap <ax<---<a

— n-

(a) Consider the right inequality. For n = 2, we need to show that

ay +ay =0, a: + a3 =2
implies
ai" + a3 <0.
We have
ay = —]_, a9 = 1,

therefore ai* + a4* = 0. Assume now that n > 3. According to Corollary 2, the sum

Sp=a"+ay +---+a

(Vasile Cirtoaje, 2010)
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is maximum for a; = ay = --- = a,_1. Thus, we only need to show that
(n—1a+b=0, (n—1)a® +b* = n(n — 1), a<b

involve
n—1a"+0"<(n—1)"—-n+1

From the equations above, we get
a=-—1, b=n—-1;

therefore,
(n—1a"+0"=n-)(-)"+n-1)"=n-1)"—n+1

The equality holds for
L=+ = Qp_1 = —1, a,=n-—1

(or any cyclic permutation).

(b) The left inequality follows from the right inequality by replacing ai,as,...,a, with
—ay, —as, ..., —a,, respectively. The equality holds for

ap=-n+1, Gy =a3=---=a, =1

(or any cyclic permutation).

P 6.7. Let ay,as,...,a, be real numbers so that
amFas+-Fa, =1, a+ay+-+a=n*+n-—1

If m is an odd number (m > 3), then

2 " 2 " m m m m
m=—1(1+=) —(n—=) <al'+ay+---+a'<n"™—n+l.
n n

(Vasile Cirtoaje, 2010)
Solution. Without loss of generality, assume that
a1§a2§~~~<an.

For n = 2, we need to show that
a; +as =1, a2+ a3 = b,

implies
2" —1<al"+ay <2™—1.

We have
a; = _]-7 ag = 2a
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for which af* + a* = 2™ — 1. Assume now that n > 3.
(a) Consider the right inequality. According to Corollary 2, the sum
Sp=a"+ay +---+a;
is maximum for a; = ay, = --- = a,_1. Thus, we only need to show that
(n—1la+b=1, (n—1a*+b*=n*+n-—1, a<b

involve
(n—1)a™4+0" <n™—n+1.

From the equations above, we get
therefore,

(mn—1)a"4+0"=n-1)(-1)"+n"=n" —n+ 1.

The equality holds for
aL=ay="-"+=ap_1=—1, a, =n

(or any cyclic permutation).

(b) Consider the left inequality. According to Corollary 2, the sum
Sn:a’in—i—agl—i—..._i_a:j‘
is minimum for ay = a3 = --- = a,,. Thus, we only need to show that

a+ (n—1)b=1, a®+(n—1)b*=n>+n-1, a<b

a™ + (n— )™ > (n — 1) (1+3)m—(n—3>m.

From the equations above, we get

involve

2
a=-n+—, b=1+—;

therefore,

n n
2\ 2\
o0+ -2)
n n
The equality holds for
2 2
a; = —n+ —, g =a3=---=ap, =1+ —

(or any cyclic permutation).
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P 6.8. Let ay,as,...,a, be real numbers so that

a+ay+---+a, =1, a?+ai+---+a:=n*>—3n+3.

If m is an odd number (m > 3), then

n—1—-(n—-2"<al'+ay+ - +a, < (n—?—l—%)m—(n—l) (1—%>m.
(Vasile Cirtoaje, 2010)

Solution. Without loss of generality, assume that

ay < ag < -0 < ag.
For n = 2, we need to show that

a +ar =1, a%+a2:1,

implies

1<a"+ay <1
We have

ay = O, g = 1,
when af* + af* = 1. Assume now that n > 3.
(a) Consider the left inequality. According to Corollary 2, the sum
Sp=a"+ay +---+a;
is minimum for ay = a3 = --- = a,,. Thus, we only need to show that
a+(n—1b=1, a+n-)V¥=n*-3n+3, a<b

involve
a"+(n—=1)"<n—-1—(n—2)".

From the equations above, we get
a=2-—n, b=1,;
therefore,
a"+(n-1)"=2-n)"4+n—-1=n—-1—(n—2)".

The equality holds for
a=2—-n, gy =a3=---=a, =1

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

Sp=a"+ay +---+a
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is maximum for a; = ay = --- = a,_1. Thus, we only need to show that

(n—1a+b=1, (n—1)a®> +b* =n® — 3n + 3, a<b

(n—1)a™m+0" < <n—2+%>m—(n—1) (1—z>m.

n

involve

From the equations above, we get

therefore,

The equality holds for

2 2
ay =" =0p_1=—14+—, ap, =N — 2+ —
n n
(or any cyclic permutation).
O
P 6.9. Let aq,as,...,a, be real numbers so that

a1+a2+...+an:a%+a§+~~~—|—ai:n—1.

If m is an odd number (m > 3), then

2\"™ 2\"™
n—lSaT+a§”+'--+anm§(n—1)(1——) +<2——> :
n n

(Vasile Cirtoaje, 2010)

Solution. Without loss of generality, assume that
ap < ag < - < ap.

For n = 2, we need to show that

implies

The above equations involve
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hence ai* 4+ ai’ = 1. Assume now that n > 3.

(a) Consider the left inequality. According to Corollary 2, the sum
Sp=a"+ay +---+a
is minimum for ay = a3 = - -- = a,,. Thus, we only need to show that
a+(n—1)b=n—1, a>+n—-1)=n-1, a<b

involve
a”+(n—-1b">n-—1.

From the equations above, we get
therefore,

The equality holds for
a; =0, Gy =-+=a, =1

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum
Sn:a’in—'—a;n—'—..._'_a;n
is maximum for a; = ay = --- = a,,_1. Thus, we only need to show that

(m—1la+b=n-—1, (n—1a*+b*=n—1, a<b

m—1mm+vn§or—n(1—3)m+(2—3)m.

From the equations above, we get

involve

2 2
a=1-——, b=2——,
n n
when
a4 = -1 (1-2) +(2-2)"
n—1)a =(n— -z e
n n
The equality holds for
2 2
G=a = =0 1=1——, a,=2——
n n

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
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e Letay, as,...,a, be real numbers so that
m+ay+---+a, =k, ai+ay+ - +ad =n*+ 2k — O)n + k(k — 2),

where k is a real number, k > —n. If m is an odd number (m > 3), then
2k " 2k "
(——i—l—n—k‘) +(n—1) (——1—1) <a'4+ay+---+a' <(n+k-1)"-n+1
n n

The left inequality is an equality for

2k 2k
a=—+1-—n—k, ag=--=a,=—+1
n n

(or any cyclic permutation). The right inequality is an equality for
= =ap1 = —1, ap,=n+k—-1
(or any cyclic permutation).

For £ = 0 and k = 1, we get the inequalities in P 6.6 and P 6.7, respectively. For k = —1
and k = —n + 1, by replacing k£ with —k and a4, as, ..., a, with —a;, —as, ..., —a,, we get the
inequalities in P 6.8 and P 6.9, respectively.

m

P 6.10. Let ay,ao,...,a, be real numbers so that
a1 +az+- - 4a, =n+1, ai+as+-+al=n+3.

If m is an odd number (m > 3), then

2\" 2\"
(—> +(n—1)(1+—) <a'+ay +---+ay <2"+n—1.
n n

(Vasile Cirtoaje, 2010)
Solution. Without loss of generality, assume that

ap < ag <o <oay,.

For n = 2, we need to show that

ay +ay = 3, a2+ a3 = b,
implies

2"+ 1<al"+ay <2"+ 1.

We get
ay = 1, a9 = 2,

when a* + af* = 2™ 4+ 1. Assume now that n > 3.
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(a) Consider the left inequality. According to Corollary 2, the sum
Sp=al"+ay +---+a;
is minimum for ay = a3 = --- = a,,. Thus, we only need to show that
a+(n—1b=n+1, a+Mnm-D¥=n+3, a<b

involve

From the equations

we get

therefore,

The equality holds for

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum
Sp=al"+ay +---+a;
is maximum for a; = ay, = --- = a,_1. Thus, we only need to show that
(n—1)a+b=n+1, (n—1)a* + b =n+3, a<b

involve
(n—1a"+0" <2™+n—1.

From the equations
(mn—1la+b=n+1, (n—1)a®> +b* =n+3,

we get

therefore,
(n—1)a™+b"=n—1+2".

The equality holds for
a1:---:an_1:1, an:2

(or any cyclic permutation).
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Remark. Similarly, we can prove the following generalization:

e Letay, as,...,a, be real numbers so that
a;+as+---+a, =k, al+a3+--+a:=n—2k+Dn+k(k+2),

where k is a positive number, k > n. If m is an odd number (m > 3), then

2k " 2k "
(——1+n—k:) +(n—1)<——1) <al'al +-+ad"<(k—n+1)"+n—1.
n n

The left inequality is an equality for
2k 2k

alz——1+n—l€, g =+ =a, = — —1
n n

(or any cyclic permutation). The right inequality is an equality for
a1 =" =0ap_1 =1, an=k—n+1
(or any cyclic permutation).

For k = n + 1, we get the inequalities in P 6.10.

P 6.11. Ifay,as,...,a, are real numbers so that
ap+ay+ - +a,=al+ay+-+ap=n-—1,

then
al+ay+---+ad>n—1.

(Vasile Cirtoaje, 2010)

Solution. For n = 2, we need to show that

a; +as =1, at+ay =1,
implies
al 4 a5 > 1.
We have
a)p = O, ag = 1,
or
ap = ]., a9 = 0.

For each of these cases, the inequality is an equality. Assume now that n > 3 and
ap < ay < - < ap.

According to Corollary 2, the sum

S,=al+a5+---+a’
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is minimum for ay = a3 = --- = a,,. Thus, we only need to show that
a+(n—1b=a*"+n—-1)b"=n—1, a<b

involve
a® +(n—1)b>n—1.

The equations
a+(n—1)b=n-—1, at4+(n—1)b*=n—1,

are equivalent to
(1-0)[(n—131-=b)>-1-b—0b>—b] =0, a=(n—1)(1-b);

that is,

and
a>=1+b+b+0b, a=(n—1)(1-0).

For the second case, the condition a < b involves
B> 1+b+ b+ b
which is not possible. Therefore, it suffices to show that
a+n-1>n-1
for a = 0 and b = 1, that is clearly true. Thus, the proof is completed. The equality holds for
a; =0, Qy=-+=a, =1

(or any cyclic permutation).

P 6.12. If a,b,c are real numbers so that
a®+ b+ c* =3,

then
a’+ 0>+ +3>2a+b+c).

(Vasile Cirtoaje, 2010)

Solution. Assume that
a<b<e.

According to Corollary 2, for a < b < ¢ and

a+ b+ c= firved, a4+ b 4 % =3,
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the sum
Sy =a®+ b+

is minimum for a < b = ¢. Thus, we only need to show that

a’ +2b* = 3, a<b,

involves
a® +2b% + 3 > 2(a + 2b).

We will show this by two methods. From a? + 2> = 3 and a < b, it follows that

—V3<a<1, —\/§<b§\/§.

Method 1. Write the desired inequality as
a® 4+ b(3 —a®) +3 > 2(a + 2b),

a® —2a+3 > b(a® +1).

For a > 0, we have
a3—2a+32—2a—|—3>0,

and for a < 0, we have
a®>—2a+3=a(a®*-3)+a+3=—-2ab> +a+3>a+3>0.
Thus, it suffices to show that
(a® —2a+3)* > b*(a® + 1),

which is equivalent to
2(a® —2a+3)> > (3 —a*)(a® + 1),

(a—1)*f(a) >0,

where
f(a) = a* +2a® + 2a + 5.

We need to prove that f(a) > 0. For a > —1, we have
fla)=(a+2)(a®>+2)+1>0.
For a < —1, we have
fla)=(a+1)*a+2)?*+g(a), g(a)=—4a*—13a®> — 10a + 1.
It suffices to show that g(a) > 0. Since

7\’ 13 53
g<a> = _<a+1) <2CL+§> +5h(a>, h(a) :a2+za+2_0
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and

the conclusion follows. The equality holds for a = b =c = 1.
Method 2. Write the desired inequality as follows:
2(a®> —2a + 1) +4(b*> —=2b+1) > 0,
2(a® —2a + 1) +4(b* — 20+ 1) > a® + 2b* — 3,
(2a® — a® —da +3) +2(b* — > — b+ 3) > 0,
(a—1)*(2a +3) +2(b—1)*(2b+3) > 0.
Since 2b+ 3 > 0, the inequality is true for a > —3/2. Consider further that
—V3<a< _73,
and rewrite the desired inequality as follows:
2(a® — 2a+ 1) +4(b* — 2b + 1) + 4(a® + 2b* — 3) > 0,
(2a® + 4a® — 4a — 2) +2(20° + 4b*> —4b—2) > 0

(2a3+4a2—4a—34—3) + (4b3+8b2—8b+g >0,

4
1 11
(2a+3)(a2+§a—z>+f(b)20,
where 9
f(b) = 4b* + 8b* — 8b + T
Since 2a + 3 < 0 and
a’® + a—E<3 1CL———1(2(1—1—1)<0
2 4 = 2 4 4 ’

it suffices to show that f(b) > 0. For b > 0, we have
f(b) > 86> —8b+2=2(20—1)* >0,

and for b < 0, we have
f(b) > 4b® 4 8b* = 4b*(b + 2) > 0.

P 6.13. Ifay,as,...,a, are real numbers so that

ai+ag+ - +a, =0, a?+as+---+a:=nn-1),

then
at+ay+---+a <nn—1)(n*—3n+3).

(Vasile Cirtoage, 2010)
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Solution. For n = 2, we need to show that

ay +ag = 0, a:+a; =2,
implies
ai +a; < 2.
We have
a; = —1, ag = 1,
or
a1 = 1, o = —1.

For each of these cases, the desired inequality is an equality. Assume now that n > 3. According

to Theorem 1, the sum

Sn:afll—f—ag—f-..._}_a[i

1s maximum for
ap = - = ayj, Ajpr1 =+ = Qp,

where j € {1,2,...,n — 1}. Thus, we only need to show that
jar+(n—jlay =0, jai+ (n—ja, =n(n—1)

involve
jai + (n — j)at < n(n—1)(n* — 3n + 3).

From the equations above, we get

%_(n—j)(n—l) aQ—j(n_l)‘

Y n . Y

J n—J
therefore,
.4 N AR 2 { n? } 2
ja;+n—jla, = ——"——n—-1)"= | —— —3| n(n—-1)".
P+ =) j(n—j) (n=1) j(n—j) (n=1)
Since
jn—j)—m-1)=0G-1)n-j-1)=0,
we get
2
jai +(n—j)at < [ n 1—3] nin —1)? =n(n —1)(n? — 3n + 3).
n_
The equality holds for
ap =—n-+1, Gy =---=a, =1
and for
ap =n—1, g =---=a, =—1

(or any cyclic permutation).
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P 6.14. If ay,as,...,a, are real numbers so that
a+as+---+a,=n+1, a4as+ - +a=4n*+n—1,

then
at+ay+---+at <16n* +n— 1.

(Vasile Cirtoage, 2010)
Solution. Replacing n by 2n + 1 in the preceding P 6.13, we get the following statement:
o Ifay,as,...,as,+1 are real numbers so that
ap +ag + -+ agpy1 =0, ai+ a3+ -+ a3, =2n(2n+ 1),

then
al +ay+ -+ a4 < 2n(2n +1)(4n® — 2n + 1),

with equality for

a; = —2n, g =+ = Qops1 = 1
and for
a; = 2n, Ay =+ = Qgpq1 = —1
(or any cyclic permutation).
Putting
Apt1 =+ = Qopp1 = —1,
it follows that
a+as+---+a,—n—1=0, a?+ay+--+ai+n+1=2n02n+1)

involve
at+ay+---+ar+n+1<2n2n+1)4n* —2n+1).

This is equivalent to the desired statement. The equality holds for

a; = 2n, ag =---=a, = —1
(or any cyclic permutation).
m
P 6.15. If n is an odd number and ay,as, . .., a, are real numbers so that
a +az+--+a, =0, a; +ay+ - +a: =n(n’-1),

then
ai + a5+ +at >n(n?—1)(n*+3).

(Vasile Cirtoaje, 2010)
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Solution. According to Theorem 1, the sum

S,=al+a3+---+a:

is minimum for

a1 = - = ay, Ajp1 = = = Qp,

where j € {1,2,...,n — 1}. Thus, we only need to show that

jar+ (n—j)a, =0,  jai+(n—j)al =n(n*—1)

involve

jay + (n = j)ay, <n(n* —1)(n* +3).
From the equations above, we get

_ (n=j*-1)

af : R g U
J n—17]
therefore,
4 g (=g +7 2 { n? } 2 2
jay +(n—j)a, = — —-1)° = — —3|nn°—1
i+ (=) j(n—j) ( ) j(n—3) ( )
Since
n?—1 (n—25)*—1
DT S
T (=) T 0,
we get

4 2
jai + (n—j)at > <n2n_ s 3) n(n? — 1)? = n(n* — 1)(n® + 3).

The equality holds when n-

of ay,as, ..., a, are equal to —n — 1 and the other ntl are

equal to n — 1, and also when n- of ay,as, ..., a, are equal to n + 1 and the other ntl are
equal to —n + 1.

]

P 6.16. Ifay,as, ..., a, are real numbers so that

ay+ag+---+a,=n*—n-—1, ai+as+ - +a:=n>+2n*—n—1,
then

ai+ay+---+at>nt+(n—1)n+ D

(Vasile Cirtoaje, 2010)
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Solution. Replacing aq,as, ..., a, by 2ay,2as,...,2a, and then n by 2n + 1, the preceding P
6.15 becomes as follows:

o Ifay,as,..., a0, are real numbers so that
ay+az + -+ agppr =0, ai+as+-+a3, =nn+1)2n+ 1),
then
al +ay+-+ay, 1 >nn+1)2n+1)(n*+n+1),

with equality when n of ai,as, ..., as,11 are equal to —n — 1 and the other n 4+ 1 are equal to n,
and also when n of ai,as, ..., as,11 are equal to n+ 1 and the other n + 1 are equal to —n.

Putting

Upyl = = Qop = —N, gp+1 =N+ 1,

it follows that
ar+ay+---+a, +n(—n)+(n+1)=0

and
a; +a;+ - +ap +n(-=n)* + (n+1)* = n(n+1)(2n + 1)

involve
at+ay 4 +at (=)t +n+ D) <nn+1)2n+1)(n® +n+1).

This is equivalent to the desired statement. The equality holds for

aL=-=ap_1=n-+1, ap = —n
(or any cyclic permutation).
m
P 6.17. If ai,as, ..., a, are real numbers so that
_ 2 2, 2 2 _ .3
ay+az+---+a, =n"—2n—1, ai+as+---+a, =n"+2n+1,

then
al+ay+-+ay > (n+ 1)+ (n—1)n'.

(Vasile Cirtoaje, 2010)
Solution. As shown in the proof of the preceding P 6.16, the following statement holds:

o [fay, as,..., a1 are real numbers so that
a1 +as+ -+ agpi1 = 0, ai+a3+ - +a3,. =nn+1)2n+1),

then
aj +ay + -+ agg > n(n+1)(20 +1)(n* + 0+ 1),

with equality when n of ai,as, ..., a1 are equal to —n — 1 and the other n 4+ 1 are equal to n,
and also when n of ai,as, ..., as,11 are equal to n+ 1 and the other n + 1 are equal to —n.
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Putting
(pt1 ="+ = dgp—1 = —N — 1, Qop = Aopy1 = 1,

it follows that
ag+as+--+a,+(n—1)(-n—-1)+2n=0

and
a?+as+--+ai+(n—1)(-n—-12+2n>=nn+1)2n+1)

involve
at+ay+--F+at+n—D(n-D"+2n* <nn+1D2n+1D(n*+n+1),

which is equivalent to the desired statement. The equality holds for

ap=-n—1, Qy=-"+"=a, =N
(or any cyclic permutation).
[
P 6.18. Ifay,as,...,a, are real numbers so that
ay +ay+ - +a, =n*—3n—2, ai+as+---+al=n"+2n%—-3n-2,

then
ay +ay+ -4 ay > 20" 4+ (n—2)(n+1)"

(Vasile Cirtoaje, 2010)

Solution. As shown in the proof of P 6.16, the following statement holds:

o Ifay,as,...,as,11 are real numbers so that
ai+az + -+ agpi1 =0, ai+as+-+a3, =nn+1)2n+1),
then
al +ay+--+ay, . >nn+1)2n+1)(n* +n+1),

with equality when n of ai,as, ..., as,11 are equal to —n — 1 and the other n 4+ 1 are equal to n,
and also when n of ai,as, ..., as,11 are equal to n+ 1 and the other n + 1 are equal to —n.

Putting

(pp1 =+ = Qop—1 = —N, (2p = Aopy1 =N+ 1,

it follows that
ai+ay+--+a,+(n—1)(-n)+2(n+1)=0

and
ad+ast--+ai+m-D(n?+2n+1)2=nn+1)2n+1)

involve

ai+az+--+at+m-Dn)*+2n+ D <nn+1D2n+ 1D)(n*+n+1),
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which is equivalent to the desired statement. The equality holds for
a, = ay = —n, ag=--+=a,=n-+1

(or any permutation).

P 6.19. Ifa,b,c,d are real numbers so that a +b+ c+ d =4, then
(@® +0* 4+ + & —4)(a® + b* + & + d* 4 36) < 12(a” + b* + ' + d* — 4).
(Vasile Cirtoaje, 2010)

Solution. By Theorem 1, for a +b+c+d = 4 and a® + V? + ¢ + d* = fived, the sum
a + b + ¢* + d* is maximum when the set (a,b, ¢, d) has at most two distinct values. Therefore,
it suffices to consider the following two cases.

Case 1: a = b and ¢ = d. We need to show that a + ¢ = 2 involves
(a® +c* —2)(a* + 2+ 18) < 6(a* + ¢* — 2).

Since
>+ —2=(a+c)?—2ac—2=2(1—-ac), a*+c*+18=2(11~ ac),

at +ct—2=(a®+ ?)? —2a*c* — 2 =2(1 — ac)(7 — ac),

the inequality becomes
(1 —ac)(11 —ac) < 3(1 — ac)(7 — ac),

(1 —ac)(5b—ac) > 0.
It is true because ]
ac < Z(a+c)2 =1.

Case 2: b =c =d. We need to show that a + 3b = 4 involves
(a® + 3b* — 4)(a® + 3b? + 36) < 12(a* + 3b* — 4).

Since
a® + 30 —4=12(b—1)%,  a*+ 3b* + 36 = 4(3b* — 6b + 13),

a4+ 30" —4 = (4 —3b)* + 3b" —4 = 12(b — 1)*(7b* — 22b + 21),

the inequality becomes
(b—1)*[(3b* — 6b + 13) < 3(b— 1)*(7b* — 22b + 21),
(b—1)*(3b—5)* > 0.
The equality holds for a = b =c=d =1, and also for

a=-—1, b:c:d:§
3

(or any cyclic permutation).
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P 6.20. If ay,as,...,a, are real numbers so that
a+ax+-+a, =0, ai+ay+-+a:=n(n-1),

then
aS+aS+--+a <(n-1°4+n-1.

(Vasile Cirtoaje, 2010)

Solution. For n = 2, we need to show that

ay +ay = 0, ai+a; =2,
implies
6 6
ay +ay < 2.

We have

ay = —]_, a9 = ].,
or

ap = 1, a9 = —1.

For each of these cases, the desired inequality is an equality. According to Theorem 1, the sum
Sn:ag—i—ag—'—..._}_a/g
is maximum for
a/lz...:aj’ aj+1:...:an,

where j € {1,2,...,n— 1}. Thus, we only need to show that
jar+(n—jlay =0, jai+(n—ja, =n(n—1)

involve
ja?—i—(n—j)ag < (n—1)6+n—1.

From the equations above, we get

%_(n—j)(n—l) a2_]'(”_1)‘

Y

a . : .
J n-—7j

Thus, the desired inequality becomes

(n— P+ 5 _ (=141

An—4)? = (n-1)2 "
(n =3 = (0= )%+ (0 — )% — (0 — )" + 5 _
J3(n —j)? B
- n—Dt'=n-12+n-1)2-(Mn-1)+1
- (n—1)2 ’
(n_j)Q_n_.j_ j + j2. g(n—l)Z—(n—l)— 1 + 1

J? i on—=j (n—j) n—1 " (n—1)?%
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which can be written as

f(a) > f(b),
where ) .
f(x):ﬁ—x—;‘f‘ﬁa

Since a > b and

we have

-
=(a—=0b)|1—— b)(1+ — ) —1| >0.
o0 1-55) [een (1+5) ]2
The equality holds for
alz—n+1, a2:”':an:17
and for
ap=n—1, g =-+-=a, =—1
(or any cyclic permutation).
]
P 6.21. Ifay,as, ..., a, are real numbers so that
amFas+-Fa, =1, a+ay+-+al=n*+n-1,

then
aS4+aS+---+al <n®4+n—1.

(Vasile Cirtoaje, 2010)

Solution. The inequality follows from the preceding P 6.20 by replacing n with n+ 1, and then
making a, 11 = —1. The equality holds for

a; =n, Qg = =ay, =—1
(or any cyclic permutation).
O
P 6.22. Ifay,as,...,a, are real numbers so that
a +as+ -+ a, =0, ai+as+---+a:=n(n-—1),

then
al+ay+-+al<(n—1°%+n-1

(Vasile Cirtoage, 2010)



EV Method for Real Variables 547

Solution. For n = 2, we need to show that

ay +ag = 0, a:+a; =2,
implies
al + a5 < 2.
We have
a1 = _]-) Ay = ]-7
or
ay = 1, ag = —1.

For each of these cases, the desired inequality is an equality. According to Theorem 1, the sum
Sn:a/§—|—ag—|—...+a/i
is maximum for
alz...:aj7 aj+1:...:an’

where j € {1,2,...,n — 1}. Thus, we only need to show that
jar+(n—ja, =0, jai+(n—jlay =n(n—1)

involve
ja?—i—(n—j)ai < (n—1)8+n—1.

From the equations above, we get

%_(”_j)(”_l) az_j(n_l).

9

a : . .
J n-—7J

Thus, the desired inequality becomes

(=) +57 _ (=1 +1

Bln—j32 = (m-1* "~
(=3 (=g n—j 7 P
S : — -+ ——— <
J J J n—j (n—7)72 " (n—yj)
1 1 1

fla) > f(b),
where n
a=n—1, b=—--1,
J
1 1 1
f(x):x3—x2+x+g—ﬁ el x>0
Since

flz)=(t—1)(t*—-2), t:x+§22,
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it suffices to show that

We have a > b,

therefore

The equality holds for

a = —n+1, Ay = =a,=1
and for
ap=n-—1, a9 = =a, =—1
(or any cyclic permutation).
m
P 6.23. Ifay,as,...,a, are real numbers so that

ay+ay+---+a, =1, a?+aiy+--+ai=n*+n-1,

then
ai+as+ - +ad <n®4+n—1.

(Vasile Cirtoage, 2010)

Solution. The inequality follows from the preceding P 6.22 by replacing n with n 4+ 1, and
making a,+; = —1. The equality holds for

a, =n, Qy=-=a, =—1

(or any cyclic permutation).

P 6.24. Let ay,aq,...,a, (n > 2) be real numbers (not all equal), and let

2 2 2
a1+a2+...+an

B: s C:

34 .3 3
aj+ay,+---+a,

A=

ay +as+ -+ ay

Then,

1 | m 2n2 <B2—AC'<1 L1t 2n?
4 n—1)  B2—A* — 4 n—1]"

(Vasile Cirtoaje, 2010)
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Solution. It is well-known that B > A2, hence B? > A%,

(a) For n = 2, the right inequality reduces to (a? — a3)* > 0. Consider further that n > 3.
Since the right inequality remains unchanged by replacing ay, as, . . ., a, with —aq, —as, ..., —ay,
we may suppose that A > 0. Assuming that

A = fixed, B = fized,

we only need to consider the case when C'is minimum. Thus, according to Corollary 2, it suffices
to prove the required inequality for a; < as = az = --- = a,. Setting

ai == a, g =az3=---=a,:=0b, a<ob,

2n2
14+4/1+ ,
n—1

After dividing the numerator and denominator of the left fraction by (a — b)?, the inequality
reduces to

the inequality becomes

[a2+(n—1)62]2 at+(n=1b @+ (n—1p

{az + (n— 1)5212 B [a+ (n — 1)br

n n

<

I,

—4nZab <1414 2n?
(n+1)a?+2(n—1)ab+ (2n? —3n+ 1)b — n—1

—2ab 1
<
(n+1)a*+2(n—1ab+ (2n? =3n+1)b = \/(n2 —1)(2n — 1) —n+1’

2
2n2 —3 1
(a+ wb) 0
n+1

J— n+1 a1 = Qo = -+ = @
n—1)@2n-—1) ' 2 "

(b) For n = 2, the left inequality reduces to (a; — az)* > 0. For n > 3, the proof is similar
to the one of the right inequality. The equality holds for

n+1 G —a
(n—1)(2n—-1) " 2"

The equality holds for

(or any cyclic permutation).

(or any cyclic permutation).
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P 6.25. Ifa,b,c,d are real numbers so that
a+b+c+d=2,

then 5
at + o+t d §4O+Z(a2+b2+c2+d2)2.

(Vasile Cirtoaje, 2010)
Solution. Write the inequality in the homogeneous form
10(a+b+c+d)* +3(a® + 0+ 2+ d*)? > 4(a + 0"+ + dY).
By Theorem 1, for a +b+c+d = fized and a? + b> + ¢ + d*> = fized, the sum a* + b* + c* + d*

is maximum when the set (a,b,c,d) has at most two distinct values. Therefore, it suffices to
consider the following two cases.

Case 1: a =0 and ¢ = d. The inequality reduces to
41(a® + c*)? + 160ac(a® + ¢*) + 164a*c* > 0,
which can be written in the obvious form
(a® + c)? 4+ 40(a* + & + 2ac)® + 4a*c* > 0.
Case 2: b = c = d. The inequality reduces to the obvious form
(a+ 5b)*(3a® + 10ab + 116%) > 0.

Since the homogeneous inequality becomes an equality for

(or any cyclic permutation).

P 6.26. Ifa,b,c,d, e are real numbers, then

31 + 183

at+ bt trdt et < :

3
(a+b—|—c—|—d+e)4+Z(a2+b2+02+d2+62)2.

(Vasile Cirtoaje, 2010)
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Solution. We proceed as in the proof of the preceding P 6.25. Taking into account Theorem 1,
it suffices to consider the casesb=c=d=¢,and a=b and c =d = e.

Case 1: b = ¢ = d = e. Due to homogeneity, we may consider b = ¢ = d = ¢ = 0 and
b=c=d=e=1. The first case is trivial. In the second case, the inequality becomes

at+4< M(a +4)4 + §(a2 +4)27
8 4
(a+2+ 2\/§>2 [f(a) +2v3 g(a)] >0,

where
f(a) =29a* + 164a + 272,  g(a) = 9a® + 50a + 76.

It suffices to show that f(a) > 0 and g(a) > 0. Indeed, we have

82\% 1
f(a) > 25a% + 164a + 269 = (5a—|—€) + 52 >0,

25\ 5
g(a)>9a2+50a+702<3a+?) +§>0.

Case 2: a ="b and ¢ = d = e. It suffices to show that

(a2+b2+02+d2+62)2,

W~ w

A+t +dr et <

which reduces to

2a* + 3c* < §
4
3(2a° + 3¢*)* >

(2a® + 3¢%)?,
4(2a* + 3c),
4a* + 36a%c* + 15¢* > 0.

The equality holds for
—a

2(1 +/3)

(or any cyclic permutation).

-5
P 6.27. Let a,b,c,d, e # T be real numbers so that a +b+c+d+e =>5. Then,

dla=1)  Bb=1)  cle=1) _dd=1)  efe=1)
(da+5)2 ' (4b+5)2  (4c+5)2  (4d+5)2  (de+5)2 =

(Vasile Cirtoaje, 2010)
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Solution. Write the inequality as
180a(a — 1)
— 41| 25
e
(4a +5)2 —
By the Cauchy-Schwarz inequality, we have

(14a —5)% _ [> (4a + 5)(14a — 5)]?
2w S Sain

Therefore, it suffices to show that

(562612 + 125)2 >53 (40 +5)"

Using the substitution

da +5 4b +5 de + 5
= yd2 = ———...,05 =

9 9

a1

we need to prove that a; + as + az + a4 + a5 = 5 involves

5 2 5
<7Za§ - 25) >20) af.
=1 =1

Rewrite this inequality in the homogeneous form
5 5 212 5
72@?— (Zai> ZQOZ@?.
i=1 i=1 i=1

By Theorem 1, for a; + as + az + a4 + a5 = 5 and a? + a2 + a3 + a2 + a2 = fized, the sum
aj + a3+ a3+ aj +ai is maximum when the set (a1, as, as, as, as) has at most two distinct values.
Therefore, we need to consider the following two cases.

Case 1: a; = x and ay = a3 = a4 = a5 = y. The homogeneous inequality reduces to
(32% 4 692 — day)? > 5(x* + 4y*),
which is equivalent to the obvious inequality
(z —y)*(z — 2y)* > 0.
Case 2: a; = as = x and ag = a4 = a5 = y. The homogeneous inequality becomes
(52 4 6y* — 6xy)* > 5(2z" + 3y"),
which is equivalent to the obvious inequality

(z —y)*[5(x — y)* + 2% > 0.
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The equality holds for a =b=c=d =¢e =1, and also for

a = s

d
? b:c:d:e:§
2 8

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

o Letxy,x9,...,x, # —k be real numbers so that x1 + x9 + - -+ + x, = n, where
n
k> ——.
T 2vn—1
Then,
x1(zy — 1)  zo(xe — 1) zp(T, — 1) >0
(1 + k)2 (o + k)2 (xp+ k)2 — 7
with equality for xy =x9=---=x,=1. Ifk = 2\/%, then the equality holds also for
on B o n
SR e T P

(or any cyclic permutation).

P 6.28. If a,b,c are real numbers so that
a+b+c=09, ab + bc + ca = 15,

then
19 1 1 1 7
— < + + < —.
175 = b2 4+bc+c2 2+ca+a? a?+ab+02 19

(Vasile C., 2011)

Solution. From
(b+c)* > 4be

and
b+c=9—a, be=15—a(b+c) =15 —a(9 — a) = a* — 9a + 15,

we get a < 7. Since
b2 +bc+c? = (a+b+c)b+c)— (ab+bc+ca) =9(9 —a) — 15 = 3(22 — 3a),
we may write the inequality in the form

57 21

2 fla) + £+ 1) < Ty

where
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We have
3

(22 — 3x)?’

162
" -
9@ = g gy

Since ¢’ (x) > 0 for x < 7, g is strictly convex on (—o0, 7]. According to Corollary 1, ifa <b<c¢
and

9(2) = f'(z) =

a+b+c=09, a? 4+ b* 4 ¢ = 51,
then the sum Ss = f(a) + f(b) + f(c) is mazimum for a = b < ¢, and is minimum for a < b = c.

(a) To prove the right inequality, it suffices to consider the case a = b < ¢. From
a+b+c=9, ab + bc + ca = 15,

we get a = b =1 and ¢ = 7, therefore

1 1 1 7

+ + ==
b2+bc+c2 cZ+ca+a? aZ+ab+b%2 19

The original right inequality is an equality for @ = b =1 and ¢ = 7 (or any cyclic permutation).
(b) To prove the left inequality, it suffices to consider the case a < b = ¢, which involves

a = —1and b = ¢ =5, hence

1 1 1 19

b2—|—bc—|—02+62+ca—|—a2+a2—|—ab+b2 T 175

The original left inequality is an equality for « = —1 and b = ¢ = 5 (or any cyclic permutation).
O

P 6.29. If a,b,c are real numbers so that
8(a® 4+ b* + ¢*) = 9(ab + be + ca),
then
419 < a? n b? n c? < 311
175 — b2 +bc+c2 A+cat+a? a?+ab+b*— 19

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that
a+b+c=9, a> + b+ =51

Next, the proof is similar to the one of the preceding P 6.28. Write the inequality in the form

1257 933

1—75§f(a)+f(b)—l—f(c)§5,

where



EV Method for Real Variables 555

© have 322 + 44 8712
_pl _ T + xr " _

Since ¢ is strictly convex on (—oo, 7], according to Corollary 1, the sum S3 = f(a) + f(b) + f(c)
is maximum for a = b < ¢, and is minimum for a < b = c.

(a) To prove the right inequality, it suffices to consider the case a = b < ¢, which involves
a=b=1, c=1,

and
a? b? c? 311

b2 + be + 2 * ? + ca + a? + a?+ab+02 19"
The original right inequality is an equality for a = b = ¢/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the case a < b = ¢, which involves
a = —1and b = c =5, hence
a? b? c? 419

b2+bc—|—02+c2~|—ca+a2+a2—|—ab+b2 175

The original left inequality is an equality for —5a = b = ¢ (or any cyclic permutation).

P 6.30. Let ay,aq, ..., a, be real numbers such that a; + as + - - -+ a, = n. If n < 10, then
2ai+ai+ - +a2) —na@+add+---+dd)>n
(Vasile Cirtoaje, 2020)
Solution. Write the inequality in the homogeneous form
2n?(ai4ai+ - +a2)? —n*(ar+as+ - +ay)(ad +ad+ -+ ad) > (ag Fag -4 a)t

According to Corollary 2, for a; +ay + -+ - +a, = fized > 0 and a? + a2 + - -- + a> = fived, the
sum
S—d+a+-ta

is maximum when n — 1 of aq,as,...,a, are equal. Therefore, it suffices to consider the case
as = ag = - -+ = a,. Due to homogeneity, for the nontrivial case a; = az = --- = a,, # 0, we may
consider that as = a3 = --- = a,, = 1. Thus we only need to prove that

2n®(a? +n—1)> —=n*(a; +n —1)(a} +n—1) > (a; +n — 1)*

which is equivalent to
(ay — 1)*(Aa} — Ba; + C) >0,

where
A=nn+1), B=nn*-2n+2), C=n(n-1)(2n-1).

The inequality is true because
4AC — B* = n*(—n® + 12n — 12) > 0.

The equality occurs for a1 =as =---=a, = 1.
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If ai,as,...,a, are nonnegative real numbers, then
a1+ ax + -t ay 2 n3faag - ay,
with equality if and only if a1 = ay =--- = a,,.

2. WEIGHTED AM-GM INEQUALITY
Let p1,p2, ..., pn be positive real numbers satisfying
prt+pet--+p,=1
If ai,as,...,a, are nonnegative real numbers, then
p1_Dp2

p1ray + paag + - 4 ppan > af'ah’ - - -alr,

with equality if and only if a; = as = -+ = a,,.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If ay,as,...,a, are positive real numbers, then

11 1 )
(a1 +ag+-Fa,) | —+—+--+— | >0’
a Qg an

with equality if and only if ay = ay = -+ = a,,.

557
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers aq, ao, ..., a,,

1
ko k E\ %
ai+as+--+a k
(—n n )" k#0

Mk: )
Yajas - Gy, k=0

is an increasing function with respect to & € R. For instant, My > My > My > M _; is equivalent
to

ad+a3+--+a2 _ata+t-+a, n
\/1 2 nz 1 2 Zna1a2"'an2 I 1 T

5. BERNOULLI’'S INEQUALITY

For any real number x > —1, we have
a) (1+z)">1+rzforr>1andr <O0;
b) (1+z) <1l+rzfor0<r<I1.

If ai,as,...,a, are real numbers such that either ay,as,...,a, >0 or
-1 Sal,ag,...,an SO,

then
(I4+a)(1+4as) - (14a,) >1+a+as+ -+ ay,.

6. SCHUR’S INEQUALITY
For any nonnegative real numbers a, b, ¢ and any positive number k, the inequality holds
a"(a —b)(a —c) +b*(b—c)(b—a) + F(c —a)(c —b) >0,

with equality for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permutation).
For k =1, we get the third degree Schur’s inequality, which can be rewritten as follows

a® +b* + ¢ + 3abe > ab(a + b) + be(b + ¢) + ca(c+ a),

(a+b+c)® + 9abc > 4(a+ b+ c)(ab + be + ca),
9ab
Q?+ B4R — > 2(ab + bc + ca),
a+b+c
(b—c)(b+c—a)+ (c—a)’(c+a—"0b)+ (a—b)*(a+b—c) > 0.
For k = 2, we get the fourth degree Schur’s inequality, which holds for any real numbers a, b, c,
and can be rewritten as follows

a* + b + ¢t +abe(a+ b+ c) > ab(a® + b?) + be(b? + ) + ca(c® + a?),
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at + bt 4 — b — b2 — 2a® > (ab + be + ca)(a® + b? 4 ¢ — ab — be — ca),
(b—c)P(b+c—a)+(c—a)lcta—0b)*+(a—b)*a+b—c)?>0,
6abcp > (p* —q)(4qg — p*), p=a-+b+ec, q=ab+bc+ ca.

A generalization of the fourth degree Schur’s inequality, which holds for any real numbers
a, b, ¢ and any real number m, is the following (Vasile Cirtoaje, 2004)

Z(a —mb)(a —mce)(a —b)(a —c) >0,

with equality for @ = b = ¢, and also for a/m = b = ¢ (or any cyclic permutation). This
inequality is equivalent to

Za4 +m(m + 2) Za262 + (1 - m2)acha > (m+1) z:ab(@2 + b%),

Z(b— c)*(b+c—a—ma)® > 0.

7. CAUCHY-SCHWARZ INEQUALITY

If ai,as,...,a, and by, b, ..., b, are real numbers, then
(af + a3+ +ap) (b + 05+ -+ b7) > (arby + agby + -+ + anb,)?,

with equality for

ai a2
bl b2 n

Notice that the equality conditions are also valid for a; = b; = 0, where 1 <17 < n.

Qn
b

8. HOLDER’S INEQUALITY

If 2;; (i=1,2,---,m;j=1,2,---n) are nonnegative real numbers, then
i=1 \j=1

9. CHEBYSHEV’S INEQUALITY

Let a; > ay > -+ > a,, be real numbers.

a) If by > by > ---b,, then

i=1
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b) If by < by < -+ < by, then

i=1

10. REARRANGEMENT INEQUALITY

(1) If a1, as,...,a, and by, b, ..., b, are two increasing (or decreasing) real sequences, and
(1,19, -+ ,1,) is an arbitrary permutation of (1,2,---,n), then

a1by + agby + - - - + anb, > arb;, + agby, + -+ ayb;, .
(2) If ay, as, . .., a, is decreasing and by, bs, ..., b, is increasing, then
arby + aghy + - - - + anb, < arb;, + asby, + - - - + ayb;,,.
(3) Let by,bo,...,b, and ¢, ca, ..., c, be two real sequences such that
by 4+ +by >4ty k=12 .n.
Ifag, >ay>--->a, >0, then

arby + agby + - - + ayb, > arcr + azes + - - - + ancy,.

11. SQUARE PRODUCT INEQUALITY
Let a, b, ¢ be real numbers, and let

p=a+b+c, qg=ab+bc+ca, r=abc,

s =/p? -3¢ =Va2 + b2+ 2 —ab— bc — ca.
From the identity
(@ =b)*(b—¢)*(c —a)* = =27r" + 2(9pq — 2p°)r + p*¢* — 4¢°,
it follows that

—2p® + 9pq — 2(p* — 3q)\/P?* — 3¢ . —2p® + 9pq + 2(p* — 3¢)\/p* — 3¢
27 27 ’

IA
IA

which is equivalent to
p® — 3ps? — 253 . p? — 3ps? + 253
27 27 '

Therefore, for constant p and ¢, the product r is minimum and maximum when two of a, b, ¢ are
equal.

IA
IA
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12. KARAMATA’S MAJORIZATION INEQUALITY
Let f be a convex function on a real interval I. If a decreasingly ordered sequence
A= (ay,a9,...,a,), a; €l
majorizes a decreasingly ordered sequence
B = (b1,by,...,by), b€l
then
flar) + flaz) + -+ flan) = f(b1) + f(b2) + -+ + [ (bn).
We say that a sequence A = (aq,as,...,a,) with a; > as > --+ > a,, majorizes a sequence
B = (b, by, ..., by) with by > by > -+ > b, and write it as
A» B,
if
ay 2 bh

a1+a22b1+b2,

artag+- tap1>br+br+ -+ by,
G+ s+ = by by + by

13. POPOVICIU’S INEQUALITY

Theorem. If f is a convex function on a real interval I and aq,as, .

Flar) + f(as) + -+ f(an) +nln - 2)f (

a1+ ag + -+ a, >
n =

> (n—=1)[f(b1) + f(b2) + -+ f(bn)],

where
1

b,-:n_lzaj, i=1,2,--,

J#i

In the same conditions, the following similar inequality holds:

n.

n—2 n

flar) + flaz) + -+ flan) + n f<a1+a2+...+an)

14. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

flaz + By) < af(z) +Bf(y)

2
>— > f

1<i<j<n

.,a, €1, then

a; + a;
— )
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for all z, y € I and any «, f > 0 with a + 8 = 1. If the inequality is reversed, then f is said to
be concave.

If f is differentiable on I, then f is (strictly) convex if and only if the derivative f” is (strictly)
increasing. If f” > 0 on I, then f is convex on I. Also, if f” > 0 on (a, b) and f is continuous
on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p,po, ..., p, be positive real numbers. If f is a convex function on a
real interval I, then for any ay, as, ..., a, € I, the inequality holds
pif(ar) +paflas) + -+ puflan) F (p1a1 + paas + - - - +pnan)
P1+p2+ -+ Py a p1+p2+-+py

For p1 = py = --- = p,, Jensen’s inequality becomes

n

f(a1)+f(a2)+...+f(an)an(a1—l-a2+..._|_a}n)'

Right Half Convex Function Theorem (Vasile Cirtoaje, 2004). Let f be a real function
defined on an interval I and convezr on Isg, where S € int(I). The inequality

f(a1)+f(a2)+...+f(an)an(a1+a2—|—..._|_an)

n

(1)

M2t O o it and only if it holds for all

holds for all ay,ao,...,a, € 1 satisfying

ai,as,...,a, €I such that
a1 < ay=asg=-:+= Q.

Left Half Convex Function Theorem ( Vasile Cirtoaje, 2004). Let f be a real function defined
on an interval I and conver on I<g, where S € int(I). The inequality

(3)

f(a1)+f(a2)+...+f(an)an(a1+a2—|—..._|_an)

n

CL1+CL2+"'+(I
n

" =S if and only if it holds for all

holds for all ay,ao,...,a, € 1 satisfying

ai,as,...,a, €I such that
ap =0y = -+ =dap-1 < Qp.

Left Convex-Right Concave Function Theorem ( Vasile Cirtoaje, 2004). Let a < ¢ be real
numbers, let f(x) be a continuous function defined on I = [a,00), strictly convez for x < ¢ and
strictly concave for x > ¢, and let

E(ay,as,...,a,) = f(a1) + f(a2) +--- + f(an).
If ai,as,...,a, €1 so that

ai+as+---+a, =S = constant,
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then
(a) E is minimum for a; = as = -+ = ap_1 < ay;
(b) E is mazimum for either a; =aor a < ay; < ag=--+= a,.

Right Half Convex Function Theorem for Ordered Variables (Vasile Cirtoaje, 2008). Let
f be a real function defined on an interval I and convex on I, where s € int(I). The inequality

f(a1)+f(a2)+...+f(an)an(a1+a2+...+an>

n
holds for all aq,as, ..., a, €1 satisfying
ay +ag+ -+ a, =ns
and
ap<ay<--<a,<s, me{l,2...,n—1},

if and only iof
f@)+n-=—m)f(y) =2 (L+n—m)f(s)
for all x,y € I such that

r<s<y

— — I

r+(n—m)y=(14+n—m)s.

Left Half Convex Function Theorem for Ordered Variables ( Vasile Cirtoaje, 2008). Let
f be a real function defined on an interval I and convex on l<s, where s € int(I). The inequality

n

f<a1)+f(a2)+"'+f(an)an(a1+a2+"'+an>

holds for all aq,as, ..., a, €1 satisfying
a1 +az+---+a, =ns

and
ag>ay > >ap>s, meq{l,2,...,n—1}
of and only iof
f@)+m—m)f(y) > (L+n—m)f(s)

for all x,y € T such tht
r>s>y, x+(n—m)y=(1+n—m)s.

Right Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real function
defined on an interval I and convex on [s, so], where s,s0 € 1, s < sg. In addition, f is decreasing
on l<s, and f(u) > f(so) for u € I. The inequality

n

f(a1)+f(a2)++f(an)2nf(a1+a2++&n)

holds for all ay,as,...,a, €I satisfying

ar+asy+---+a, =ns
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if and only iof
f@)+(n—=1)f(y) =nf(s)
for all x,y € T such that x < s <y and z+ (n — 1)y = ns.
Left Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real function

defined on an interval T and convex on [sg, s|, where so, s € I, so < s. In addition, f is increasing
on Iss, and f(u) > f(so) for u € L. The inequality

f(a1)—|—f(a2)+...+f(an)an(a1+a2+...+an>

n

holds for all ay,as, ..., a, €1 satisfying
ay +ag+ -+ a, =ns

of and only iof
f@)+ (n=1)f(y) = nf(s)
for all x,y € T such that x > s >y and x + (n — 1)y = ns.
Right Partially Convex Function Theorem for Ordered Variables (Vasile Cirtoaje,

2014). Let f be a real function defined on an interval 1 and convex on [s, so], where s,s9 € 1,
s < so. In addition, f is decreasing on l<s, and f(u) > f(so) for u € 1. The inequality

n

f(a1)—|—f(a2)+...+f(an)an(a1+a2+...+an>

holds for all ay,as, ..., a, €1 satisfying
ay +ag+ -+ a, =ns

and
ap<ay<---<a,<s, me{l,2,...;n—1},

if and only iof
f@)+(n=m)f(y) =2 (1 +n—m)f(s)
for all x,y € I such that t < s <y and x+ (n —m)y = (1 +n — m)s.
Left Partially Convex Function Theorem for Ordered Variables (Vasile Cirtoaje, 2014).

Let f be a real function defined on an interval I and convexr on [s, s], where sy, s € 1, sg < s. In
addition, f is increasing on Iss, and f(u) > f(so) for u € 1. The inequality

n

f(a1)—|—f(a2)+...+f(an)an(a1+a2+...+an>

holds for all ay,as, ..., a, €1 satisfying
ay +ag+ -+ a, =ns

and
ag>ay > >ap>s, meq{l,2,...,n—1}
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if and only iof
fla)+(n—=—m)f(y) = (1+n—m)f(s)

for all x,y € I such thatx > s>y and z+ (n —m)y = (1 +n —m)s.

Equal Variables Theorem for Nonnegative Variables ( Vasile Cirtoaje, 2005). Let x1, xo, . .., Ty,
(n > 3) be nonnegative real numbers such that x1 < x9 < -+ < x,, and let f be a real-valued
function, continuous on [0,00) and differentiable on (0,00), so that the joined function

glw) = 1 (+77)

is strictly convex on (0,00). For fized x1 + xo + -+ + 2, and x5 + 2§ + - + 2%, where k # 1
(k = 0 means that the product xixs---x, is fived), the sum

Sy = f(x1) + fz2) + -+ + f(2n)
has the mazimum value only for
Ty =Ty =" =Tp1 < Tn,

and the minimum value only for x1 =0 or 0 <z < Ty =23="---=1a,.

Equal Variables Theorem for Real Variables (Vasile Cirtoaje, 2010). Let x1,29,...,T,
(n > 3) be real numbers such that r1 < x9 < --- <z, let k be an even positive integer, and let
f be a differentiable function on R so that the joined function g : R — R defined by

g(x) = f' ("Vx)
is strictly convex on R. For fized x1 + x4+ -+ + x, and x§ + 25 + -+ + 2F, the sum
Sn = flz1) + f(z2) + -+ + flzn)

has the minimum value for xro = x3 = -+ = x,, and the maximum value forxy = 19 = -+ = T,_1.

Best Upper Bound of Jensen’s Difference Theorem ( Vasile Cirtoaje, 1990). Let py,po, ..., pn
(n > 3) be fized positive real numbers, and let f be a convez function onl = [a,b]. Ifay,as, ..., a, €
I, then Jensen’s difference

pif(ar) +paflag) + - +puflan) s (plal + paag + - - +pnan)
pPLtp2+ -+ Pn P1Ltp2+t -+ Dy

is maximum when all a; € {a,b}.
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